Belgian Journal of Operations Research, Statistics and Computer Science Voi. 32 (3,4)

Optimal control of the degree of

multiprogramming in a computer system

K. Ohnot S. Hirao? K. Nakadet
Department of Systems Engineering! Faculty of Sciencet
Nagoya Institute of Technology Konan University
Showa—ku Higashinada-ku
Nagoya, 466, Japan Kobe, 658, Japan
Abstract

This paper deals with an optimal control problem in a multiprogrammed computer
system. First, the quasi-birth-and-death process which models the system is investigated
and an optimal static admission policy is derived that maximizes the throughput among
policies with fixed maximum degree of multiprogramming. Numerical results show that
this optimal static admission policy gives a ten percent higher throughput than the L = §
and knee criteria. Next, the problem is formulated into a semi-Markov decision process
and an optimal dynamic admission policy is obtained which controls the admission of jobs
depending on the state of the system. It is shown numerically that this dynamic admission
policy attains a five percent higher throughput than the optimal static admission policy

in the system with a low-speed paging disk.

Keywords : multiprogrammed computer system, throughput, L = S and knee criteria,

dynamic job admission control, semi-Markov decision process
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1. Introduction

Large and medium scale computer systems with virtual
memory maintain multiple jobs 1in a main memory and share system
resources., Many theoretical and empirical studies on these
mul tiprogrammed computer systems have been carried on in order
to improve their performance measures. In particular, controls
in operating systems have been studied in two aspects: one is
related to resource allocation and the other is an admission
control [9].

The former concerns scheduling strategies to decide
when and how system resources should be allocated among
active multiprogrammed jobs. These resources include a CPU, a
main memory, secondary storage devices and so on. Kameda [13]
has dealt with CPU scheduling strategies. Memory allocation
strategies 1include page replacement algorithms and software
techniques for reducing page fault occurrences [1,7,10].
Scheduling strategies 1in secondary stdrage devices, espe-
clally, disk storage devices, have also been investigated [5].

An admission contfol decides how many and which types
of jobs should be admitted into the active set. Admission
scheduling strategies for an arrival job stream have been
discussed in a multiprogrammed computer system with a
predetermined maximum degree of multiprogramming [14]. The
most fundamental and important scheduling problem in a
multiprogrammed computer system is to control the degree of
multiprogramming. This is because when the degree is too high,
performance of the system 1s heavily declining by thrashing [6].

To avoid thrashing, several strategies have been proposed
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and empirically analyzed. Well-known strategles are 50 %, L=S
and knee «criteria. Denning et al. {8] have discussed the
characteristics of these «criteria and compared them empiri-
cally under several kinds of job mix environment. These
policies, however, have 1little theoretical background.

In recent years, several theoretical approximations are
suggested. Blake [2] has applied dynamic programming to the
roughly approximate model of database systems. Chanson
et al. [4] have formulated a multiprogrammed computer system
with two types of jobs into an undiscounted semi-Markov decision
process. They have utilized a decomposition method for reducing
the number of states and derived a good admission policy in this
approximate process.

In this paper, we deal with an optimal admission control
problem in a simple multiprogrammed computer system. We are
concerned with two admission policles: static and dynamic
admission policies. Under the dynamic admission policy, a job is
admitted into the inner system utilizing available information
about the system. That is, the degree of multiprogramming is
dynamically controlled. The static admission policy is specified
by the maximum degree of multiprogramming. Under this policy, a
job is admitted unless the degree of multiprogramming exceeds
the maximum degree. The conventional L=S and knee criteria are
considered as static admission policies. We derive optimal static
and dynamic admission policies that maximize the throughput and
compare them numerically.

In section 2, we explain the multiprogrammed computer
system to be considered. In section 3, we analyze the computer

system with a fixed maximum degree of multiprogramming,
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which is described by a quasi-birth-and-death process. We use the
stability condition in (i8] and derive a simple expression of
the throughput. An optimal static admission policy is determined
by the maximum degree of the multiprogramming that maximizes the
throughput. In section 4, we deal with an optimal dynamic
admission policy for the multiprogrammed computer system.
The problem 1is formulated 1into an undiscounted semi-Markov
decision process. 1In section 5, we compute throughputs and
compare them in two steps. At first, the optimal admission
policy is compared with the knee and L=S criteria. Secondly, an
optimal dynamic admission policy computed by a policy 1iteration
method 1is compared with the optimal static admission policy.
Numerical examples show that the optimal dynamic policy attains a
five percent higher throughput than the optimal static policy in

the system with a low-speed paging disk.

