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EFFICIENCY EVALUATION
FOR QUASI-LINEAR INVARIANT PREDICTORS

by J. TIAGO de OLIVEIRA
Lishon, Faculty of Sciences

1. Introduction,

Consider a sequence of random variables X, ..., X, , X0y oons Xoims oon
from which we did obtain a sample (X, , ..., X,).

In a previous paper (Tiago de Oliveira, 1966) we developed a method
for obtaining quasi-linearly invariant predictors and quasi-linearly invariant
prediction regions for a quasi-linearly invariant statistical function
Z = ¢ (Xo, ..., X,.,) of the random variables, computed from the
observed sample (X,, ..., X,), when the model has only location and dis-
persion parameters. Recall that a statistical function p (X, ..., X,) is said
to be quasi-linearly invariant if
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The best (least-squares) quasi-linear predictor searched is a quasi-linear
tunction p that minimizes
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being the likehood of (x,, ..., x,; z) because of the existence of a location
(A) and a dispersion (8) parameter and of the quasi-linearity of y.
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As examples of quasi-linearly invariant statistics we can consider order
statistics X;, as the median, linear combinations of order statistics 3 4, X,
with 3 4, = 1, as the average, etc.

When possible we will use, in the sequel, a condensed notation as p (%),

L (%3 2), cte

Using the quasi-linearity of p and passing to the reduced values {denoted
also by x; and z) we can write

B o= g f Jlz— 21 £ 2) dx de = 52 By

Remark that E and E, are equal quantities although measured in different
units; E, is its value in standard (8 = 1) units.

We have shown in (Tiago de Oliveira, 1966) that the best (least-squares)
quasi-linear predictor is given by
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where D = {(A, §)] —w < A < +oeo; 08 < + wo)

Denoting by :(t (x5 .o %) the marginal likehood of (x,, ..., x,: z)
and by

+a2
p(ry o X)) = j dz 2 L (%, ooy %3 2) L (50 ooy %)
=;|
the conditional mean of z we can write
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The fact that in many cases the best predictor is very difficult to compute
necessitates naturally the use of different predictors. We will obtain now
lower bounds for the mean square error of a predictor which will be useful
for the definition and evaluation of efficiency. In fact, a computable deci-
sion technique with 70% or 809 efficiency is better than an uncomputable
full-efficient technique.

2. Predictor efficiency.

In order to define efficiency of a (mean-square quasi-linear) predictor
let us give a convenient form to the mean square error E.* (p) of the pre-
dictor p.

As
) = [ oo [l = p @ L5 2) dx dz
= f f[z — G (AE L (g 2} dx A
+ f fm(x) — P L) dx = o* + Dyt ()
where o denotes the variance of about the conditional mean Ty, was M)
and D, (p) the mean square distance between p (¥, ..., %) and the (pro-

posed) predictor p (x,, ..., x;). To obtain a lower bound for E,* (p), as o*
is constant, it is sufficient to obtain a lower bound By for D (p).

Before computing By let us consider two possible definitions of effi-
ciency. If p* denotes the best predictor as B, () # E*(p¥) and, also
Dy (p) = D, (p*) efficiency can be defined as the quotient

En2 (Pi) D'J2 (P%)
or

E.* (p) Dy (p)

We will prefer the second definition on the following (heuristic) grounds:
in the case of independence and m = 1 (z = X,,), ¢* is a constant and if
D (p) ~ afn® and D2 (p*) ~ a*[ne* we have, as Dy* (p) = D2 (p¥),
Eq* () —

.= = 1 and D (9)Dy? (p) ~ a*fa.nwo¥, the
Eg® (p)

last one converging to zero if o < o, as it should be. Consequently we
will take D2 (p*)/D,* (p) as the definition of efficiency for the predictor.

a S «F so that
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The results obtained from this definition can be easily translated to the other
definition if adopted.

Similarly to what is done in estimation problem we will search lower
bounds By* for Dy?* (p), analogous to the Cramer-Rao or Kiefer bounds, see
(Kendall and Stuart, II, 1961). A lower bound for the efficiency of p is

then given by B Z/D (1)
Q 0

Let us, now, obtain By®. Denote
= f fp,(f\ + 8%, oo AF an)z'(xl, wosa R) BBy, wvey Ry

We have

ﬁjmjw¢yf#wnigf(”_k)w
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on account of the quasi-linearity. Consequently we can write (to eliminate
the expected value of p in the second member)

+0

i - 1 — %— A —
LQJWM—#wrgxhﬁ—wwxmwx

= A — ¢(A 8) + 8¢(0, 1)
The decomposition of the integrand as

s g = s

[M@—»&HV?W-F~£( ) — 5 LWL

a1 b
and the use of Schwarz's inequality gives
s == <i>()t 8) -+ 8 ¢ (0, 1)]?

L | -
f f——" i (*—-"-——) — 8 L(»)]* dx

so that the lower bound is

Dy (p) 2

P\ 8) + 8 ¢ (0, 1)J?

¢ (A

I — x— A —

= L) — 8 L(x))* dr
& &

By =
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[A — & (A 8) + 8 ¢(0, 1))
W, (x, 8§ — 28 + »°

(A, 8)eD
where
X — A
“d £L* (*“8—~)
wn (/\a 8) = - —_— dx;
‘j:m f 8?;\ £(x)

remark that for some values of (A, 8) the denominator may be infinite so
that the quotient may be zero, a fact that does not disturb the computation
of sup.

