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EFFICIENCY EVALUATION

FOR QUASI-LINEAR INVARIANT PREDICTORS

by J. TIAGO de OLIVEIRA
Lisbon, Faculty of Sciences

1. Introduction.

X,, X x> Nam > ttConsider a sequence of random variables X,, ...

from which we did obtain a sample (X,, ..., X,).
n> Mngt > creo

In a previous paper (Tiago de Oliveira, 1966) we developed a method

for obtaining quasi-linearly invariant predictors and quasi-linearly invariant

prediction regions for a quasi-linearly invariant statistical function
Z = wb (Xia, +++) Xnym) Of the random variables, computed from the

observed sample (X,, ..., X,), when the model has only location and dis-

persion parameters. Recall that a statistical function p(X,, ..., X,) is said

to be quasi-linearly invariant if

PAt+ SX, ..,A+ 8X) =A+ dp (K¥, ..., KB)

(-0 <’A<+4,0<3< +e)

The best (least-squares) quasi-linear predictor searched is a quasi-linear
function p that minimizes

 

  
 

 

  

ste, 1
B= J, Se — P (ey. HP om

xX, —2X X—A FX
x L (HK 4} Bice —; —) dx, ... dx, dz;

5 5 5

1 Xy—2Xr M—A z—Xr

= ft 4 ee ;
gut 6 8 é

being the likehood of (x,, ..., x,; 2) because of the existence of a location
(A) and a dispersion (8) parameter and of the quasi-linearity of yp.

Research sponsored by the C. Gulbenkian Foundation.



4 Revue de Statistique — Tijdschrift voor Statistiek 9 (1) 1968

As examples of quasi-linearly invariant statistics we can consider order
statistics X,,, as the median, linear combinations of orderstatistics 3. a; X,)
with S a; = 1, as the average, etc.

When possible we will use, in the sequel, a condensed notation as P (x);
£ (x; 2), etc.

Using the quasi-linearity of p and passing to the reduced values (denoted
also by x, and z) we can write

Bo (fle —peoCes 2)de de = 0° By
Remark that E and E, are equal quantities although measured in different

units; E, is its value in standard (8 = 1) units.

We have shown in (Tiago de Oliveira, 1966) that the best (least-squares)
quasi-linear predictor is given by

PF (rs wns Xn)

SS: dvds ef dzz lL (RQ 4+ 8m, 44 + 3x5 + 82)7 bs

if drds ser ft dz L(N 48%, cy A + Bmp + 82)Ja 7

where D = {(A, 8)}] —x <A< +mHj;0< 3 < + x}.

Denoting by L (x,, «++, Xn) the marginal likehood of (x,, ..., Xn; 2)
and by

PGs oy &) = S ht 2 Ciicee sue

 

the conditional mean of z, we can write

PP (Xs vs ®)

if dd d8 8[PAT Sm,A+ 8x) —Aldaz

X LA 85, 0 A+ 3m)
 

if AddL(+ 8x, ., d+ 9m)
eD
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The fact that in many cases the best predictor is very difficult to compute
necessitates naturally the use of different predictors. We will obtain now
lower bounds for the mean square error of a predictor which will be useful
for the definition and evaluation of efficiency. In fact, a computable deci-
sion technique with 70% or 80% efficiency is better than an uncomputable
full-efficient technique.

2. Predictor efficiency.

In order to define efficiency of a (mean-square quasi-linear) predictor
let us give a convenient form to the mean square error E,* (p) of the pre-
dictor p.

As +00

Ee (—) = ffl — pO£6 2) de dz

~ fo~ fe — w(x)L(x; 2) dx dz

+ fn flu) — POP Ls) dx = oF + DEG)

where oc? denotes the variance of about the conditional mean (iy: eax: Ba)
and D,* (p) the mean square distance between be (%1, -.., %,) and the (pro-
posed) predictor p(x,, ..., X,). To obtain a lower bound for E,? (p), as o®
is constant, it is sufficient to obtain a lower bound B,* for D,? (p).