2. A Multiprogrammed Computer System

We consider a multiprogrammed computer system as shown
in Fig. 1. The system consists of two service stations,
which we call "inner system,” and an input queue called queue 0.
Station 1 is a CPU and has two scheduling queues called queues
1 and 2. We assume that the CPU processes jobs under the
service discipline where jobs 1In queue 2 have higher priority
than 1In queue 1. Station 2 iIs a paging disk and has a queue
called queue 3. Let T be the total number of pages in the main
memory, which equals the maximum possible degree. We assume first
in and first out discipline in queue 0 and 3. Jobs arrive at the

input queue according to a Polsson process with rate A . The
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Fig.1 Multiprogrammed compuler system

arrival jobs in the input queue are admitted into the inner
system under the static admission policy, whenever the number of
jobs 1in the 1nner system is less than the maximum degree of
multiprogramming, M ( < T ). On the other hand, wunder the
dynamic admission policy, whenever the state of the system
changes, the admission <controller shown in Flg. 1 decides
whether a job waiting in queue 0 is admitted into the inner
system or not, utilizing available information about the system.
Stations 1 and 2 have -exponential service times with mean
a ~* and B ~*, respectively. Each job in service at the CPU
requests again the service of the CPU with rate gqa , departs
from the inner system with rate pa or proceeds to the disk

with rate ¢ (m), where p+q=1, p,q>0, and m is the number of jobs
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in the inner system, i.e., the degree of multiprogramming. The
rate 6 (m) is called the page fault rate and is given shortly.
System lifetime function L(m) is defined as the average
amount of CPU service between two consecutive page faults when
the degree of multiprogramming is m, and given by
L(m)=e(T/m), (1)
where e(n) denotes a program lifetime function defined as
the average amount of CPU service received by a job between
two consecutive page faults when n pages are allocated to
the job [8]. The following program 1lifetime function is used
frequently [3]:
e(n)=2-b/(1+(c/n)?), (2)
where b and c are parameters. As L(m) 1is the system lifetime
function, the page fault rate 6 (m) is related to it by
€ (m)=1/L(m).
The system is described by a quasi-birth-and-death
process and an expression of its throughput is derived in the

next section.

3. Optimal Static Admission Policy

Several queueing network models for evaluating the
performance of multiprogrammed computer systems have been
proposed and analyzed. For example, Kobayashi [15] has
calculated various characteristics of a multiprogrammed com-
puter system with M=3. In this section, we derive an
explicit expression for the throughput of the system with a
fixed maximum degree M.

The jobs in the system are classified into the following
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three classes:
class 0; Jobs in queue 0 (input queue),
class 1; Jjobs in station 1 (CPU),
class 2; Jobs in station 2 (disk).
Let S be the state space of the system. Then S 1s as
follows:
S={(1,J,k);0<j<M,0<k<M, J+k<M for 1=0,
0<J<M,0<k<M, J+k=M for 1>0}
where 1, j and k denote the number of jobs of classes 0, 1 and 2,
respectively. States in the subsets 1={(1,j,k)} of S are arranged
as follows:
0={(0,0,m),(0,1,m-1),...,(0,m,0), m=0,1,...,M},
i={(1,0,M),(i,1,M-1),...,(1,M,0)}, for i>1.
In addition, the subsets of S are arranged as S$={0,1,2,...}. Then
the behavior of the system can be described by a quasi-birth-

and-death process with the infinitesimal generator Q given by

BOO BOl
Bio A1 Ao

]
]
]

