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Abstract

In this paper, a class of versatile discrete-time Markovian arrival processes

(D-BMAP'’s)is introduced. A modelfor the superposition of video sources, both

with uniform and multiple activity levels, belongs to this class. Formula for the

correlation between arrivals in the D-BMAParederived.

Observing the D-BMAP/G/1/N queue at departure epochs results in a finite

Markov chain of M/G/1 type. Anefficient method allowing the computation of

the queue lenght distribution at departures is proposed. Using matrix analytical

methods, we derive a solution for the buffer occupancy andfor the loss probability

which can be expressed in a form suitable for numerical computations. Finally,

we show that the output processof this queue is again a DMAP.
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1 Introduction

Integrated broadband communication systems must offer a high degree offlexibility, to-

gether with efficiency in resource consumption, by sharing the same network resources

(bandwidth, buffers,...) among several connections (data, voice, video,...). These con-

nections generate traffic streams with very different characteristics (required bandwidth,

burstiness, correlation, ...). Each connection has its own specific quality of service re-

quirements with respect to delay, delay jitter and loss of information. The efficiency in

bandwidth usage is increased by taking advantage of the statistical fluctuations in band-

width requirements of the individual connections. For the design and the dimensioning of

the network components (buffer requirements in multiplexers and switches, connection ac-

ceptance control strategies, source policing mechanisms,...) an analytical model describing

the traffic is essential. Such an analytical source model has to fulfill a numberofcriteria,

such as generality, accuracy, close to reality and computational tractability.

Commonly used models like the Poisson and Bernoulli process, in spite of their compu-

tational tractability, often do not incorporate important characteristics of the real traffic

(e.g. burstiness, periodicity, etc.; see [19]). Consequently there is a need for more detailed

models whicharestill analytically tractable.

In earlier contributions [2], [3], a class of general discrete-time Markovian arrival processes

(DMAP’s) was introduced. In [12] it is shown that, as model for the superposition of

sporadic sources, the DMAPgivesrise to a rather poor accuracy when evaluating the per-

formance of the corresponding multiplexer (the loss curve does not show the sharp bend

at the transition from cell level to burst level statistics).

Therefore, we propose a new model, called the Discrete-time Batch Markovian Arrival

Process (D-BMAP).It is a discrete-time version of the versatile Markovian point process,

introduced by Neuts [17] and more recently called BMAP by Lucantoni [15]. We show

that this rich class of arrival processes includes many well-known source modelsas special

cases. In particular, it is shown that an approximate model for the superposition of spo-

radic sources belongs to the class of D-BMAPprocesses. Furthermore we show that the

process introducedin [16] to model a superposition of video sources with uniform activity

levels and the process in {20] modeling video sources with multiple activity levels, both

belong to the class of D-BMAPprocesses.

As the correlation structure of the traffic stream in an ISDN network has a crucialinflu-

ence on the quality of service of the connections (see e.g. {19]), we derive a formula for the

correlation between arrivals in the D-BMAP.

Therelated statistical multiplexer can be modeled as a D-BMAP/G/1/N queue. Observ-

 



ing this queue at departure epochs results in a finite Markov chain of M/G/1 type. An

efficient method allowing the computation of the queue lenght distribution at departures

is proposed. Using matrix analytical methods, we derive a solution for the buffer occu-

pancy andfor the loss probability which can be expressed in a form suitable for numerical

computations. Finally, we show that the output process of this queue is again a DMAP.

The paperis organized as follows. In Section 2, the class of D-BMAP’sis defined, examples

of processes belonging to this class are given and the correlation structure is investigated.

In Section 3, examples are given of traffic sources which can be modeled by a D-BMAP.

Section 4 deals with the discrete-time D-BMAP/G/1/N queue. In Section 5, conclusions

are drawn and topics for further research are given.

2 A Discrete-Time Batch Markovian Arrival Pro-

cess

In this section we define the Discrete-Time Batch Markovian Arrival Process (D-BMAP).

It is the discrete-time analogue of the versatile Markovian point process introduced by

Neuts {17] and recently studied using a more transparent notation by Lucantoni[15]. It is

shown that this rich class of discrete-time arrival processes contains many processes useful

as source modelfor analytical studies in network dimensioning and design problems. We

also give formulas for the correlation between arrivals of the D-BMAP.