Before computing By? let us consider two possible definitions of effi-
ciency. If p* denotes the best predictor as E,?(p) > Ey? (p*) and, also
D,* (p) > D,? (p*) efficiency can be defined as the quotient

 

Be)Dat ph)
E,* (p) Dy? (p)

Wewill prefer the second definition on the following (heuristic) grounds:
in the case of independence and m = 1 (z = Xn,1), o? is a constant and if
D,? (p) ~ a/n* and D,? (p*) ~ a*|ne* we have, as D,? (p) > Dy? (p*),

E,? (*)
—— — 1 and D,? (p*)/Do? (p) ~ a*/a.nvo*, the

E,? (p)
last one converging to zero if a < a*, as it should be. Consequently we
will take D,? (p*)/Do? (p) as the definition of efficiency for the predictor.

a@ < a«* so that  
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The results obtained from this definition can beeasily translated to the other
definition if adopted.

Similarly to what is done in estimation problem we will search lower

bounds By? for D,? (p), analogous to the Cramer-Rao or Kiefer bounds, see

(Kendall and Stuart, II, 1961). A lower bound for the efficiency of p is

then given by
e Bo?/Do?(p) .

Let us, now, obtain B,*. Denote

(A, 8) = foe fue 8 My g sowgal 3x)L(x, wage) AMiys: ving By

We have

 
 Soflee) — ne) = £ AA) ax

=ats fofoe) L(x) dx — b(d8)

on account of the quasi-linearity. Consequently we can write (to eliminate

the expected value of p in the second member)

tO . 1 — x— Hr —_

JJRO = HOl ESLS — 8 Leax

= r+ — $(a, 8) + 8¢4(0, 1)

The decomposition of the integrand as

— xX—xX= 1
[P (*) — w(%)] [ee : os £ ( 5 )— 8 Leo[/Le)

and the use of Schwarz's inequality gives

_ Boe@+ 3HOF
1 1 — x x —

f  [——[— £ (———) — 8 £ (x)? dx
-% L(x) 8 8

 

so that the lower bound is

 Bi = su P= ¢ @8) +84UP

aie f f eee aZr &

, 2 4 £6) 0B 3
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lA — $@, 8) + 8 $@, PF= sup

where

remark that for some values of (A, 8) the denominator may be infinite so
that the quotient may be zero, a fact that does not disturb the computation
of sup.

The computation of this bound B,?, which imposes no regularity con-
ditions, is in general a difficult one; under regularity conditions we can
give a more usable result. If (Ao, 89) is the point where the lower bound
By? is attained, the function for which this is obtained is

 

 

= %&—AX XA
£F—..., 2)

So SoBless %) = BOs%) — 48, + &——2____
Bo" L (X15 eee Xa)

where 4 is a convenient constant, as it is well known from the equality
condition in Schwarz’s inequality. If B (x,, ..., x) is quasi-linearly invariant
then — is the best quasi-linear predictor searched.

As P=90.9) +8900
W,(A, 8) — 28 4+ 82
 

presents an indeterminacy for ) = 0, § = 1 it seems natural to study its
limit value when ) > 0, 8 3 1 ina special manner.

Taking § = 1 + £6 andletting X > 0 (8 = 1) we obtain

b=$09) +390,0)By? = sup lim ——— - ———
ye te 1 1 — xBaro foo EE

leg ms | 8

 

xX _
s-1+pr Jim ——) — 8 £(x)}* dx

the computation of which, in general, is not difficult; B’,2 as a (lower)
bound is more manageable, Under regularity conditions we obtain

[t — $21) — 64's (0,1) + Bg (0.1)
 

By? = sup ;

B f o f {A(s) + BB(x) + (m+ 1) BLN} dx 

£(x)
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where

3 nO pve XpEft. om a=
iy Ox;

and

B (4,5 M) = DH soSis was *)
L Ox;

are supposed to exist and differentiation under the sign of integration is

possible.

The bound B’,*, analogous to the Cramer-Rao bound and obtained under

regularity conditions, also can be derived easily in a direct way, which we

will sketch. The quasi-linearity relation for p gives

1 +00

Gave[POEgee = 8fo S01) Le de
 

and, deriving in order to ) and § and rearranging we obtain:

fo [RC) py de = —1

E- fae dx = 0

£- fBE + @ +1) Le) P@) de = 0

f- fae dx = —x.