Q = : Az A:L Ao
i . .
[}

where Ao and A, are the (M+1)x(M+1) transition matrices from i to
i+1 and 1, respectively, for i>1. Az is the (M+1)x(M+1l) transi-
tion matrix from 1 to 1-1 for i>2. Boo, Boax and Bio are the
transition matrices from 0 to 0, from 0 to 1 and from 1 to O,
respectively, where the numbers of the states In 0 and 1 are

(M+1)(M+2)/2 and (M+1l), respectively. Let (x,y) element of matrix

Aa be denoted by (Aa)xy, Where a=0,1,2 and 0< x, y< M. Then,

57




Ao, Aix and Az are given as follows:
o= I, (3)
(A1) xy=6 (M) for 1< x< M and y=x-1 ,
=8 for 0< x< M-1 and y=x+1,
= -2 - min(1,x) 6 (M) - min(1,M-x)38

- min(1,x)pa for 0< x< M and y=x,
=0 , otherwise, (4)
(A2)xy=pa for 1< x< M and y=x,
=0 , otherwise, (5)

where I denotes the (M+1)x(M+1) ldentity matrix.

The multiprogrammed computer system with the maximum
degree M is called stable if the process Q is positive
recurrent. Let matrix A be given as

A=Ao+A1+Az. (8)
Then A is the infinitesimal generator of a finite and continuous
time Markov chain. Since by (4), (Ai1)xcx-1> and (Ai)x¢(x-1) are
positive, A 1s irreducible. We shall derive a necessary and
sufficient condition for the stability. Denote by
n (M)=(x o,7 2,...,7 m) the stationary probability vector of the
Markov chain A. Then it holds that

n (M)A=0, 1 (M)e=s1 and 0 (M)>0, (7)
where 0 denotes the zero vector and e denotes the vector with
all elements 1. Equations (3) through (6) 1lead directly to the
unique solution of (7), given by

7 w(M)={8 /(68 M))}* r o(M) for 1< k <M,
where 7 o(M) = { ? °(B /(8 (M)))1}—*. Then a necessary and

sufficient condition for the stability 1is given by
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I (M)Ace < 11 (M)Aze ( see Theorem 1.3.2, p.19 in {16] ). This

reduces to

A <pa {1-7 o(M)}} = pa {1- i:gg jzg %u;gg“")

- pa (ELLE DB L0 QN s

where A “(M) gives the upper bound of the arrival rate for the

system to be stable at the maximum degree M. Consequently,
A “(M) 1s 1dentical with "throughput” at the degree. Since a
static admission policy 1s specified with M, an optimal
admission policy maximizing the throughput is given by

M* = arg max { A (M) }, where arg max denotes the value of
M=l T

argument M maximizing A “(M).

The throughput cannot exceed the maximum throughput
A" = 2 °"(M") under static admission policies. It is expected,
however, that the throughput of the system can be improved |if
jobs waiting in queue 0 are dynamically controlled to admit
into the inner system. 1In the next section, we deal with an

optimal dynamic admission control.

4. Optimal Dynamic Admission Policy

We analyze a dynamic policy which controls the admission
of jobs waiting in queue 0 into the 1inner system, when the
state of the system changes. Now this problem is formulated
into an undiscounted semi-Markov decision process 1in the
following [11]. As a reward structure, we suppose that reward one
is obtained from a completed job.

Let X: (1i=0,...,3) be as follows:
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Xo: the total number of jobs in queue 0;

Xi: the total number of jobs in station 1;

Xz: the total number of jobs in queue 2;

Xs: the total number of jobs in station 2;
Then the state of the system is expressed by vector s given by

s = (Xo0,X1,X2,Xa).
Let S be the set of possible states { s; 0<Xo<No,
0<X1,Xa, 0<X1+Xa<T, 0<X2<Xi }, where No denotes the buffer size
of the input queue 0. It is shown in section 5 that the maximum
throughput among dynamic policies can be attained for a large
arrival rate A (>pa ) even though No is finite.

