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ABSTRACT

In the classical Weber problem the quantities to be transported from the supply and demand
point are known. In this paper a problem is considered in which the total available supply

exceeds the total demand. In such situation the optimal selection of points of supply,
together with supplied quantities, depends uponthesite of the facility. Several heuristics
and a branch and bound algorithm for solving this problem are proposed and computational

experience is presented.

 



The problem of finding the optimal location of a central facility

in order to serve a set of customers with known demand at minimum cost

was first formulated by Weber [1909]. He proposed the following

mathematical model for solving this problem: given a set {P) sPys---sPi}

of points in a plane representing customers, and for each j the demand

a, of the customer with index j, determine the location of a central

facility P from which the demands must be satisfied and for which the

total transportation costs are as small as possible. It is assumed

that the transportation costs are proportional to the distances covered and

to the quantities delivered. The objective is given by

ee m
minimize ¢£,

P jz!
a, D(P,P;) (1)

where D(P,P.) is the distance between the central facility located at P

and customer j. If Euclidean distances are used the problem can be

written as:

minimize 2" d. ((xex,)7 + wey (2)
x,y jsl jj j j

where (x, 94) is the location of customer j and (x,y) the location of

the central facility. There is no general analytical formula for finding

the optimal point (also called the Weber point). However, in some cases

the problem can be trivially solved. For instance, if one of the demands d; is

larger than or equal to the sum of all other demands, then P. is the

Weber point. The inverse result does not hold but weaker conditions

have been given for one of the demand points to be the Weber point

(see for example Juel and Love [1981].

Also several iterative gradient improvement techniques have been

proposed for solving the problem (see the papers by Kuhn and Kuenne [ 1962],

Ostresh [1978] , Overton [1983] and Weiszfeld [1937]).

16

 



A slight modification of the Weber location problem (W.L.P.) also makes

it possible to take supply points into account. If some of the points are

the supply points of the goods and if the available quantity is known for

each of these points the problem is solved in the same way as the W.L.P.

providing that the available quantities are entirely shipped to the central

facility.

Quite often however the goods may be obtained from many different

suppliers. The total available supply then exceeds the total demand. This

demand has only to be met and not exceeded by the supplies, and thus a

choice has to be made among the possible suppliers, determining the

quantities that will be transported from each supply point. It is

reasonable to assume that the most advantageous choice will be made, which

in the Weber locational philosophy, will correspond to the nearest supplies.

Of course the sites and quantities of supplied goods to be transported

will now depend on the location of the central facility, whereas the given

data (sites and transported quantities) concerning demands are considered

to be fixed,

Let P. denote the location of customer j (j=l,...,m) and d; the

corresponding demand, Let 8; denote the location of candidate supplier

i (i=l,...,k) and qs the quantity available at this site.

Let P be the unknown location of the planned central facility. Introducing

the variables 2s (i=1,...,k), which represent the quantities shipped from

supplier i to the central facility, we obtain the following Weber problem

with supply surplus (WPSS):

soe k mn
minimize Ze, 2; DS,,P) +2,_, d, D¢P.,P) (3)

P,z,(i=l,...,k) HE Ft jel js?

subject to

k nm
z z.=d =f, d. 4
j=) 2 ( j=l > )

O< z,<4q i=1,...,k (5)
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In this paper we study the WPSS with Euclidean distances. Thus if

?. has coordinates (x5 4¥5), 85 coordinates (x35 y;) and P has the unknown

coordinates (x,y), the objective (3) becomes
1/2

minimize 2K 2, ((xi-x)? + (y}-y)”)
RyVoes 1/2

m 2 2+ Es dy (Ome) + yyy) (6)

The paper is organized as follows. In Section | several properties

of the WPSS model are given , showing that the problem can be

solved by considering only a finite number of classical Weber problems.

The second section contains several heuristic methods of solution.

In Section 3 we develop an exact solution procedure, using a branch and

bound approach in order to further reduce the number of Weber problems

to be solved. In the final section the efficiencies of the

heuristics proposed in Section 2 are compared and some computational

results are given for the branch and bound method.

1, Properties

In some cases the WPSS is trivial to solve:
k

1) If d= f qs then all available supplies must be shipped to
se]
1

the central facility and the problem becomes a W.L.P.

