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Abstract

This paper deals with an optimal control problem in a multiprogrammed computer

system. First, the quasi-birth-and—death process which models the system is investigated

and an optima! static admission policy is derived that maximizes the throughput among

policies with fixed maximum degree of multiprogramming. Numerical results show that

this optimal static admission policy gives a ten percent higher throughput than the L = $

and kneecriteria. Next, the problem is formulated into a semi—Markov decision process

and an optimal dynamic admission policy is obtained which controls the admissionofjobs

dependingon the state of the system. It is shown numerically that this dynamic admission

policy attains a five percent higher throughput than the optimal static admission policy

in the system with a low-speed paging disk.

Keywords : multiprogrammed computer system, throughput, L = S and kneecriteria,

dynamic job admission control, semi-Markov decision process
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1. Introduction

Large and medium scale computer systems with virtual

memory maintain multiple jobs in a main memory and share system

resources. Many theoretical and empirical studies on these

multiprogrammed computer systems have been carried on in order

to improve their performance measures. In particular, controls

in operating systems have been studied in two aspects: one is

related to resource allocation and the other is an admission

control [9].

The former concerns scheduling strategies to decide

when and how system resources’ should be allocated among

active multiprogrammed jobs. These resources include a CPU, a

Main memory, secondary storage devices and so on. Kameda [13]

has dealt with CPU scheduling strategies. Memory allocation

strategies include page replacement algorithms and software

techniques for reducing page fault occurrences [1,7,10].

Scheduling strategies in secondary storage devices, espe-

clally, disk storage devices, have also been investigated [5].

An admission control decides how many and which types

of jobs should be admitted into the active set. Admission

scheduling strategies for an arrival job stream have been

discussed in a multiprogrammed computer system with a

predetermined maximum degree of multiprogramming [14]. The

Most fundamental and important scheduling problem in a

Multiprogrammed computer system is to control the degree of

multiprogramming. This is because when the degree is too high,

performance of the system is heavily declining by thrashing [6].

To avoid thrashing, several strategies have been proposed
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and empirically analyzed. Well-known strategies are 50 %, L=S

and knee criteria. Denning et al. [8] have discussed the

characteristics of these criteria and compared them empiri-

cally under several kinds of job mix environment. These

policies, however, have little theoretical background.

In recent years, several theoretical approximations are

suggested. Blake [2] has applied dynamic programming to. the

roughly approximate model of database systems. Chanson

et al. [4] have formulated a multiprogrammed computer system

with two types of jobs into an undiscounted semi-Markov decision

process. They have utilized a decomposition method for reducing

the number of states and derived a good admission policy in this

approximate process.

In this paper, we deal with an optimal admission control

problem in a simple multiprogrammed computer system. We are

concerned with two admission policies: static and dynamic

admission policies. Under the dynamic admission policy, a job is

admitted into the inner system utilizing available information

about the system. That is, the degree of multiprogramming is

dynamically controlled. The static admission policy is specified

by the maximum degree of multiprogramming. Under this policy, a

job is admitted unless the degree of multiprogramming exceeds

the maximum degree. The conventional L=S and knee criteria are

considered as static admission policies. We derive optimal static

and dynamic admission policies that maximize the throughput and

compare them numerically.

In section 2, we explain the multiprogrammed computer

system to be considered. In section 3, we analyze the computer

system with a fixed maximum degree of multiprogramming,
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which is described by a quasi-birth-and-death process. We use the

stability condition in [16] and derive a simple expression of

the throughput. An optimal static admission policy is determined

by the maximum degree of the multiprogramming that maximizes the

throughput. In section 4, we deal with an optimal dynamic

admission policy for the multiprogrammed computer systen.

The problem is formulated into an undiscounted semi-Markov

decision process. In section 5, we compute throughputs and

compare them in two steps. At first, the optimal admission

policy is compared with the knee and L=S criteria. Secondly, an

optimal dynamic admission policy computed by a policy iteration

method is compared with the optimal static admission policy.

Numerical examples show that the optimal dynamic policy attains a

five percent higher throughput than the optimal static policy in

the system with a low-speed paging disk.