Denote by 1 an action admitting a job waiting in queue 0
into the inner system and by 0 an action not admitting the
job. When the state of the system changes into state s ¢ S,
an action is chosen from the set of possible actions A(s),
where given by

A(s)={0} , if X.+Xa=T or Xo=0 ,
={0,1} , otherwise
When action ae A(s) 1s chosen in state s=(Xo,X:1,X2,Xa), the
state of the system changes immediately into the intermediate
state s'=(Xo',X1i',X2',Xa'), egiven by:

for a=0, Xo'=Xo, Xi1'=Xi, Xz2'=Xz and Xa'=Xa, and

for a=1, Xo'=Xo0-1, Xi'=X1+1, X2'=Xz, and Xa'=Xa.

Denote by Qaa-(Xx}a) the probability that the next transition
occurs and the state of the system becomes s"=(Xo".X1",X2",Xa")
within period x given that action a 1is chosen in state
s=(Xo0,X1,X2,Xa).

Let

d(Xo',X1",Xa"')=8 (Xo1")(a +6 (X1'+Xa'))+6 (Xa')B +7 (Xao') 2
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l-exp(-d(Xo' yXJ.' .x:;' )X)
d(Xo',X1',Xa") '

and q(xiXo',X1'.,Xa")=

where
§ (X)=min(1,X)
and 7 (Xo')=0 , 1if Xo'=No,
=1 , 1if Xo'< No.
Then the transition probabilities are as follows:
1) When d(Xo',X1',Xa")# 0,
Qea-(xj2)=q(X{Xo',X1"',Xa')7 (Xo')2 ,
if s"=(Xo'+1,X1',X2',Xa’) ,
=q(x1Xo',X1"',Xa")é (X2")B8 ,
if s"=(Xo',X2'+1,X2"+1,Xa"-1) ,
=q(x}Xo',X2"'.Xa")d (Xa")q ¢ ,
if {s"=(Xo'.X1'.X2".Xa') and X=2'=0}
or {s"=(Xo',X1',X2'-1,Xa"’) and X=2'>0},
=q(x}Xo',X1"',Xa")d (X2')8 (Xa"+Xa") ,
if {s"=(Xo'.X1'-1,X2",Xa"'+1) and Xz2'=0}
or {s"=(Xo',X1"'-1,X2"-1,Xa'+1) and X2'>0},
=q({x}Xo',X2"' ,Xa")d (Xa')p 2 ,
if {s"=(Xo',X21'-1,X2",Xs") and X2'=0}
or {s"=(Xo',X2'~1,X2'-1,Xa') and Xa2'>0},
=0 , otherwise.
2) When d(Xo',X1',Xa')=0,
Qus-(xla)=1-exp(-21 x) , if s"=(Xo' ,X1'.X2"',Xa"),
=0 , otherwise.
Define Paa-(a) by

P--"(a) =1im Q--"(x:a)-

X— o©

The mean time vy (s,a) until the next transition given
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r—

that action a is chosen in state s and the expected reward

r(s,a) during that period are given by:

1) when d(Xo',X1',Xa')# 0, v (s,a)=

1
d(Xo' ,X1',Xa')

_ 5 (Xa')pa
and r(s,a) = d(Xo X1 ,Xa") *
2) when d(Xo',X1',Xa')=0, v (s,a)=4 ~*
and r(s,a)=0.

The optimal dynamic admission problem is formulated
into the semi-Markov decision process with the following

optimality equations [17]:

ga" = max { £ Pas-(a) g=-"}, se S ,
aes A(s) s"e S
and vVas~= max{r(s,a)+ X Pgs-(a) Va-~- Pes~(8)v ss~(a) gs~"},
aeg B(s) s"e S s"e S

where g«° denotes the maximum throughput obtained by starting
from the initial state s, va." the relative value of state s,
and v as~(a) the expected transition time under the condition
on the present state s, the action a and the transition state s",

and

B(s)={a;ge”~ = X Pas-(a) gs~"}.
s"e S

Since sets S and A(s) are finite, there exists an

optimal stationary Markov deterministic policy. Moreover, since
for each s = (Xo0,X1,X2,Xs) and s = (Xo0,X1,Xz.Xa), s is reachable

from s under some stationary policy, ga"=g~ ls satisfied [18].
Hence the optimality equations are reduced to

ve" = max{ r(s,a) + £ Pas-(a) va-"-v (s,a) g°}. (9)
aes A(s) s"¢e S

Then a stationary deterministic policy f° maximizing the right
hand side of (9) is optimal.
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5 Comparisons of Admission Policies