2) If for each supplier i, 4,24 the problem is solved by considering

each point i in turn as providing the total supply, dtsconsidering

all other supply points. As in this case the weight of the

considered supply point is at least equal to the sum of the

weights of the other points ( the demand points) the Weber point

is located at this supply point. The supply point for which the

value of this solution is minimal is then selected as the optimal

location.

 



In the sequel we will suppose that such trivial situations do not occur, or

, k
min aj Sd < Fey ay oe
i=l,...,k

Considering all solutions of the system:

k
Ioz.=d (8)

i=1 7
O<z, <4, i=1,2,...,k (9)

1

it can be seen that most of these cannot correspond to an optimal solution

of the WPSS. If an optimal solution of the WPSS is denoted by (P32, yi=1,2,..k)

then the zy must be the optimal supplies corresponding to a central

facility located at Pt, In this solution the supply points nearest to p*

are selected and their entire supply is used until the total demand can be met.

This implies the following relationship:

. . . s £ *

1f z,#0 and there exists aj (j#i) for which Dr", s,) < De",s,) then 25 = 45

which means that the optimal solution (2; ,i=1,2,..,k) defines an extreme

point of the convex polytope defined by (8) and (9).

From this relationship the following properties of the optimal solution

are easily derived:

Property 1: all but perhaps one of the chosen suppliers will deliver

their total offered supply

Property 2: any supply point which is not an extreme point of the convex

hull of the used supply points must be fully used (quantity

shipped = available supply)

Property 3: if one of the used supply points is not fullyused, it must be

one of the extreme points of this set.

Property 1 reduces the infinity of possible optimal selections

to a finite number, The geometric properties 2 and 3 reduce this number

even further as can be seen in the following example.
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There are 5 candidate supply points shown in Figure 1. The total demand

is 32 and the available quantities at the candidate supply points are

all equal to 10,

Figure 1, Example used to illustrate the properties

of the optimal solution of the WPSS.

Only using property 1, 20 combinations must be considered (4 . cf as 4

suppliers must be used and each of them can be the fractional supplier). With

properties 2 and 3 there are:

eliminating point 1: 3 possibilities

eliminating point 2: 4 possibilities

points cannot be eliminated
eliminating point 3: 0 possibilities

since they lie in the convex
eliminating point 4: 0 possibilities hull under consideration

eliminating point 5: 3 possibilities

10 in total

20

 



The gain observed depends upon the spatial configuration of the supply

points. It can be expected that for increasing numbers of suppliers

this gain will become more important. Some indications in this direction

are to be found in the work of Lee [1982]. If all available quantities

4; are equal, the problem reduces to finding the n = [d/q.) + 1 nearest

supply points ([x] is the integer part of x). Lee showns that the number

of possible subsets of supply points which are of the type n-nearest

neighbours of a point in the plane is of the order O(n(k-n)),which is

linear in k for fixed n. Using property 1, this number has still to be

multiplied by n, but remains linear in k for fixed n. Taking only property

1 into account, without geometrical considerations, the number of subsets

to be considered would be nC which is O(k™) for fixed n < kKz°

2. Heuristics

In this section three heuristic algorithms are proposed for solving

the WPSS.

2.1. The greedy approach

For each supply point 8; the sum of distances to all demand points,

weighted by the demands, is considered as a measure of the closeness to

the set of customers:

m
aps E 4,D(S; ,P.) for i=l,...,k. (10)

jel

The values a; are ordered by increasing values and suppliers are selected

until the total demand is met, the last selected one being the eventual

fractional supplier. The resulting WLP is then solved using for example

the method of Overton [ 1983].
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2,2. The greedy interactive approach
 

This method is a variant of the previous heuristic in which the

selection of a next supply point is based on the solution of a number

of WLP's. In each of these WLP all previous selected supply points

are assigned their total available quantity and a single not yet

selected supplier supplies the rest, The supplier for which this

WLP yields the best solution is added to the selection list.

The steps are:

1. Define I = {s,,8 +834 and I = @ (set of selected suppliers)
2°°

2. For each 8; € NI solve the WLP with

(PAs) for all customers

(S..4,), t ET)

(S., d- = q,)
1 tel, t

call the optimal value f.