2.1 Definition

In order to better understand the evolution of the process, we start by giving a constructive

description of the process. Consider a discrete-time Markov chain with transition matrix

D. Suppose that at time & this chain is in some state i, 1 <i <m. At the next time

instant k +1, there occurs a transition to another or possible the same state and a batch

arrival may or may not occur. With probability (do);;, 1 < 1 < m, there is a transition

to state 7 without an arrival, and with probability (d,)i;, 1 <7 < m,n > 1, there is a

transition to state 7 with a batch arrival of size n. We have that

mm

y S(da)ij = 1.
n=0 j=]

Clearly the matrix Do with elements (dp); governs transitions that correspond to no

arrivals, while the matrices D, with elements (d,);,;, 2 > 1, govern transitions that corre-

spond to arrivals of batches of size n.



More formally, the process can be defined as a two dimensional discrete-time Markov pro-

cess {(N(k), J(k)),& > 0} on the state space {(n,j),n > 0,1 <j < m} with transition

matrix

Do D,; De Ds;

0 De Di D,

T= 0 0 Do D,

The variable {N(k),k > 0} represents the counting variable and {J(k),k > 0} the phase

variable. With this notation, the transition from state (1,2) to state (1 +n,j) corresponds

to an arrival of size n and a phase change of to j.

The matrix D = 37%, Dnis the transition matrix of the underlying Markov chain . Let

# be stationary probability vector of this Markov process,i.e.

x D=%, FE=1,

where € is a column vectorof1's.

The fundamental arrival rate A of this process is given by

A= (> kD,) e.

k=l

2.2 Correlations between Arrivals

As shown by Ramaswamiand Willinger [19], the correlation structureof traffic streamsis

an essential characteristic which influences heavily the quality of service.

Let (X1,...,X%) be a set of random variables, where X; is the numberof arrivals at

time instant 7. f(z,,...,2%) denotes the joint distribution matrix of (X1,..., Xx), i.e.

fis(21,-.-, 2g) is the conditional probability that X, = 2,...,X, = 2, and that the phase

of the arrival process at time instant k is j, given that the process started in phase ¢ at

time 0.

Denote f(z1,..., 2) the corresponding z-transform. Thenclearly

f(z1,---; 2) = D(2)...D(z), (1)

where D(z) = S25 Duz”.

The correlation between two random variables X, and X, is expressed in termsof their



covariance matrix

COV(X1X;) = ve .. So ((a1 — #1)(e ~ He)E(a1,---5 Te) (2)
z,=0 z2,=0

= E[X,Xi] — wiE[X;] — weE[Xi] + weef(1,..., 1), (3)

with pi and yy the scalar mean of X; and X;,. The scalar covariance function is given by

COV(X1X,) = KCOV(XX,jE

= WE[X,X,]€ — pine (4)

Recall that the coefficient of correlation between two variables X, and X;,is defined as

COV(X,X;)
corr (x XxX) =Ceore( Xi Xe) SVEEK,)

where o?(X;) denotes the variance of X;, t = 1,k.

The mean matrices E[X1], E[X,] and E[X,X;] are given by

E[Xi] = wile, <0) Zk) lent = (S ID)D*, (5)

ELX] = tla,wy) [yer= D?'[S- ID], (6)
zk i=1

BUXXe) = GeepeHlens y28) lami[MDDDI. (7)
f=1

For a stationary D-BMAP,the mean numberofarrivals per time unit is given by the arrival

rate X, so that for 4; and yy we obtain

1 = b= (>,iDD* =X.

{=1

Consequently, the covariance matrix of X, and X;, is given by

COV(XX;) = (D:- ADID*“?[57 ID;— AD]. (8)
f=1

For the scalar covariance function we obtain

oO oO

COV(X1, Xk) = ®(}_ (DJD*-? [D> (Dye — 47.
t=1 t=1

From this we derive the coefficient of correlation

_ Da IDJD*-7(DR IDiJe -»

Core = FLe, PDje— >?
 