Multiplying the 3rd relation by 8, summing to the Ist and using

Schwarz’s inequality we obtain:

1+ fon fae) Ae) + BBE)
+ (n + 1) BL(x)] dx}?
 Dy? (p) > sup

Bee cli . ~. (——~ [A®) + BBE) ++18 LP ax
f. Se
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which is B’,”, because

#01) = — fn. (RG) we dx

#9 01) = —fe £6) + Bel wedx

80,1) = fo fale) £6) ae.
Using the conditions obtained on A and B and denoting by

a=.1l+ _ J)AG dx

b= fo fu) Be) + @ + 1) £o)] dx

A AR(x)
= se -— dx

P le J £(x) :
 

fea A (x) B(x)
q= J.adx

 

oc B2

pes a) te — ee —

= L(x)
we have

BY? = sup teeehap+ Baby
B P+ 2qB +76 pr—@

this bound being obtained for

 

_ bt ~ a ACK) ag ~ 0p B(x)P(x) = p(x) + aes See ee (=
be @ L(x) pr L(x)

as it is well known from the conditions of equality for Schwarz’s inequality.
The function % (x) is the solution if quasi-linearly invariant.

+ n+ 1)

In the case of independence we can, in general, give simple formulas
as usual. In that case we have

L652) = £5) gm) and L(x) = f(x)... f le).
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Consequently we have

#(*) = fim (const)

o( 8) = Pm

so that

Weobtain, putting

+00

W(r,8) = f
x—~A

5UF) ds, 
‘ 2=F
Q + 8 Bem pm)”

Boi Sup i LC3eW"(x,8) — 28 + 8
(A, 3)«D

   

B’,” is easily obtained because

a4=1,5 = um

=f EOP ge is

 

-o f(x)

07 FOP
quan F x Fa) dx = ng

/ _ +00 : Ff (xP _

rota fe 2 Fe) dx = n(r, — 1)

if

f f(x) dx = 0 and f- x f (x) dx = 1 (regularity conditions).

Using the expressions of p, q and r in p,, g, and r, we obtain

at n(r, — 1 + PsHm =2tm h)
By? = pce

nlp. + n(piri — 4° — ,)|

 

Posten” — 2 mJ + tr — 1
ee

n (pit, — 912 — pr)
  

which shows that B’,? is of order n-, for large samples, as we could expect.

In the case of normal distribution
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and one step (m = 1) prediction we have

b= jm =9% pr = 1 m7 =% 4 = 3

so that
By? = Ifn.

In the case of Gumbel distribution f (x) = e* exp (—e*) and one-step

prediction we obtain

=p =p AHL Aa yah h= 4+— a

ka) ae Lent n/ 1 6 16
By? = aa ioe

n [1 + n (x*/6)] n 7 n
    

In the case of exponential, uniform, Weibull distributions, B’,? can

not be computed and it is, in many cases, possible to compute B,’.

3. Final remarks.

The fact that, for the independence case, the lower bound B’,? is of

order n-* suggests the use of moments for prediction problem, that is,

to take p(x) = X + 65 as predictor. It is very easy to obtain in that

case the best values for § or, at least, the best asymptotic values. General

formulas can be developed but it seems better to obtain them for each case.

Expressions for a lower bound of the length of a prediction region can be

deduced in an analogous way. This bound being proportional to w? (w, the

prediction level) is not very sharp and useful, as it is easily seen for the

normal case.

Weprofit this paper to make a correction relating to our previous paper.

The proof of the prediction region is not correct although the result is.

The correct proof is: we decompose W (9) = » = w + ©” (w, o” > 0)

according to x, < x, and x, > x,; the average length is similarly decom-

posed and the minimization procedure in each of the half-spaces (Neyman-

Pearson lemma) leads to subregions defined by constants & and &”. Its

equality is proved comparing with the constants for the decomposition x, < x,

and x, > x,, for instance.
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