
Belgian Journal of Operations Research, Statistics and Computer Science Vol. 33 (1,2)

The Grouping Genetic Algorithms:

widening the scope of the GAs

E. Falkenauer

CRIF — Research Centre for Belgian Metalworking Industry

Department of Industrial Automation

CP 106 — P4

50, Av. F. D. Roosevelt

B-1050 Brussels, Belgium

e.mail: PIERRE_LECOCQ_CRIF@eurokom.ie

Abstract

An important class of computational problems are grouping problems, where

the aim is to group membersofa set, i.e. to find a good partitioning of the set.

We show whyboth the classic and the ordering GAs fare poorly in this domain

by pointing out their inherent difficulty to capture the regularities of the “func-

tional landscape” of grouping problems. We then propose a new encoding scheme

and genetic operators adapted to these problems, yielding the Grouping Genetic

Algorithm (GGA) paradigm. Weillustrate the approach with three examples

of important grouping problems successfully treated with the GGA: the prob-

lems of Bin Packing and Line Balancing, Economies of Scale, and Conjunctive

Conceptual Clustering applied to the problem of creation of part families.

Keywords : Genetic algorithm, grouping, partitioning, solution encoding

79

1. Introduction - the Grouping Problems

Manyproblems naturally arising in practice consist in partitioning a set U of objects into
a collection of mutually disjoint subsets U, of U, i.e. such that

U U, = U and
U, AU, =, ix.

One can also see these problems as ones where the aim is to group the membersofthe set U into
one or more (at most card(U)) groups of objects, where each object is in exactly one group,i.e. to

find a grouping of those objects.
In most problems, not all possible groupings are allowed: a solution of the problem must

comply with various hard constraints, otherwise the solution is invalid. That is, usually an object
-cannot be grouped with all possible subsets of the remaining objects.

The objective of the grouping is to optimize a costfunction defined overthe set ofall valid
groupings. The following are just three examples! of well-known grouping problems, with the hard
constraint a solution must comply with (where C is an arbitrary constant), and the cost function to

optimize:

Problem Hard Constraint Cost Function
Bin Packing Sum of sizes of objects in any group<C Numberof groups, Min
Workshop Layouting Numberof machines in any group<C Intercell Traffic, Min
Graph Coloring No connected nodes in any group Numberof groups, Min

As can be seen, the grouping problemsare characterized by cost functions which depend on
the composition of the groups, that is, where one object taken isolately has no meaning.

Often the cost function improves as the size (in terms of numberof objects) of the groups
growsor, conversely, as the numberof the groups decreases. Of course, the hard constraints forbid
the trivial ’solution’ consisting of putting all the objects into the same unique group.

Many grouping problems (including all the examples above) are NP-hard ([Garey and
Johnson,79]), which implies that any known exact algorithm (i.e. one which would be guaranteed
to find the global optimum) will run in time exponential in the size of the problem instance. Such
an algorithm is thus in most cases unusable for real-world size problems.

Since their introduction some 15 years ago by [Holland,75], the GAs have been extensively
studied and applied to a large variety of problems, including machine learning and NP-hard
optimization problems (e.g. [Davis, 87], [Goldberg,89], [Holland et al.,86], [Grefenstette,85],

[Grefenstette,87], [Schaffer,89], [Belew and Booker, 91], [Manner and Manderick, 92], etc.). Their

encouraging success with these latter problems makes the GAsa candidate for solving the grouping
problems.

For space reasons, we will assume in the sequel that the reader is familiar with the basics
of the GA paradigm. Theliterature on the topic is already quite extensive and the article by Marc
Pirlot in the first volume of this issue can be consulted if necessary.

2. Standard GA Operators and Grouping Problems

In this section we examine the effects of the classic genetic operators on the structures

relevant to the grouping problems. The application of a straightforward encoding scheme(see below)

' There are many more grouping problems of great practical importance, but their
description would be too lengthy for the purpose of this paper. Three more will be described
in the sequel together with the corresponding GGA.

80

together with classic genetic operators is the first route that has been taken in the GAliterature

treating grouping problems (e.g. [Van Driessche and Piessens, 92], [Ding et al., 92], [Jones and

Beltramo, 91], [Laszewski, 91]). We will show why wethink this approach cannot yield conclusive

results on these problems.