We compare the maximum throughput A °° attained by the
optimal static admission policy with ones given by the L=S and
knee criteria. Now derive the formulas to calculate the degrees
determined by the L=S and knee criteria, which are denoted by
Mc-s and Munee. respectively. The L=S <criterion operates by
adjusting the maximum degree of multiprogramming so that the
system lifetime (L) nearly equals the mean service time of
paging disk (S), i.e., L=wS, where 1<w<2. Therefore (1) and (2)
imply that

Me-s= int[T/c(\/ 1253 7w$ -1 )]- (10)

where 1nt[x] denotes the rounded value of x, which 1s modified to
one when x<0.5 or ((2bg /w) -1)<0, and to T when x>T. According
to the Kknee criterion, the maximum degree M is chosen such that
M corresponds to the knee point of (2). Hence, the degree Mxnae
is given by

Minee = 1int[T/c]. (11)
Then the throughputs A “(Mr-s) and i “(Mxnee) attained by the L=S
and knee criteria are computed by (8).

Suppose that the parameters are set as follows:

¢ =1.0, 8 =0.6, T=6, p=0.125, q=0.875, b=1.0, c=2

and w=1.5.
Then the throughput A “(M) can be calculated by (8) for each
M=1,2,...,6, and the optimal degree M® 1s equal to 2. Mc.s and
Mknee Can also be calculated from (10) and (11), and Mc.s =1

and Mxnee = 3. At these degrees,




A =(1)=2 “(ML-s)=0.06490 (L=S criterion),

A °(2)=2 =*=0.07542 (optimal degree)
and A "(3)=2 °(Minee)=0.06756 (knee criterion).
B optimal degree L=S criterion knee criterion
0.2 0.03309 (n 0.03309 Q)] 0.02484 (3
0.4 0.05782 (2) 0.05233 0 0.04803 (3
0.61 0.07542 () 0.06490 D 0.06756 (€D)
0.8 0.08752 (2) 0.07377 D 0.08266 (3
1.0 0.09594 (2) 0.09594 ¢y 0.09375 3
1.21 0.10195 (2) 0.10195 ¢y 0.10171 3
1.4 0.10740 3 0.10740 H 0.10740 3
1.61 0.11150 €)) 0.11150 3 0.11150 €))
1.8 0.11447 (3 0.11107 4 0.11447 3
2.01 0.11667 3 0. 11441 4 0.11667 (3
2.2 0.11831 (3 0.11686 <Y 0.11831 3
2.4% 0.11956 3 0.11868 4 0.11956 3
2.61 0.12053 (3 0.11689 (5) 0.12053 (3
2.81 0.12128 €)) 0.11873 + (5 0.12128 (3
3.0 0.12188 €)) 0.12011 (5 0.12188 (3
3.21 0.12245 €Y 0.12117 (5) 0.12235 (3
3.4 0.12292 4 0.11908 (6) 0.12274 (3
5.4 0.12459 €)) 0.12434 (6) 0.12435 3
5.6 0.12464 4 0.12445 (8) 0.12441 (%)
5.8 0.12469 (5) 0.12454 (6 0.12447 3
6.0 0.12473 (5 0.12462 (6) 0.12452 (%)
9.0} 0.12496 (5) 0.12496 (6) 0.12485 (3)
9.2 0.12496 (5) 0. 12496 (6) 0.12486 (3)
9.4 0.12497 (6 0.12497 (6 0.12487 3
12.0 0.12499 (6) 0.12499 (6 0.12493 (3

(M):degree of multiprogramming

Table 1t Throughputs under the optimal degree ¥* and two
conventional criteria M.-.s and Mva.. for disk speed S
ranging from 0.2 to 12.0




This shows that M® gives a 10 percent higher throughput than Mc.s
and Mxnee-

Table 1 shows the values of i °° as paging disk service
rate 8 changes from 0.2 to 12.0 by 0.2. The table also contains
the values of corresponding 1 “(Mr-s) and A “(Mknes). It shows
that as the disk speed becomes higher, the optimal degree comes
close to the maximum possible degree T. On the contrary, when
the disk speed becomes lower, the degree becomes 1 to avoid

thrashing.