The computation of this bound B, which imposes no regularity con-
ditions, is in general a difficult one; under regularity conditions we can
give a more usable result. If (Ao, 80) is the point where the lower bound
By? is attained, the function for which this is obtained is

= XK 4\0 Xn — A.o

T g
, 8 8

Pous s ) = iy ooy ) — b8y + b e %
81’1“ -’{ {x_l & ey xn)

where 4 is a convenient constant, as it is well known from the equality
condition in Schwarz’s inequality. If 7 (x,, ..., xy) is quasi-linearly invariant
then 7 is the best quasi-linear predictor searched.

As A — ¢ 8) + 5 ¢(0, 1))
W, (A, 8) — 25 + 82

presents an indeterminacy for A = 0, § = 1 it seems natural to study its
limit value when x — 0, § — 1 in a special manner,

Taking 8 = 1 + B and letting » — 0 (§ — 1) we obtain
b= 08 + 301

By = sup lim — ; :
e Sand X — A P,
BRSO f—‘ {— L ——2) — & L) ds
S=1-+8A Jw - L(x)  sm 5

the computation of which, in general, is not difficult; B'y* as a (lower)
bound is more manageable. Under regularity conditions we obtain

Bat = sup [ — #3000 — B¢ (01) + By ()

5o 1 - = . -
B f (AG) + BB + (1 + 1) BL(x)* dx
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where
A AXiy oy K] = 2
1

and

- 5 FJE By 5wy B
By g oy ®) = 2 2 s A
. 8 x;

are supposed to exist and differentiation under the sign of integration is
possible.

The bound B’,? analogous to the Cramer-Rao bound and obtained under
regularity conditions, also can be derived easily in a direct way, which we
will sketch. The quasi-linearity relation for p gives

[ fre T T o [ [T s

and, deriving in order to A and § and rearranging we obtain:

[ fR p) ar = —1

[ B+ @+ )L o6 dx = 0

f: fié.(x) dx = —x .

Multiplying the 3rd relation by B, summing to the Ist and using
Schwarz’s inequality we obtain:

1 4 f; f‘,,u(x) [A(x) + B B (%)
+ (n + 1) B L (x)] dx)?

Bprp=® 1 — — —_—
fymffm[“ﬂ+33@>%W+nﬁ£m1ﬂ
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which is B’(%, because

pa (0,1) = — j:y fK(x) p(x) dx
#3010 = — [ [ T + Bl u )

$(0, 1) = j f#(x)f(x) dx .

Using the conditions obtained on A and B and denoting by
a =1 + j k flu(x);\_(x) dx

b= [ (w9 B + o+ 1) T s

s
P = j.,_ r :((xs— dx

we have
Bige = g (@ + b B)2 oatr 4+ brp 4 2 abg
B bt 298 + rp pr— g

this bound being obtained for

F() = nlx) + % —a Af(ﬂ L g E(x)
pr—g L) pr— g L()

+ 7 + 1)

as it is well known from the conditions of equality for Schwarz's inequality.
The function ¥ (x) is the solution if quasi-linearly invariant.

In the case of independence we can, in general, give simple formulas
as usual. In that case we have

L2 = L) gu(d)  and L) = f(x) ... Flx)
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Consequently we have
B () = pm (const

so that
A8 = pm

We obtain, putting

- o 1 2 x - A‘ -
s = [ ) dx
B2 — ()‘- + 8 Pm — 4’-‘411:1)E

52 = sup AN
Wi (h,8) — 25 + 8
(A, 8)eD

B'y? is easily obtained because

421,[):#‘“

+03 f (X)‘
==n | L d¥ = npy,
r=r ) e R
o +60 f‘ (x): o
g = n fiw X —fa) dx = ng
- +00 " f (x)z N
’_lﬁ”jw x o dx = m{n — 1)

if
_Jf.' f(x)de =0 andf x f(x) dx — 1 (regularity conditions).
Using the expressions of p, g and r in p,, ¢, and r, we obtain

1 + wir, — 1‘-1- Pr ps® — 2 pn §1)
nlpy + mpire — q® — pi)

B =

P — 2 i 44 + rn —1

ﬂ(Plri — 1 — i)

which shows that B’;* is of order n*, for large samples, as we could expect.

In the case of normal distribution

L
Flx) = —— ¥

\Var
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and one step (m = 1) prediction we have

b:P«m:O,Plzl’Q1:0; rn = 3
so that
By = 1/n.

In the case of Gumbel distribution f (x) = e* exp (— e *) and one-step
prediction we obtain

2

ko

b = gy — m A= 4=y L, rn = 6 - = (1 e '}')2
% e 1 =p 1 + =%/6 1 6 1.61
By* = il =/0) ~ 1t ) = —
n [1 + n (a2/6)] n ' "

In the case of exponential, uniform, Weibull distributions, B';* can
not be computed and it is, in many cases, possible to compute B,

3. Final remarks,

The fact that, for the independence case, the lower bound B’¢* is of
order »' suggests the use of moments for prediction problem, that is,
to take p(x) = % -+ @5 as predictor. Tt is very easy to obtain in that
case the best values for § or, at least, the best asymptotic values. General
formulas can be developed but it seems better to obtain them for each case.
Expressions for a lower bound of the length of a prediction region can be
deduced in an analogous way. This bound being proportional to o® (w, the
prediction level) is not very sharp and useful, as it is easily seen for the
normal case.

We profit this paper to make a correction relating to our previous paper.
The proof of the prediction region is not correct although the result is.
The correct proof is: we decompose W (p) = o = o + o (o), 0~ > 0)
according to x; < x, and x, > x,; the average length is similarly decom-
posed and the minimization procedure in each of the half-spaces (Neyman-
Pearson lemma) leads to subregions defined by constants & and £7. Its
equality is proved comparing with the constants for the decomposition x, < x,
and x, > x,, for instance.
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