 



3 The D-BMAPas Traffic Model

In this section we show by meansof examples how the D-BMAPcan heused as modelfor

various traffic sources, in particular for the superposition of variable bit rate sources, such

as still picture, compressed video, etc. For a more detailed discussion werefer to [5].

3.1 Special Cases of the D-BMAP

A numberof well known discrete-time arrival processes can be obtained as special case of

the D-BMAP.

(1) The Discrete-time Markovian Arrival Process (DMAP)

This process, defined in [2] and [3], is a D-BMAP withall arrivals having a batch of size

1. Some examples of D-BMAP’s whichare useful as traffic model are

e The Bernoulli Arrival Process

e The Discrete-Time Markov Modulated Bernoulli Process _

e The Discrete-Time Markov Modulated Bernoulli Process with Minimum Interarrival

Time.

(for more details we refer to (2], [3] and [6]).

(2) A superposition of D-MAP’s

Consider two D-MAP’s characterized by the matrices Df and Di, i=1,2. Then the su-

perposition is a B-DMAP,with matrices Dp = D?) @ D”, D, = DS) gD? + DY @ D®
and D; = D! @ D”.

(3) A D-MAPwith i.i.d. batch arrivals

Consider a D-MAPcharacterized by the matrices Dp and D,. Suppose that each arrival

epoch corresponds to a batch arrival, where the successive batch sizes are independent and

identically distributed with density {b, / > 1}. Then this process is a D-BMAP with

matrices Dp and D, = 6, Dy, for n > 1.

(4) A batch Bernoulli process with correlated batch arrivals

Consider a Bernoulli arrival process with parameter p, and suppose that each arrival epoch

correspondsto a batch arrival. The batch arrival size distribution {qi(.),1 < i < m} is

governed by an m-state discrete-time Markov chain, with transition probability matrix P.

The process defined in this way is a D-BMAP, where Do = (1—p)I and (Dx); = pP.;4i(n).



3.2. An approximation for the superposition of sporadic sources

In [2] it has been shown that the DMAPis able to model many sources, in particular

sporadic sources. Since the superposition of DMAP’s is a D-BMAP,wecould in principle

describe a superposition of sporadic sources by means of the appropriate D-BMAP(see

Example (2) in 2.3). This approach involves a very large state space, and therefore we

propose the following approximate model, belonging to the class of D-BMAP’s.

Consider a sporadic source which generates packets at regular instants during an active

period. The time between two consecutive packets during such an active period is sup-

posed to be d time units. The duration of an active period is supposed to be geometrically

distributed with mean p time units. An active period is followed by a silent period the

duration of which follows a geometrical distribution, with mean gq. In this way, a source is

characterized by meansofthetriple (p,q, d).

Since the mean numberof time units before an active source becomessilent is given by

p, we immediately derive that the probability that an active source becomessilent in the

next time unit is given by 8 = 1/p. Similarly, the probability that a silent source becomes

active in the next time unit is given by a = 1/q.

Now consider the stochastic process consisting of a superposition of a M identical inde-

pendent sporadic sources with parameters (p,q, 4) as defined above. Theresulting arrival

process has two important characteristics : firstly, it has a periodical character due to the

deterministic character of the arrival process of a single active source and secondly, this

process is modulated by the numberof active sources. A detailed model, incorporating

both characteristics, leads to a very large state space (for a more detailed discussion we

refer to [5] and [13]}). In order to avoid such large state space, we shall simplify the model

in the following way. We model the process of the numberof active sources by meansof an

(M + 1)-state pure birth and death process : we suppose that during a time unit only one

source can changeits state (active/silent). The transition matrix of this discrete Markov

chain is then given by

1— Ma Ma 0 . O 0

a 1-8-(M-l)a (M ~ 1)a 0 0

0 28 1-28-(M-—2)a .. 0 0

D= 0 0 . (9)

0 0 0 .. MB 1—MB

 



While this chain is in state m, the m active sources generate cells with a complex inter-

arrival distribution, due to the fact that the cell interarrival time of an active source is

deterministic, as has been observed above. In order to keep the numberof states of the

system limited, we suppose that the numberof arrivals during a time slot only depends

on the numberof active sources. This means that the numberof arrivals is renewed every

time slot. Let c,(m) be the probability of k arrivals during a time slot when the Markov

chain is in state m (i.e. cy(m) is the probability of having & arrivals during a timeslot

when m sources are active). Supposing that an active source has probability 1/d in each

slot to generate a cell, then

cx(m) = ( : ashe.
Let us now show that the resulting process is a D-BMAP.