We numerically compare A °° with the maximum throughput

£ The maximum throughput g* and an optimal policy f* can be
determined by solving (9) with fixed A and No using the policy
iteration method (PIM) [12]. The maximum throughputs remain the
same to the accuracy of 10°*° when i =10.0 (>pa =0.125) and No is
larger than or equal to 8. Therefore, we set X = 10.0 and No=8,
and solve the problem to obtain g° = 0.07601. The difference
between g°=0.07601 and A *==0.07542 shows that for multi-
programmed computer systems, it is effective to dynamically
control the admittance of jobs into the inner system.

The values of g° and A °° are computed as paging disk
service rate B changes from 0.2 to 12.0. Improvement of g~ over
A °° can be represented by

100 (g - A °°) / A °° percent,
which is called efficiency. These numerical results are given in
Table 2. This table shows that when the paging disk serves jobs
at very low or high disk speed, the efficiency is low, and it is
maximized at B8 =1.2. This is because when the disk speed is very
slow, the optimal policy is to restrict the number of jobs in the

inner system to 1 to avoid thrashing. and as shown in Table 1, M®
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is equal to 1.

On the contrary, when the speed 1s very high,

thrashing does not occur, even iIf the Jobs are processed at the

maximum possible degree 8. The optimal policy accepts Jjobs up to

the maximum possible degree.

B g" 2 efficiency

0.2 0.03309| 0.03309 0.00(%) maximum

0.4 0.05830 0.05782 0.85 b B efficiency
0.6] 0.07601 | 0.07542 0.79 6.0 0.2 5.20 (%)
0.81 0.08812} 0.08752 0.69 4.0 0.3 4. 43

1.0 0.09560 | 0.09594 0.59 3.0 0.4 3.85

1.2} 0.10383 | 0.10195 1. 85 2.0 0.6 3.06

1.4 0.10933| 0.10740 1.79 1.0 1.2 1.85

1.6 0.11320(| 0.11150 1.53 0.6 2.1 1. 35

1.8 0.11596 | 0.11447 1.30 0.5 2.6 1.13

2.01 0.117961¢1 0.11667 1. 11 0.4 3.1 0.97

2.2 0.11955}| 0.11831 1.05 0.2 6.2 0.52

2.4 0.12097| 0.11956 1.18 0.1 12.3 0.27

2.6 0.12198% 0.12053 1.21

2.81 0.12271 0.12128 1.18 Table 3  Maximum efficiency
3.0 0.12324 0.12187 1.12 and the value of B attaining
3.2 0.12363 0.12245 0.96 it wunder fixed values of
3.4 0.123927% 0.12292 0.81 parameter b

3.6 0.12414| 0.12328 0.69

3.8 0.12431 0.12358 0.59

4.0{ 0.12444 | 0.12381 0.51

5.0 0.12478{ 0.12446 0.25

6.0 0.12490| 0.12473 0.13

7.01 0.124951 0.12478 0.06

8.0] 0.12497| 0.12493 0.03

9.0 0.12498} 0.12496 0.02

10.0| 0.12499 | 0.12498 0.01

11.0} 0.12499 [ 0.12499 0.00

12.0 0.12499 | 0.12499 0.00

Table 2 Efficiency of optimal dynamic

admission policy

66




Table 3 shows the maximum efficiency with respect to

disk speed B under the fixed parameter b. In Fig. 2, the

efficiency is plotted against disk speed B8 wunder the fixed

values of b=2, 4 and 6, respectively. It is shown that when b is

large, that is, the page fault occurs hardly, the slow disk

speed attains the maximum efficiency.

tlicieney (%)

b=6.10
5
. b= 0
L
4 \
\
A
A .
3 t S N I'l o N,
! ‘.i \'\
i 7 \\ N
2 1 N \ I’ i’ ~ N R \\'\.\
! N i e,
, ; T—— . b=2.0
L e 7 Y e
[ S s N S
/] aiid N S
|/ .
/ RRDN -
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0 1 2

Fig.2 Efficiency againast disk speed §
under fixed values of parameter b

6. Conclusion

We deal with the optimal static and dynamic admission

policies

computer system,
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that maximize the throughput of the multiprogrammed

and show how the throughput can be improved by



the optimal dynamic admission policy.