2.1 The Crossover

Let us see how the significant (strong) schemata relevant to grouping are transferred from

parents to offspring under the standard crossover.

2.1.1 Schema Disruption

Let’s assume the most straightforward encoding scheme, namely one gene per object. For

example, the chromosome
ADBCEB

would encode the solution wherethe first object is in the group A, the second in the group D,third
in B, fourth in C,fifth in E and sixth in the group B. Note that the sameallele was selected for the
third and the sixth objects - the objects are thus grouped in the same group.

Since, by definition of the problem,the cost function improves with growingsize of groups,

the grouping of the two objects into one group constitutes a gain and should be thus transmitted to
the next generations. However, the two genes are positioned too far from each other on the
chromosome to be safe against disruption during the crossover. Indeed, the probability that a
crossing site will fall between the two of them grows with their distance.

Wemust thus find a way to shorten this kind of schema. The standard wayto dothis is

through inversion. By storing the loci together with the alleles, the same chromosome,written this

time
123456
ADBCEB,

could be arranged by (possibly successive) inversion(s) into

123654
ADBBEC.

This chromosome has the interesting genes tightly together. This time the group of Bs has good
chances to survive a crossover.

The problems begin whenthe groups becomelarger,thatis, incidentally, when the optimiza-
tion process starts to develop a good solution of the grouping problem. Indeed, in a chromosome
like

123654
ADBBBB,

the probability of disruption of the very promising group of four Bs is as high as it was for the
group of two Bs without inversion. Wethussee that inversion cannot help in assuring good survival
rates of schemata relevant to the grouping problem. This is because the good schemata forthis
problem are, by definition, long schemata (of similar objects).

In other words, while the classic crossover (fitted with inversion or not) might converge to

a better solution in the beginning of the genetic search, once a good candidate is found, instead of

improvingthis solution,it works against its own progress towards destruction of the good schemata.
The result is, of course, an algorithm stagnating on poor, never improving solutions.

The proverbial smart reader could now objectthat if the size of the groups is bounded above

by a sufficiently tight hard constraint (e.g. a sufficiently small constant C in the Workshop
Layouting Problem above), the argument of long schemata doesn’t hold. It should be remembered,
however, that we are interested in algorithmsfor arbitrary instances of the grouping problems,that

81

is including those where the hard constraints are loose.

2.1.2 Encoding Redundancy and Context Insensitivity

Amongthe six design principles for constructing useful representations (see e.g. [Radcliffe,
92)) figures the principle of Minimal Redundancy - each memberofthe search space (here the space
ofall valid groupings) should be represented by exactly one chromosome,in order to reducethe size
of the space the GA has to search.

The classic encoding aboveis highly redundant. Indeed, the cost function of a grouping
problem dependsonly on the grouping of the objects, rather than the numbering of the group. For
instance, in the Graph Coloring Problem,only the resulting number of colors counts, whatever the
actual colors (their names) used. Thus with A standing for Amber, B for Blue, C for Crimson and

‘D for DarkRed,
ABCADD and
CADCBB

both encode the samesolution of the problem (i.e. the one where the first and fourth nodes of the
graph are assigned one color, the fifth and sixth nodes a second color, and the second and third
nodes a third and fourth color respectively).

Not only such an encoding increases tremendously the space the GA mustsearch but, even

worse, it leads to the highly undesirable effect of casting context-dependent information out of

context under the standard crossover. Indeed, in the first chromosome above,the C affected to the
third gene only hassensein the contextof that particular chromosome (where it meansthatthe third
node is not grouped with any other node). Taking that C out of the context during the crossover,
has disastrous consequences. Tosee this, let us apply the standard two-point crossover (with the
crossing sites at the first and third position) to the two chromosomes above:

A|BC|ADD crossed with
C|AD|CBB would yield
CBCCBB as one ofthe two children.