2. A Multiprogrammed Computer System

We consider a multiprogrammed computer system as shown

in Fig. 1. The system consists of two service stations,

which we call “inner system,” and an input queue called queue 0.

Station i is a CPU and has two scheduling queues called queues

1 and 2. We assume that the CPU processes jobs under’ the

service discipline where jobs in queue 2 have higher priority

than in queue i. Station 2 is a paging disk and has a queue

called queue 3. Let T be the total number of pages in the main

memory, Which equals the maximum possible degree. We assume first

in and first out discipline in queue 0 and 3. Jobs arrive at the

input queue according to a Poisson process with rate a. The
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Fig. 1 Multiprogrammed computer system

arrival jobs in the input queue are admitted into the inner

system under the static admission policy, whenever the number of

jobs in the inner system is less than the maximum degree of

multiprogramming, M ( < T ). On the other hand, under the

dynamic admission policy, whenever the state of the system

changes, the admission controller shown in Fig. 1 decides

whether a job waiting in queue 0 is admitted into the inner

system or not, utilizing available information about the system.

Stations 1 and 2 have exponential service times with mean

a-~* and § ~*, respectively. Each job in service at the CPU

requests again the service of the CPU with rate qa, departs

from the inner system with rate pa or proceeds to the disk

with rate @ (m), where p+q=1, p,q>0, andm is the number of jobs
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in the inner system, i.e., the degree of multiprogramming. The

rate @ (m) is called the page fault rate and is given shortly.

System lifetime function L(m) is defined as the average

amount of CPU service between two consecutive page faults when

the degree of multiprogramming is m, and given by

L(m) =e(T/m), (1)

where e(n) denotes a program lifetime function defined as

the average amount of CPU service received by a job between

two consecutive page faults when n pages are allocated to

the job [8]. The following program lifetime function is used

frequently [3]:

e(n)=2-b/(1+(c/n)?), (2)

where b and c are parameters. As L(m) is the system lifetime

function, the page fault rate @ (m) is related to it by

@ (m)=1/L(m).

The system is described by a quasi-birth-and-death

process and an expression of its throughput is derived in the

next section.

3. Optimal Static Admission Policy

Several queueing network models for evaluating the

performance of multiprogrammed computer systems have been

proposed and analyzed. For example, Kobayashi [15] has

calculated various characteristics of a multiprogrammed com-

puter system with M+3. In this section, we derive an

explicit expression for the throughput of the system with a

fixed maximum degree M.

The jobs in the system are classified into the following
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three classes:

class 0; jobs in queue 0 (input queue),

class 1; jobs in station 1 (CPU),

class 2; jobs in station 2 (disk).

Let S be the state space of the system. Then S is as

follows:

S={(i,j,k) ;0<j<M, 0<k<M, J+k<M for i=0,

0<j<M,0<k<M, J+k=M for i>0}

where i, j and k denote the number of jobs of classes 0, 1 and 2,

respectively. States in the subsets i={(1,j,k)} of S are arranged

as follows:

0={(0,0,m),(0,1,m-1),...,(0,m,0), m=0,1,...,M},

1={(1,0,M),(1,1,M-1),...,(1,M,0)}, for i>1.

In addition, the subsets of S are arranged as S={0,1,2,...}. Then

the behavior of the system can be described by a quasi-birth-

and-death process with the infinitesimal generator Q given by

Boo Boa

Bio Aa Ao
Az Aa Aoe

o W

where Ao and Aa are the (M+1)x(M+1) transition matrices from i to

i+1 and i, respectively, for i>1. Az is the (M+1)x(M+1) transi-

tion matrix from i to i-1 for i>2. Boo, Boa and Bao are the

transition matrices from 0 to 0, from 0 to 1 and from 1 to QO,

respectively, where the numbers of the states in 0 and 1 are

(M+1)(M+2)/2 and (M+1), respectively. Let (x,y) element of matrix

Aa be denoted by (Aa)xx, where a=0,1,2 and O< x, y< M. Then,
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Ao, Aa and Az are given as follows:

AozA I, (3)

(Aa) xx=@ (M) for 1< x< M and y=x-1 ,

=f for O< x< M-1 and y=x+l1,

= -A - min(1,x) @ (M) - min(1,M-x)£8

- min(1,x)pa for O< x< M and y=x,

=0 ; otherwise, (4)

(Az) xx=pa for 1< x< M and y=x,

=0 ' otherwise, (5)

where I denotes the (M+1)x(M+1) identity matrix.