Consider the M x M matrices D, given by

D, = C, D, (10)

where C,, is the following diagonal matrix

en(0)
€n(1)

Q 3 Hl

AG)

en(M)

Then clearly the process defined above is a D-BMAP,characterized by the matrices D,.

3.3. Superposition of Variable Bit Rate Sources with Uniform

Activity Levels

In [16], Maglaris et al. study the performanceof a statistical multiplexer whose input con-

sists of a superposition of full motion video sources with relatively uniform activity levels.

The arrival process is modeled as a discrete-state continuous-time Markov process in the

following way. Thebit rate resulting from the superposition is quantized intofinite discrete

levels and the transitions between levels are assumed to occur with exponential transition

rates depending on the current level. Due to the uniform activity levels, it is assumed that

only transitions between neighboring states are possible. The result is a process where

10

 



arrivals occur in multiples of a quantization step of A bits/pixel : (0, A,2A,...., MA). The

transition rates r;; between state iA and jA is given by

Titer = (M—i)a, i< M,

ris-1 = iB, 1>0,

rij = 0 elsewhere.

The rate increment A and the transition rates a and f are chosen to match the mean,the

variance and the auto covariance function of the experimental data. It is shown that this

arrival process is equivalent with the aggregated rate from M independent mini sources,

each alternating between transmitting 0 bits/pixel (off state) and A bits/pixel (on state)

according to a Bernoulli distribution. When the information stream is packetized into

cells, the bit rate (bits/pixel) becomescell rate (cells/sec) and the model described above

corresponds completely with the approximation for the superposition of sporadic sources

described above.

3.4 Superposition of Variable Bit Rate Sources with multiple

Activity Levels

In [20], Sen et al. generalize the results obtained in [16] to the superposition of video

sources with multiple activity levels. The model includes both short-term and long-term

correlations in the following way. The aggregate bit rate of the superposition changes

among a finite number of fixed rate levels which are built up from two basic levels : a

high rate A, and a low rate A; via integer combinations( i.e. a rate of kA, + mA), where

O0<k<N,and0<m<N)). It is show that this process can be seen as the aggregate

arrival process of the superposition of N,, sporadic sources ( with a bitrate of A, in the

active state) and the superposition of N; sporadic sources ( with a bitrate of A; in the active

state). From the first example we know that each of this superpositions is a D-BMAP,

and hence, as the superposition of D-BMAP’s is again a D-BMAP, the aggregate arrival

process belongs to the class of D-BMAP’s.

4 The D-BMAP/G/1/N Queue

Consider a discrete-time single server queue with capacity N. The input process is a D-

BMAPcharacterized by the m x m matrices D,, n > 0. The service times are iid. with

general distribution, the z-transform of which is denoted by G(z) = Df, ge z*.

11



4.1 The embedded process

First we introduce the probability matrices that needed in the sequel.

Let [A],; be the conditional probability that during the interval (0, &] there are n arrivals

and that at the end the phase of the arrival process is j, given that the process started at

0 in phase t. Then if we denote D(z) = Dy Dn 2",

AM(z) = > AM2" = [AM(z)]* = [D(z)]*.
n=O

Let [A,]i,; be the probability that during a service there are n arrivals and that at the end

the phase of the arrival process is 7, given that the service started with the arrival process

in phase t. Then

oo

A, = YAW),

k=l

with the assumption that go = 0. Let

oO

A(z) = >> A,z2” and A= A(1).
n=0

Let furthermore [B,];,; be the probability that, given a departure which leaves the system

empty and the arrival process in phase 2, at the next departure the arrival process is in

phase j and there have been n + 1 arrivals meanwhile. It is straightforward to show that

B, = (I - Do)™! >> Dj41An-j-

j=0

Let B(z) = C229 Ba 2”, then

B(z) = 27! (I— Do)~* [D(z) — Do]A(z),

and

B = B(1) = (I— Do)~! [D — Dy]A.