3. Call f. = min fs
*9 i€n\1,

If z 4, + q; < d add ig to qT, and go to step 2

t€I 1 0

If not, attribute a supply of (d- £ 4) to supplier ig and stop.
tL

1

2.3. The simplified greedy interactive approach 

The foregoing heuristic has the great disadvantage that many WLP's

have to be solved, which takes quite some time as will be seen in the

computational results. To circumvent this difficulty a simplified version

was devised in which the selection of a next supply point is based on

its proximity to the Weber point found in the previous stage. It

consists of the following steps:

 



1, Define I = {S),++-55)} and set I, = @

2. Let a, be the lowest value found in the greedy approach (see section 2.1 )

3. Solve the WLP with

(Pj 24.) for all customers

(8; 495) for ié€é I,

(S.,d- £ q:)
t Ler 1

1

Call the optimal location W

4. If q, + © q. > d then attribute a supply of (d - £ q,) to S
t : 1- : 1 t

i€l, i€l,

and stop.

If q, + =Zoq

i€1,

to W and go to step 3,

i < d add S to I> rename Ss. the supplier of INI, closest

2.4, The improvement approach
 

If P is fixed there remains a trivial selection problem. If the 25

are fixed, the problem is a WLP. The improvement heuristic applies these

two steps alternatively after obtaining a first solution with one of

the previous methods. It will stop as soon as the selection problem

yields the preceding selection. A simplified version consists of not

completely solving the WLP, by just carrying out one iteration and then

Selecting (or attempting to select) new suppliers.

3. A Branch and Bound approach
 

It can easily be seen that the objective of the WPSS is not a convex

function. Even the reduced function in which only the location of the

central facility is variable, the choice variables Zs being selected
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optimally for each location, is not convex. Therefore,a method such

as steepest descent will not work and only give a local optimal solution.

In fact, by considering the sets of locations for which the optimal

selection of suppliers stay constant, the plane is divided into polygonal

regions in which the function becomes convex. An enumeration of all these

regions with their associated optimal value of the objective function, will

of course yield the optimal solution. However, the difficulty of

constructing these regions and their number make this approach unfeasible,

except perhaps in the special case discussed at the end of Section 1,

applying the method of Lee [1982]. Therefore a branch and bound type

approach is proposed in which the selections satisfying properties 1,2 and

3 of Section | are enumerated implicitely.

This method requires the calculation of a lower bound. This may be done

using the following notations:

J is the set of demand points.

Ip is the set of eliminated supply points (for which Zs is already set to

zero).

I, is the set of selected supply points (2, is set to be non zero),

I, = NN (Ip U 1) is the set of remaining or free supply points.

The following bound can be considered:

If we consider the relaxation obtained by removing the constraints on the

available supplies (5), the optimal solution is given by (cfr.Property 2)

L= min E d.D(P.,8.).
iel UL, je J+

Being the optimal value of a relaxed problem, L is a lower bound on all

solutions obtained when I is restricted to I,UI, = Ip. This bound
1 2

thus only depends on Ih.

24

 



The Branch and Bound scheme consists of the following steps:

step |:

step 2;

step 3:

step 4:

step 5:

Set I, = I, I, =I, = 9.
2 1 0

Find a supplier s. in I, with largest total available supply 4.

Transfer 5. from I, to I) and compute the new convex hull of

I) denoted by co I,:

If (Ip N co I)) # @ then go to step 5 (i.e. backtrack since

property 2 is violated).

Transfer all points of (I, MN co 1) to 1, (i.e. apply property 2).

Set q = 2: q; and s =d ~ = qs:
ict, 1€1,

If s > 0 and q > 8s go to step 2 (more supply is needed)

If s < 0 go to step 4 (supply is sufficient)

In all other cases go to step 5 (backtrack)

If for all extreme points 5, of I, qo +s <0 goto step 5.

For each extreme point S, of I, such that qa, + 8 2 0 solve the
1

WLP defined by

.,d. j€(P;,4;) jE

(S;,43) i¢€ 1,\{e}

(8, 4, + 8)

If the value for the objective function is less than the incumbent,

update the latter.