The multiprogrammed computer system with the maximum

degree M is called stable if the process Q is positive

recurrent. Let matrix A be given as

A=Ao+tAatAz. (6)

Then A is the infinitesimal generator of a finite and continuous

time Markov chain. Since by (4), (Aa)xcx-12) and (Aa)xcx+1) are

positive, A is irreducible. We shall derive a necessary and

sufficient condition for the stability. Denote by

Tl (M)=(x% 0,” 1,...,a™m) the stationary probability vector of the

Markov chain A. Then it holds that

Tl (M)A=0, II (M)e=1 and “TI (M)>0, (7)

where 0 denotes the zero vector and e denotes the vector with

all elements 1. Equations (3) through (6) lead directly to the

unique solution of (7), given by

nm «(M)={8 /(@ (M))}* xz o(M) for 1< k <M,

where xz o(M) = { 5 off /(@ (M)))7}7*. Then a necessary and

sufficient condition for the stability is given by
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Tl (M)Aoe < Tl (M)Aze ( see Theorem 1.3.2, p.19 in [{16] )}. This

reduces to

A <pa@ {1-2 o(M)} = pa {1- rte is (Hy =a}

. B (8 (M))-(B /(@ (M)))™™2 |
= pe(Oe y=

where A “(M) gives the upper bound of the arrival rate for the

A 7(M), (8)

system to be stable at the maximum degree M. Consequently,

a 7*(M) is identical with "throughput” at the degree. Since a

static admission policy is specified with M, an optimal

admission policy maximizing the throughput is given by

argument M maximizing Aa “(M).

The throughput cannot exceed the maximum throughput

a 77 = a *(M*) under static admission policies. It is expected,

however, that the throughput of the system can be improved if

jobs waiting in queue 0 are dynamically controlled to admit

into the inner system. In the next section, we deal with an

optimal dynamic admission control.

4. Optimal Dynamic Admission Policy

We analyze a dynamic policy which controls the admission

of jobs waiting in queue 0 into the inner system, when the

state of the system changes. Now this problem is formulated

into an undiscounted semi-Markov decision process in the

following [11]. As a reward structure, we suppose that reward one

is obtained from a completed job.

Let Xz (1=0,...,3) be as follows:
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Xo: the total number of jobs in queue 0;

Xi: the total number of jobs in station 1;

Xz: the total number of jobs in queue 2;

Xs: the total number of jobs in station 2;

Then the state of the system is expressed by vector s given by

s = (Xo,X1,X2,Xa).

Let S be the set of possible states { S; 0<Xo<No,

O0<X1,Xa, O<Xi+Xa<T, 0<X2<Xi }, where No denotes the buffer size

of the input queue 0. It is shown in section 5 that the maximum

throughput among dynamic policies can be attained for a large

arrival rate 4A (>pa@ ) even though No is finite.

Denote by 1 an action admitting a job waiting in queue 0

into the inner system and by 0 an action not admitting the

job. When the state of the system changes into state s « S,

an action is chosen from the set of possible actions A(s),

where given by

A(s)={0} , if Xa+Xa=T or Xo=0 ,

={0,1} , otherwise

When action ae A(s) is chosen in state s=(Xo,X1,X2,X%sa), the

state of the system changes immediately into the intermediate

state s'=(Xo',Xi',Xz',Xa'), given by:

for a=0, Xo'=Xo, Xa'*Xi, Xz'=X2 and Xsa’=Xs, and

for a=1, Xo’ =Xo-1, Xa '=Xitl, X2'=Xz2, and Xa'=Xs.

Denote by Qseea-(x}a) the probability that the next transition

occurs and the state of the system becomes s"=(Xo",Xi",X2",Xa")

within period x given that action a is chosen in state

s=(Xo,X1,X2,Xa).