We consider the system at departure epochs to, t,¢2,.... Let L(t,) be the number of

customers in the queue at instant t, and let J(t,) be the phase of the arrival process at t,.

Then clearly {(L(tx), I(t), te: — te), & > O} is a semi-Markov process Q with state space

{0,1,...,. 4 —1} x {1,...,.m}. Denote the joint probability distribution of the queue length

and the phase of the arrival process at departures as the vector

x= {Xo, --.. Xa},

12



where

Xn = (Lary ey Taym)s O<n<N-l,

with

nj = im P{L(te) =, I(t) = 7}.
The vector X is the invariant probability vector of the irreducible stochastic matrix Q,

Bo B, B, .. By-y Dwiw_) Ba
Ao Ai Az ... Ania Yin) An

Q= O Ao Ai ... An-3 Dflw-2 An

0 0 0 .. Ao oo An

The structure of Q shows that this queueing system has an embeddedfinite Markov chain

of M/G/1-type (see also [1]).

4.2 The Queue Length Distribution at Departure Epochs

Wegive an efficient algorithm to determine the stationary probability distribution of this

chain. A similar reasoning may be found in [10], [11] and [14].

We apply thefollowing result (see e.g. [9]), also used by Grassmann, Taksar and Heyman

[8] (extended to block partitioned matrices). Consider an m x m matrix of the form

z 6
Xp =
(24):

where @ and 6 are (m— 1) dimensional vectors and where Y, is an (m—1) x (m—1) matrix.

Consider the matrix X, which is obtained by adding to the transition probabilities from

state i to 7, 2 < i,j < m, those transitions which go from z to 7 via state 1:

X, =Y; +7 Q - zy! 6.

The steady state probability vector of Xo can easily be computed from the onecorre-

sponding to X,. Applying this scheme several times, we obtain a sequence of matrices

with decreasing dimension Xo,X1,X2,...X%m. The last element X,, is a scalar. Now we

can computerecursively the steady state vector of X,, ? = m — 1,m-— 2,...,1, and finally

obtain the steady state vector of Xo.

13



Weapply this method, generalized to block partitioned matrices, to the above chain of

M/G/1 type . For notational convenience, welet

> B, = Byw-1 and > An = Ax.

n=N-1 n=k

After the first step, and letting

Cii = Aig: + Ao(I — Bo)"Bir, OS TS N-3

Ciy-2 = An-1 + Ag(I- Bo)7'By-1,

we obtain the following block partitioned matrix (number of rows and columnsis decreased

by the dimension of a block)

Cio Cia Cia cee Ci,n-3 Ci.n-2

Ao Aj A2 eee An-3 An-2

Q.= 0 Apo A... An-4 Awn-3z

0 oO O... Ag Ai

Remark that the (j,&) entry of the matrix C,, is the probability, that given the process

starts in state (1,7), it enters a level higher than or equal to level 1 for the first time by

hitting state (i+ 1,k). A similar probabilistic interpretation is possible for the matrix

C.,n-2. We immediately see that the resulting matrix Q, is again of finite M/G/1 type.

Weapply the Grassman etal. result & times, we then obtain

Cro Cea Cea... Cinee-2 Ciw—e-1

Ao Ay, Ao... Anege2  Awn-e-i

0 Ao Ai... Anwege3  Awn-z-2
Qa = ’

0 oO O... Ao Ai

with

Cy = Ain + Ao(I — Coto)Ce-ayign, OS ES N-k-2, 2SKESN-2

Cin—e-1 = Anz + Ao(E — Ce-10)7?Ca-1,-&-

14



Finally we obtain the matrix

Qu-1 = Ai + Ao(I — Cw-20)7'Cw-a3-

Let the vector Xv-1 satisfy

¥n-1 Qn-1 = ¥n-1.

From this we can compute the steady state vector (Xw-1 Xw—2) of Qy_2 using

Xw-2 = Kw-1 Ao(I — Cn-a0)7?.

In general, the steady state vector X = (Xo, %1,...,%wv-1) can be computed using thefol-

lowing recursive formulas

Xv-1[Ar + Ao(I — Cw-20)*Cw-2,] = Kn-1,

Xk = KegAo(I—Cro)', 15k <N-2,

Xp = KX, Ao(I — Bo)™?.