In fact, it is shown in Table 1 that the optimal static
admission policy 1s superior to the L=S and knee criteria by a
ten percent in a few cases. Table 3 shows that the optimal
dynamic admission policy attains a five percent higher throughput
than the optimal static admission policy in the system with low
speed paging disk.

The above results are derived for the simple system in
Fig. 1. The superiority of the dynamic admission policy will hold
for practical computer systems. It is hoped that the dynamic
admission policy is adopted in actual computer systems to improve

their performance.

Acknowledgment

The authors would like to express their appreciation to
Professor H. Kameda of The University of Electro-Communications
for his helpful advice to their paper. They also are much
indebted to an anonymous referee for his helpful and instructive

comments.

References

1. Belady, L. A. (1966) "A Study of Replacement Algorithms for
Virtual Storage Computers," IBM Syst. J., vol. 5, 78-101.

2. Blake, R. (1982) "Optimal Control of Thrashing,” Performance
Evaluation Review, vol. 11, 1-10.

3. Chamberlin, D., Fuller, S. and Liu, L. (1973) "An Analysis of

Page Allocation Strategies for Multiprogramming Systems

68




10.

11.

12.

13.

14.

15.

with Virtual Memory," IBM J. Res. Dev., vol. 17, 404-412.

. Chanson, S. T., Puterman, M. L. and Wong, W. C. M. (1989) "A

Markov Decision Process Model for Computer System Load
Control,” INFOR, vol. 27, 387-402.

Coffman, E. G. and Hofri, M. (1986) "Queueing Models of
Secondary Storage Devices,"” Queueing Systems, vol. 2,

129-168.

. Denning, P. J. (1968) "Thrashing: Its Causes and Prevention,"”

Proc. AFIPS FJCC 33, 915-922.

. Denning, P. J. (1980) "Working Sets Past and Present," IEEE

Trans. on Software Engineering, vol. 6, 64-84.

Denning, P. J., Kahn, K. C., Leroudier, J., Potier, D. and
Suri, R. (1976) "Optimal Multiprogramming,” Acta Informatica,
vol. 7, 197-2186.

Gelenbe, E. and Mitrani, I. (1980) Analysis and Synthesis of

Computer Systems, Academic Press, London.

Hatfield, D. J. and Gerald, J. (1971) "Program Restructuring
for Virtual Memory," IBM Syst. J., vol. 10, 168-192.

Heyman, D. P. and Sobel, M. J. (1984) Stochastic Models in

Operations Research, Volume II, McGraw-Hill, Inc.

Howard, R. A. (1960) Dynamic Programming and Markov

Processes, The M.I.T. Press, Cambridge.

Kameda, H. (1984) "Optimality of a Central Processor
Scheduling Policy for Processing a Job Stream," ACM Trans. on
Computer Systems, vol. 2, 78-90.

Kameda, H. (1986) "Effects of Job Loading Policies for
Multiprogramming Systems in Processing a Job Stream," ACM
Trans. on Computer Systems, vol. 4, 71-106.

Kobayashi, H. (1978) Modeling and Analysis - an Introduction

69




16.

17.

18.

to System Performance Evaluation Methodology, Addison

Wesley, Reading.

Neuts, M. F. (1981) Matrix-Geometric Solutions in Stochastic

Models - an _Algorithmic Approach, The John Hopkins

University Press, Baltimore.

Schweitzer, P. J. and Federgruen, A. (1978) "The Functlonal
Equations of Undiscounted Markov Renewal Programming,"
Mathematics of Operations Research, vol. 3, 308-321.
Thomas, L. C. (1979) "Connectness Conditions wused in
Finite State Markov Decision Process," Journal of

Mathematical Analysis and Applications, vol. 68, 548-556.

70