If s # 0 then go to step 2 (perhaps more supply points may lead

to a better solution).

Backtracking.

If I, = @ then stop.
1

Transfer all suppliers from I> which were transferred to 1,

during the last instance of step 3, to Io.

Transfer the last supplier, transferred to 1, during the last

instance of step 2 to Iq:
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Adjust co I,, s and q.
]?

Calculate the lower bound L.

If q > s and L is less than the best solution found so far go

to step 2.

Otherwise repeat step 5.

Note that other selection strategies could be considered in step 2

of the Branch and Bound algorithm. For example,minimizing the a, (see

eq. 10), adapted to I was suggested by a referee.2?

4. Computational results

The heuristics and the branch and bound algorithm were implemented

in PASCAL and run on a CDC 6600. All data were randomly generated from

uniform distributions, the characteristics of which are described below.

27test problems were run. As the following results will show,

further research is needed to increase the efficiency of our lower bound.

Indeed, the lower bound presented here was practically ineffective and

in 24 out of the 27 test problems only the geometric properties of the

optimal solution used in the branch and bound scheme prevented the

algorithm from making a complete enumeration of allpossible selections,

even though the starting solution found with the heuristics was optimal

in all cases.

The first group of test problems consisted of 14 problems with 5 demand

points, randomly chosen in the square [10,40] 7, with random demands

in [160,200] , and 15 supply points randomly situated in [0,40] 2, with

random available supplies in [100,200]. The second group consisted of

13 problems with 10 demand points with random demands in [80,100] and

15 supply points with random available supplies in [100,200]; the

locations were randomly drawn as before.

 



The following tables summarize the results obtained using the following

notations:

Heuristic 1 denotes the greedy heuristic

Heuristic 2 denotes the greedy interactive heuristic

Heuristic 3 denotes the simplified greedy interactive heuristic

A denotes the results when applying the heuristic alone

I denotes the results when combined with the improvement approach,

% gives the deviation between the optimal value of the objective and the

value found when applying the heuristic, expressed in percents of the

optimal value

T is the time in milliseconds (in the case of I only the time for the

improvement part is given)

Heuristic 4 consists of first determining the Weber point of the demand

points, and then applying the improvement approach starting with this

Weber point.

BB denotes the branch and bound algorithm starting with the best

solution found by the heuristics.

NS is the number of total solutions constructed during the algorithm

NLB is the number of times the lower bound was effective for

pruning the BB tree.

With regard to the heuristics, it is clear that the greedy interactive

approach has to be rejected in view of its excessive running time. In most

cases the simplified version performed just as well, in much less time.

It is also clear from these tables that the most powerful tool is the

improvement heuristic. The most interesting heuristic seems to be the

last one, almost purely improvement.
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Concerning the Branch and Bound scheme the most important remark has

already been made: we need a much better lower bound, The excessive

running time of the algorithm is not only a direct consequence of this

lower bound problem, but also of the time needed to solve the WLP, which

has to be done repeatedly in step 4.

A suggestion for another lower bound is as follows.

All suppliers of I, which are not extreme points of the convex hull

of I, have to be chosen at their total available supply. Let us call
1

the set of these points 1° then we will have =, q. < d, since
1, so O 71

ict,

otherwise we would backtrack. Thus the optimal value given by the

WLP with

(P.,d. jE5° > j ;

i€é(S; 445) i€.

will be a lower bound on all solutions obtained by selection of at least

those suppliers belonging to I. This bound only depends on I.

If in addition £ q; > d, then all extreme points of the convex

i€I
hull of 1 with avai lkble supply less than or equal to £ q; 7 d, will

i€I
1

have to be chosen at their total available supply. Indeed, in the

optimal solution at most one extreme point can be chosen partially

(property 1) and thus it cannot be one of the points described above.

In this case, these points can be added to , yielding a better lower

bound.

A difficulty with this lower bound is that it requires the complete

solution of a WLP. The usual algorithms for solving the WLP generate

only upper bounds to the optimal value and can therefore not be used.

An alternative would be to use an algorithm providing a lower bound to

the optimal value (see for example Love and Yeong [1981], Elzinga and

Hearn [1983], Wendell and Peterson [1984]).
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