The complexity of this algorithm is of the order M°N?, where M is the dimension of a

block and where N is the number of rows of blocks. The required memory is 2 M?N.

Indeed, it is sufficient to store the first two rows

Bo B, B, eee By_2 By-1

Ay Ai Az .. Anug An-i

Each time the Grassmanet al. method is applied we use the first row to store the matrices

Cy, and Ci,n—k-1 (since the matrices B,, k = 1,...,N — 2 and By-are not used after

the first step). Moreover the matrix Ao(I—C;,0)~? is also stored in the first row, and can

be used when evaluating the vectors X,.

4.3 The Queue Length Distribution at an Arbitrary Time In-

stant

Define the joint probability distribution of the queue length and thearrival phase at an

arbitrary time instant t € N by

y(n, j;t | No, Jo) = P{L(t) Hn, J(t) =j | L(0) = no, J(0) = jo},

15



and let

y(n,j) = jim y(n, j;t | No, jo)

Yn = (y(n, 1),....9(n,m)).

Before giving explicit expressions for the vectors ¥,, we need the fundamental mean E* of

the semi-Markov process Q,i.e. the average time between an arbitrary departure and the

next departure.

Lemma1 The fundamental mean E* of the semi-Markov process Q is given by

E* =E[G] + Xo(I— Do)&.

Proof. Since the fundamental mean E” is the average time between an arbitrary departure

from the queue and the next departure, we have

E* = XolS> y+ 1) (Do)' Dn, + E[G]]€ +, = EG]
n=1/=0 n=1

Reamrk that a direct argument on the length ofthe idle period of this system leads to the

sameresult.

The next theorem gives expressions for the vectors Y, suitable for direct computation.

Theorem 1 The vectors ¥,, are given by

1
Yo = -E * (I- Do)?

nm _ 1 _ _

Yagi = [SOFDasi-i + E (Xn — Xati)|(I- Do) 5 O<n<N-1,
#=0

N-1

Yn =F- > Yn-
n=0

16



Proof. Define [dM(u)]n; to be the elementary probability that at the end of the u-th time

slot the semi-Markov process Q enters the state (n, 7).

First we compute Yo. Clearly,

Applying the key renewal theorem results into

1
Yo = Fe Xo (I- Do)”.

In what follows we first computey,, n > 1, for the infinite system. Then, since the vectors

y,, satisfy the same equations for both the finite and theinfinite system,it is easy to obtain

the required results.

First we compute the joint probability of the number of customers in the system and the

phase of the arrival process at an arbitrary instant and the time until the next service

initiation.

Define [F(t;n, &)]; to be the joint probability that at time ¢ there are n customers in the

system,that the arrival process is in phase j and that the next service initiation occurs no

later than time t + &, with t,n,k € N, and k,n > 1. Furthermore,define

F(n,k) = jim F(t; n, k),

and denote the transform vectors

oo co

F"(z,y) = Ss: S> F(n, k)y*2”.
k=] n=]

Using the law of total probability, it possible to decompose F*(z, y) into two vectors Fi(z, y),

t= 1,2, according to the following twocases:

(i) the arbitrary time instant falls during the first service of a busy period

(ii) the arbitrary time instant falls during the second or later service of a busy period.

Let us first compute Fi(z, y). ;

Suppose that at instant u, 0 < u < t a customerleaves the system empty and that theidle

period ends after | time units, 0 < | < ¢ —u, with the arrival of 1 customers, 1 <:i < n.

Then

t t—-u

Fi(tsm,&) = 2 Y-7dMo(u) (Do)! (Dy) ALE?gersnu
u=0 [=0 i=1

17

 



Let t -+ co and apply a discrete version of the key renewal theorem, together with a change ~

of variables, then

=>>SE Xo (Do)! (D,) AMT)gusk-t-
u=0 i=0 mF

Taking transformsyields

00

Fi(n,y) = % DLS> (Do)! (Dy) A%_; gure y*-
u=0 [=0 k=1 t=1

Take the z-transform and apply the product rule for z-transforms, then

(2,9) = ge Xo (I Do)Ye So1D(z) — DolA“(2) gute ot.
u=0 k=]