In absence of mutation, a recombination of two identical individuals must produce progeny which
is again identical to the parents. Indeed, in an ideal crossover, a part of the genetic contents of a
child is inherited from one parent, and the rest from the other parent(i.e. no mutation takes place

during the recombination). Consequently, if the parents are identical, all of the contents is inherited
from that unique parent, i.e. the child is a copy of the parent”. The two parents above are identical
with respect to the problem being solved by the GA, because they both encode the samesolution
of the problem. Hence a correct recombination operator should produce an individual which again
encodes the same solution. However, the resulting child above encodes a ’solution’ which has
nothing in commonwith the solution its parents encode: there are two groups instead of four’!

In other words, while the schemata are well transmitted with respect to the chromosomes

under the standard crossover, their meaning with respect to the problem to solve (i.e. the cost
function to optimize) is lost in the process of recombination.

2.2 The Mutation

Let’s again consider the standard encoding and see the effects of the standard mutation,i.e.
a random modification of a randomly chosenallele, in the case of grouping.

Consider for example the following chromosome:

2 [Radcliffe, 92] calls respect the transmission of the part of genetic contents both

parents agree on.
3 Depending on the problem’s hard constraints, the resulting child might be valid or

invalid.

82

ABDBAC.

A mutation of this individual could yield
ABDEAC,

which could be beneficial, for the allele E, perhaps missing from the population, appears in the
genetic pool.

The troubles begin, once again, as the algorithm approaches a good solution, developing
large groups of identical alleles. The standard mutation of

AAABBB

would lead, for example, to
AAEBBB.

Onthe one hand,the allele E appears in the population - a possibly beneficial effect. On the other
hand, the new chromosome contains a ’group’ of just one element. Since grouping of objects
accounts for a gain, this mutated individual will most probably show steep loss of fitness in
comparison with the other non-mutated individuals. Consequently, this individual will be eliminated
with high probability from the population on the very next step of the algorithm, yielding hardly
any benefit for the genetic search. Indeed, the search is based on(statistical) sampling of schemata,
with transmission of well-scoring schemata to the next generations (implying increased sampling
rate of those schemata, according to the best sampling strategy under uncertainty, established by
{Holland, 75]). However, with a life expectancy of just one generation, the schemata represented
by the individuals mutated by the classic mutation have no chance of being correctly sampled and
their eventual apport is lost.

In other words, the classic mutation is too destructive once the GA begins to reach a good
solution of the grouping problem.

Apart from the fact that the mutated individuals are of hardly any use for the genetic search
as shownabove, they represent another nuisance: their presence effectively reduces the number of

reasonably goodindividuals in the population. This in turn impairs the benefit of implicit parallelism
(which depends on the population size), the most important strength of the GA paradigm. Indeed,
only the schemata which can be reasonably sampled during the genetic search can contribute to its
success. However, whena part of the population is formed of individuals that are so short-lived that
they cannot contribute to the search, they reduce the number of individuals which do contribute.
This means that even the reasonably good individuals (i.e. the schemata they represent) receive a

smaller sampling rate, due to the reduced effective size of the population.

3. Ordering GA Operators and Grouping Problems

In this section we examinethe effects of ordering genetic operators on the structures relevant
to the grouping problems. The application of an encoding schemerepresenting permutations of the

membersofthe set, together with ordering genetic operators is the other route that has been taken
in the GAliterature treating grouping problems(e.g. [Smith, 85]*, [Bhuyan et al., 91], [Jones and
Beltramo, 91}). We will again show why wethink this approach cannotyield the expected results
on these problems.

3.1 Encoding Redundancy

Another way of handling grouping problems is to represent permutations of the objects

* This reference is especially interesting with respect to this paper. See section 5.1.1
below.

83

(membersof the set U in section 1. above), and use a decoding mechanism that reveals the actual
assignment of the objects to groups (the resulting partition of the set) corresponding to each
chromosome. The decoding mechanism usually proceeds by considering the objects one by one in
the order given by the chromosome,and assigning them to the first group available.

For the sake of clarity, let’s consider the Bin Packing Problem (BPP)in the sequel. Suppose
there are ten objects to pack, numbered 0 through 9. A valid chromosomeis one where each object
appears exactly once, for example

0123456789.

The solution of the BPP, i.e. the actual assignmentofthe ten objects to bins, corresponding

to that chromosome,is obtained by the following decoding. Take the objects in the order given by
the chromosome (say from theleft to the right, i.e. first the object 0, then the object 1, then 2, and

so on), and assign eachto thefirst bin that can accomodateit (i.e. where there is enough spaceleft).