Let

d(Xo',Xa°,Xa')=6 (Xi')(a@ +6 (Xa'+Xs'))+6 (Xa')B +7 (Xo')a
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and q(X}Xo',Xa',Xa')= 4-84P(-ClXo_.Fa_-Kex)

where

6 (X)=min(1,X)

and 7 (Xo')=0 , if Xo'=No,

=1 , if Xo'< No.

Then the transition probabilities are as follows:

1) When d(Xo',X1',Xa')# 0,

Qean(X18)=q(X{Xo',Xa',Xa')7 (Xo')A,

if s"=(Xo'+t1,Xa"’,X2',Xsa’) ,

=q(X{Xo',Xi',Xa')6 (Xa')B ,

if s"=(Xo',Xa'+1,X2'+1,Xs'-1) ,

=q(X}Xo',Xa',Xa')6 (Xa')q a,

if {s"=(Xo’,Xa',X2',Xs') and X2'=0}

or {s"=(Xo',Xa',X2'-1,Xa’) and X2‘'>0},

=q(x|Xo',Xa',Xa')d (Xa°')@ (Xa'+Xa") ,

if {s"=(Xo',X2'-1,X2',X3'+1) and X2’=0}

or {s"=(Xo',Xa‘'-1,X2'-1,X3'+1) and X2‘>0},

=Q(X1Xo',Xa’,Xa’)6 (Xi')p @ ,

if {s"=(Xo',Xi'-1,X2',Xa') and X2'=0}

or {s"=(Xo',Xa'-1,X2'-1,Xa') and X2'>0},

=O , otherwise.

2) When d(Xo’,Xa',Xa')=0,

Qua~(xla)=1~exp(-4a x) , if s"=(Xo’',Xi',X2",Xsa'),

=0 —(, otherwise.

Define Pese-(a) by

Poe(a) =lian Qua(Xa).
x—~ ©

The Mean time vy (s,a) until the next transition given
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that action a is chosen in state s and the expected reward

r(s,a) during that period are given by:

1) when d(Xo’,X1',Xs')# 0, v (8,8) =-RS

- 6 (Xi")pa
and r(s,a) d(Xo’,Xa'.Xa") '

2) when d(Xo',Xa',Xa’)=0, y (s,a)=A ~*

and r(s,a)=0.

The optimal dynamic admission problem is formulated

into the semi-Markov decision process with the following

optimality equations [17]:

Zo” = max { = Paes (a) Es}, seS,
ase A(s) s"eS

and vVs"= max{r(s,a)+ <= Pss«(a) Var"- Pso(a)y ss~(a) Es},
ae B(s) s"e S s"e S

where gs” denotes the maximum throughput obtained by starting

from the initial state s, va” the relative value of state s,

and vy »ss-(a) the expected transition time under the condition

on the present state s, the action a and the transition state s",

and

B(s)={aige* = = Pas-(a) Ea}.
s"e§S

Since sets S and A(s) are finite, there exists an

optimal stationary Markov deterministic policy. Moreover, since

for each s = (Xo,X1,X2,Xs) and § = (Xo,X:,X2,X%s), s is reachable

from S under some stationary policy, g="=g* is satisfied [18].

Hence the optimality equations are reduced to

Ve” = max{ r(s,a) + = Pee-(a) Ve~"-y (S,a) gr}. (9)
ase A(s) s"e S

Then a stationary deterministic policy f° maximizing the right

hand side of (9) is optimal.
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5 Comparisons of Admission Policies

We compare the maximum throughput Aa “~~ attained by the

optimal static admission policy with ones given by the L=S and

knee criteria. Now derive the formulas to calculate the degrees

determined by the L=S and knee criteria, which are denoted by

Mires and Munee, respectively. The L=S criterion operates by

adjusting the maximum degree of multiprogramming so that the

system lifetime (L) nearly equals the mean service time of

paging disk (S), i.e., L=wS, where 1<w<2. Therefore (1) and (2)

imply that

Mtes= int[T/c(¥ (2b8 /w) -1 )]), (10)

where int[x] denotes the rounded value of x, which is modified to

one when x<0.5 or ((2b8 /w) -1)<0, and to T when x>T. According

to the knee criterion, the maximum degree M is chosen such that

M corresponds to the knee point of (2). Hence, the degree Minee

is given by

Munee = int[{T/c]. (11)

Then the throughputs 4 “(Mz-s) and A “(Munee) attained by the L=S

and knee criteria are computed by (8).