It is easy to show that,

Fi(e,9) = pe Xo (I~ Do)! [D(z) — Dol G(y)I ~ A(2)] fy = D(z)}* y
Let us now computeF.(t;n, k). From

ra(tin, B) =5dMi(u) AL?gets
u=0 i=1

and after manipulations similar to those in the previous case we obtain

=e ls os -
F3(z,¥) = se (Ko — Ro) [G(y)I - A(z)] lyI- D(z)" y

Denote for the infinite system X(z), resp. Y(z), the generating function of the queue

length distribution at departures, resp. at an arbitrary instant. Then from the definition

of the vectors F7(z,y), it follows that

Y(z) =¥p + F(z, 1) + F5(z,1).

Using the identity

z)[zI — A(z)] = Xo [2B(z) — A(z)],

together with

B(z) = 27" (I— Do)~? [D(z) — Do]A(z)

results into

1 x -
Be (2 -1)X(z) (I- D(z)"

18



Hence,

1
E

from which we immediately derive the required result. Since the state equations for y,,

0<n< N —1 are the samefor both thefinite and the infinite system, we obtain that

Y(z)(I- Do) = z ¥(z) D(z) + (z—1) X(z),

= 1
Yau = (SS ¥Daai-i + E (Xn —Xng1)/(1- Do)", 0 s n<N— 1,

i=0

N-1

Yn =*- > Y,- s
n=0

From this state probabilities it is now possible to derive the probability of cell loss. This

loss probability is obtained form the mean numberofarrivals and the mean number of

arrivals that are lost per time unit. Hence,

1 N _ _

A= aremaehboN4 0) Feithn=0 k=1

where (k —-N+n)* = max (0,k -—N +n).

4.4 The Output Process of the D-BMAP/D/1/N Queue

In what follows, we show that the output process of the finite capacity D-BMAP/D/1

queue is a D-MAP.

In fact, the result we prove is somewhat stronger and can be formulatedas follows:

Theorem 2 The output process of a slotted Markovian queueing system with a upper block-

Hessenberg transition matriz is a D-MAP.

Proof. Consider a finite capacity single server queue. The service time is supposed to be

constant and is chosen as time unit. The server operates as a slotted system (i.e. when the

system is empty, an arriving customerhas to wait for the next time slot before being served).

Observe this system at the end of each time slot and suppose that its queue length can be
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described by a two dimensional Markov chain with an upper block-Hessenberg transition

matrix :

Boo Boi Boz .-. Bow-1 Bow

Bio Bia Biz ... Biy-1 Bi

Q=j; 0 Bro Bai .-. Baw-2 B2,n-1

0 0 0 --- Byo By

Remark that the D-BMAP/D/1/N queue has such a transition matrix. The output process

of this system is a D-MAP with parameters

 

Boo Bo; Boz .-. Bow-1 Bow

0 0 0 ... O 0
Do = . . . . . ’

0 0 0 ... O 0

0 0 0 ... O 0

Bio Bis Biz .-. Biw-1 Biw

D,=] 0 Bro Bai ... Bew-2 Bay-1 |. ©

0 0 0 --» Byo Byna

From this theorem it follows that the D-BMAP can be used as a generic component for

traffic studies in integrated communication networks.

5 Conclusion

In this contribution, we have introduced a versatile class of discrete-time batch Markovian

arrival processes (D-BMAP’s), which can be used as basic model for analytical perfor-

manceevaluation problemsin integrated communication networks. We have shown that a

numberof known models for traffic sources fit in the framework of our D-BMAP. Among

other properties, we have proved that the single source DMAP model({2]) together with

the superposition of DMAP’s, is a special case of the D-BMAP. Furthermore, the D-

BMAPcan be used as approximation for the superposition of sporadic sources and also

for the superposition of video sources, both with uniform and multiple activity scenes. A

matrix-analytical approach of the D-BMAP/G/1/N queue leads to simple algorithms for

20



computing many performance measuresof interest.

The results obtained in [16] and [20] seem to be very promising for a D-BMAPapproxi-

mation of the superposition of video sources. Furthermore, we intend to investigate more

elaborated models of multiplexers, which allow to evaluate the probability a tagged source

loses a string of cells (see [4], [5]).
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