‘Each time there is no such bin, request a new one.

As said above, redundancyis a highly undesirable feature of an encoding scheme. The one
outlined above is highly redundant. Indeed, suppose that the objects in the above chromosomeare
partitioned as follows

0123 |45678|9,

i.e. there are three bins, one containing the objects 0 through 3, the second containing the objects
4 through 8, and the third containing the object 9. Now any permutation of the objects having the
same bin contents, such as

3210|45678|9 or
0123|87654|9, or

87645|1032]9,
to give just three of them, encodes the samesolution of the original Bin Packing Problem.In fact,
the redundancy of the encoding,i.e. the numberof distinct chromosomes which encode the same
solution of the original problem, grows exponentially with the size of the instance. That meansthat

the GA spends an exponential time "exploring" the artificially large search space of identical
solutions, yet different chromosomes. Such a waste of time impairs substantially the power of the
algorithm.

3.2. The Crossover

3.2.1 Context Insensitivity

Like the classic crossovers operating on chromosomesusing the encoding from section 2.,

most ordering crossovers working with the permutation encoding cast context-dependentinformation

out of context during recombination.
Indeed, given the mechanism of decoding the chromosome,it is clear that the meaning of

a genein the solution the chromosomeencodes, dependsheavily on all the genes that precede it on
the chromosome.For instance, consider again the above chromosome

0123456789,

and suppose it is decoded from the left to the right as above. This chromosomeencodesa solution
where objects 4 through 8 are in the same group. However, this information depends on the genes
to the left of the group,i.e. in the "head" of the chromosome.For instance, the chromosomes

9123456780 or

9012345678
most probably encode different solutions of the Bin Packing Problem. Indeed, depending on the
sizes of the objects, a bin filled with either the objects 9,1,2 or 9,0,1, respectively, can be sofilled
that no other object would fit in the remaining space. That would yield, say, the solutions

912|34567|80 and
901]|234|5678, respectively,

none of which has the objects 4 through 8 in the samebin.

There is a numberof ordering crossovers available in the literature nowadays. For the sake
of clarity, let’s concentrate on Goldberg’s PMX.It is probably the most widely used ordering
crossover, thanksto the theoretical treatmentof its capacity to transmit order-schemata (o-schemata,
the ordering equivalent of Holland’s schemata) given in (Goldberg, 89]. The PMX transmits well
the absolute position of genes on the chromosome. Nowthe only difference, w.r.t. the position of

the group of genes 45678, between the chromosomes
0123456789 and

9123456780

consists in a permutation of the first and last genes (objects) - the information the PMX transmits
is identical in the two chromosomes. That means the latter chromosome could be a child of the
former, even though the two encode very different solutions of the BPP. In other words, the PMX

transmits information which more often than not gets a different meaning in the new chromosome.
Onecould still argue that "more often than not" is not allways, meaning that the crossover

could still be useful. However, the effects of such an operator becomeessentially random. Thusthe
"crossover" basically turns into a mutation, implying the loss of the most potent device of the GA.

Other ordering crossovers suffer of similar problems. The reason is that o-schemata have
little meaning in a grouping problem - they are not building blocs capable of conveying useful
information on the solution they’re part of. Consequently, in grouping problems, sampling the
o-schematais oflittle use for estimating the quality of the corresponding solutions.

3.2.2. Schema Disruption

We have shown in section 2.1.1. that an encoding mapping objects onto genes in a
chromosomeleads to high probabilities of disruption of useful parts of the chromosome. Since the
permutation-based encoding also maps objects onto genes, the ordering GA suffers of the same
drawback.

3.3 The Mutation

In the ordering GA, the mutation operator modifies the order of the genes on the
chromosome. However, given the above, such an operator has a high probability of either

- not having any effect at all, because of the high redundacy of the encoding, or

- being too destructive, if the modification occurs near the head of the chromosome.
Once again, these problems stem from the object-oriented encoding.

4. The Grouping Genetic Algorithm

The Grouping Genetic Algorithm (GGA)differs from the classic GA in two aspects. First,

a special encoding schemeis used in order to make the relevant structures of grouping problems
become genes in chromosomes,i.e. the building blocks the GA works with. Second, given the
encoding, special genetic operators are used, suitable for the chromosomes.