Suppose that the parameters are set as follows:

a@ =1.0, 8 =0.6, T=6, p=0.125, q=0.875, b=1.0, c=2

and w=1.5.

Then the throughput a °*(M) can be calculated by (8) for each

M=1,2,..-.,6, and the optimal degree M° is equal to 2. M-s and

Munee can also be calculated from (10) and (11), and Mr-s =1

and Mxnee = 3. At these degrees,
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A °(2)=#4 °*%=0.07542 (optimal degree)

and A °(3)=2 * (Manes) =0.06756 (knee criterion).

B optimal degree L=S criterion Knee criterion

0.2) 0.03309 (1) 0. 03309 C1) 0.02484 (3)

0.4] 0.05782 (2) 0. 05233 (1) 0. 04803 (3)

0.6; 0.07542 (2) 0. 06490 (1) 0. 06756 (3)

0.8) 0.08752 (2) 0. 07377 (1) 0.08266 (3)

1.0] 0.09594 (2) 0.09594 (2) 0.09375 (3)

1.2} 0.10195 (2) 0.10195 (2) 0.10171 (3)

1.4] 0.10740 (3) 0. 10740 (3) 0. 10740 (3)

1.6] 0.11150 (3) 0.11150 (3) 0.11150 (3)

1.8] 0.11447 (3) 0.11107 (4) 0.11447 3)

2.0] 0.11667 (3) 0.11441 (4) 0. 11667 (3)

2.2] 0.11831 (3) 0. 11686 (4) 0.11831 (3)

2.4} 0.11956 (3) 0. 11868 (4) 0.11956 (3)

2.6) 0.12053 (3) 0. 11689 (5) 0.12053 (3)

2.81 0.12128 (3) 0.11873 « (5) 0.12128 (3)

3.0) 0.12188 (3) 0.12011 (5) 0.12188 (3)

3.2] 0.12245 (4) 0.12117 (5) 0.12235 (3)

3.4] 0.12292 (4) 0.11908 (6) 0.12274 (3)

5.4] 0.12459 (4) 0. 12434 (6) 0.12435 (3)

5.6] 0.12464 (4) 0.12445 (6) 0.12441 (3)

5.8 0.12469 (5) 0.12454 (6) 0.12447 (3)

6.0] 0.12473 (5) 0. 12462 (6) 0.12452 (3)

9.0} 0.12496 (5) 0. 12496 (6) 0. 12485 (3)

9.2] 0.12496 (5) 0. 12496 (6) 0.12486 (3)

9.4] 0.12497 (6) 0. 12497 (6) 0. 12487 (3)

12.0]; 0.12499 (6) 0. 12499 (6) 0.12493 (3)     
 

(MW) :degree of multiprogramming

Table {1 Throughputs under the optimal degree M* and tvo

conventional criteria M.i-s and Menee for disk speed B

ranging from 0.2 to 12.0

 



This shows that M* gives a 10 percent higher throughput than M.-s

and Mxnee.

Table 1 shows the values of 4°" as paging disk service

rate 8 changes from 0.2 to 12.0 by 0.2. The table also contains

the values of corresponding A °“(Mr-s) and A “(Mknee). It shows

that as the disk speed becomes higher, the optimal degree comes

close to the maximum possible degree T. On the contrary, when

the disk speed becomes lower, the degree becomes 1 to avoid

thrashing.

We numerically compare A °* with the maximum throughput

g The maximum throughput g* and an optimal policy f° can be

determined by solving (9) with fixed A and No uSing the policy

iteration method (PIM) [12]. The maximum throughputs remain the

same to the accuracy of 107*° when 4 =10.0 (>pa@ =0.125) and No is

larger than or equal to 8. Therefore, we set 4 = 10.0 and No=8,

and solve the problem to obtain g” = 0.07601. The difference

between g°=0.07601 and A **=20.07542 shows that for multi-

programmed computer systems, it is effective to dynamically

control the admittance of jobs into the inner system.