4.1 The Encoding

As we have seen, neither the standard nor the ordering genetic operators are suitable for
grouping problems. Unlike with the deceptive problems of [Goldberg, 87], the strong schemata are
not misleading. Rather, they do not survive the very genetic search supposed to improve them.

The main reason is that the structure of the simple chromosomes (which the above operators
work with) is object oriented, instead of being group oriented. In short, the above encodingsare not

85

adapted to the cost function to optimize. Indeed, the cost function of a grouping problem depends
on the groups, but there is no structural counterpart for them in the chromosomesabove. Thatis a
serious drawback: the fact that the object i is in the group j is meaningless - it is the fact that the

group j contains certain object(s) (including i) that is important. Of course, given the distribution
of the objects to the groups, one can always compute the state of the groups, but such an infor-
mation is far too indirect for the GA(i.e. the operators) to be taken into accountefficiently.

Note that these remarks are nothing more than a call for compliance with the Thesis of Good
Building Blocks, central to the GA paradigm.

To remedythe above problems, we have chosenthe following encoding scheme: the standard
chromosomefrom section 2 is augmented with a group part, encoding the groups on a one genefor
one group basis. For example, the first and the next to last chromosomes from section 2 would be
-encoded as follows:

ADBCEB: BECDA

AAABBB AB,

with the group part written after the semicolon.

More concretely, let us consider the first of these two chromosomes and the Bin Packing
Problem. Numbering the objects from 0 through 5, the object part of the chromosome can be

explicitely written
012345
ADBCEB:...,

meaning the object 0 is in the bin labeled (named) A, 1 in the bin D, 2 and 5 in B, 3 in C, and 4

in E. This is the straightforward chromosome from section 2. The group part of the chromosome

represents only the groups(i.e. bins). Thus

.. ‘(BECDA

expresses the fact that there are five bins in the solution. Of course, what names are used for each
of the bins is irrelevant in the BPP: only the contents of each bin counts in this problem. We thus
come to the raison d’étre (and the only practical use) of the object part. Indeed, by a lookupthere,
we can establish what the meaningless names stand for. Namely,

A={0}, B={2,5}, C={3}, D={1} and E={4}.

In fact, the chromosome could also be written in a less visual way as

{O}{2,5}{3}{1}{4}.

The important point is that the genetic operators will work with the group part of the
chromosomes,the standard object part of the chromosomesmerely serving to identify which objects

actually form which group. Note in particular that this implies that the operators will have to handle
chromosomesof variable length.

In short, the encoding scheme we adopted makes the genes represent the groups. The

rationale is that in grouping problemsit is the groups which are the meaningful building blocks of
a solution,i.e. the smallest piece of a solution which can convey information on the expected quality
of the solution they are part of. This is crucial: indeed, the very idea behind the GA paradigm is to
perform an exploration of the search space, so that promising regions are identified, together with
an exploitation of the information thus gathered, through an increased search effort in those regions.
If, on the contrary, the encoding scheme does not allow the building blocks to be exploited (i.e.
transmitted from parents to offspring, thus allowing a continuous search in their surrounding) and
simultaneously serve as estimators of quality of the regions of the search space they occupy, then
the GAstrategy inevitably fails and the algorithm performsin factlittle more than a random search.

4.2 The Crossover

Aspointed out in the previous section, a crossover for a grouping problem will have to work

86

with variable length chromosomes, as the number of groups (i.e. the number of genes in the
chromosomes) cannot be fixed in advance, being (directly or indirectly) the object of the
optimization.

The variable length of chromosomesis not the only particularity of the GGA as compared
to the classic GA. In the latter, during a crossover, genes are combined independently each of the
others, in a cut-and-concatenate manner’. Since the GGA has onegene per group, rather than object,
it is almost never the case that the chromosomes can be combined by simply joining together some

genes from one parent and some genes from the other without altering any of them. Indeed,

especially when the groups contain manyobjects, it is extremely rare that the objects contained in

the groups coming from the first parent form, all and alone, groups in the second parent(there is
a partial overlap among the groups in the two parents).