The values of g” and A °° are computed as paging disk

service rate 8 changes from 0.2 to 12.0. Improvement of g” over

4 °° can be represented by

100 (g7 - 2°") / A °° percent,

which is called efficiency. These numerical results are given in

Table 2. This table shows that when the paging disk serves Jobs

at very low or high disk speed, the efficiency is low, and it is

maximized at § =1.2. This is because when the disk speed is very

slow, the optimal policy is to restrict the number of jobs in the

inner system to 1 to avoid thrashing, and as shown in Table 1, M°
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is equal to l. On the contrary, when the speed is very high,

thrashing does not occur, even if the Jobs are processed at the

maximum possible degree 6. The optimal policy accepts Jobs up to

the maximum possible degree.
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B g ats efficiency

0.2] 0.03309) 0.03309 0. 00¢%) maxinun

0.4} 0.05830; 0.05782 0.85 b B efficiency

0.6] 0.07601] 0.07542 0.79 6.0 0.2 5.20 (%)

0.8! 0.088121 0.08752 0.69 4.0 0.3 4. 43

1.0] 0.09560] 0.09594 0.59 3.0 0.4 3.85

1.2} 6.10383) 6.10195 1.85 2.0 0.6 3.06

1.4] 0.10933] 0.10740 1.79 1.0 1.2 1.85

1.6] 0.11320] 0.11150 1.53 0.6 2.1 1.35

1.8] 0.11596] 0.11447 1.30 0.5 2.6 1.13

2.0; 0.11796} 0.11667 1.11 0.4 3.1 0.97

2.2] 0.11955} 0.11831 1.05 0.2 6.2 0.52

2.4] 0.12097] 0.11956 1.18 0.1 12.3 0.27

2.6] 0.12198} 0.12053 1.21

2.8) 0.12271 0. 12128 1. 18 Table 3 Maximum efficiency

3.0 0.12324 0.12187 1.12 and the value of 8 attaining

3.2} 0.12363 0. 12245 0.96 it under fixed values of

3.4] 0.12392) 0.12292 0.81 parameter b

3.6}; 0.12414] 0.12328 0.69

3.8; 0.12431 0. 12358 0.59

4.0] 0.12444] 0.12381 0.51

5.0] 0.12478) 0.12446 0.25

6.0] 0.12490) 0.12473 0.13

7.0} 0.12495] 0.12478 0. 06

8.0] 0.12497] 0.12493 0.03

9.0} 0.12498} 0.12496 0. 02

10.0] 0.12499 0.12498 0.01

11.0} 0.12499 0.12499 0.00

12.0] 0.12499) 0.12499 0.00

Table 2 Efficiency of optimal dynamic

admission policy
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Table 3 shows the maximum efficiency with respect to

disk speed 8 under the fixed parameter b. In Fig. 2, the

efficiency is plotted against disk speed 8 under the fixed

values of b=2, 4 and 6, respectively. It is shown that when b is

large, that is, the page fault occurs hardly, the slow disk

speed attains the maximum efficiency.

eflicienty (4)

b=6,0

. b=4.0
ty

4 1
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té] owoar! ‘ ee' ‘, oe,

I ! _ a~. Tome, 
 

Fig. 2 Efficiency against disk speed B
under fixed values of parameter b

6. Conclusion

We deal with the optimal static and dynamic admission

policies that maximize the throughput of the multiprogrammed

computer system, and show how the throughput can be improved by
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the optimal dynamic admission policy.

In fact, it is shown in Table 1 that the optimal static

admission policy is superior to the L=S and knee criteria by a

ten percent in a few cases. Table 3 shows that the optimal

dynamic admission policy attains a five percent higher throughput

than the optimal static admission policy in the system with low

speed paging disk.

The above results are derived for the simple system in

Fig. 1. The superiority of the dynamic admission policy will hold

for practical computer systems. It is hoped that the dynamic

admission policy is adopted in actual computer systems to improve

their performance.
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