Depending on the hard constraints, in some grouping problems, a cut-and-concatenate
crossover would produce invalid individuals. In others, the progeny obtained could be valid, but of
very poor quality.

Dealing with these problems implies an adaptation of some groups in one parent to those
in the other. Thus the progeny will, in most cases, contain some groups(i.e. genes) which are not

present in exactly the same form in either parent.
Given the fact that the hard constraints and the cost function vary among different grouping

problems, the crossover used will not be the same for all of them. However,it will fit the following
pattern:
1. Select at random twocrossing sites, delimiting the crossing section, in each of the two

parents. Recall that the crossover works with the group part of the chromosome,sothatthis
meansselecting some of the groups in each parent.

2. Inject the contents of the crossing section of the first parent at the first crossing site of the
second parent.

3. Eliminate all objects now occurring twice from the groups they were members of in the
second parent (thus the old’ membership of these objects gives way to the membership

specified by the ’new’ injected groups). Thus some of the ’old’ groups coming from the
second parentare altered: they do not contain the same objects anymore, since some ofthose

objects had to be eliminated.
4. If necessary, adapt the resulting groups, according to the hard constraints and the cost

function to optimize.
5. Apply the points 2 through 4 to the two parents with their roles permuted in order to

generate the second child.

Wewill give below more detailed examples of crossovers adapted to three different grouping
problems.

4.3 The Mutation

As pointed out in section 3.2, the classic mutation operator (applied to chromosomes
obtained with the straightforward encoding) is too destructive for grouping problems. As for the

crossover, this is due to the fact that the classic operator is much too object oriented.
A mutation operator for grouping problems must work with groups rather than objects. As

> In manycases the resulting chromosomeis subject to en extensive decoding before
the phenotype (i.e. the value of the cost function of the solution it represents) can be obtained.
Such an indirect relation between a solution and its genetic representation is a nuisance: the
GA only sees the genotype (i.e. chromosomes), and a simple crossover cannot take into

accountthe intricacies of solution coding/decoding.

87

for the crossover, the implementation details of the operator depend on the particular grouping
problem on hand. Nevertheless, two general strategies can be outlined: either create a new group

or eliminate an existing group.

4.4 The Inversion

The inversion operator serves to shorten good schemata in order to facilitate their
transmission from parents to offspring (thus ensuring the required high rate of sampling of the
above-average schemete by the GA).

Since the classic inversion operator is insensible to the length of the chromosomeand does
not modify the genetic information represented by the chromosome(i.e. an inverted chromosome
still denotes the same phenotype), it can be applied without modification to the chromosomesused

‘in a Grouping GA. However, it will be applied to the group part of the chromosome,as the genes
represent the groups.

Thus for instance, the chromosome
ADBCEB : BECDA

could be inverted into
ADBCEB: CEBDA.

Note that the object part of the chromosomestays unchanged. Indeed,the groupsare still composed
of the same objects - only the position on the chromosomeof the representation of the groups has
changed.

The example illustrates the utility of this operator: should B and D be promising genes(i.e.
well-performing groups), the probability of transmitting both of them during the next crossoveris
improved after the inversion, since they are now closer together, i.e. safer against disruption. That
in turn makesthe proliferation of the good schemataeasier.

5. Three GGA Applications

In this section, we will describe three concrete grouping problems which the Grouping GA
has been successfully applied to. In all three of them, the encoding schemeoutlined in the section
4.1 above and the inversion operator from section 4.3 have been used. We will thus concentrate in
the sequel on the details of the crossover and mutation operators, after a definition of each of the
problems.

5.1. The Bin Packing and Line Balancing

This section is made up of excerpts from [Falkenauer and Delchambre, 92a]. This GGA has
been implemented as a module of the ROBCADrobotics-oriented CAM software (see [Delchambre

et al, 92] and [Falkenauer and Delchambre, 92b]), where it serves for optimization of (robotized)

assembly lines.

5.1.1 The Problem Definition

The bin packing problem (BPP)is defined as follows ([Garey and Johnson, 79]): given a

finite set O of numbers (the object sizes) and two constants B (the bin size) and N (the numberof

bins), is it possible to ’pack’ all the objects into N bins, i.e. does there exist a partition of O into

N or less subsets, such that the sum of elements in any of the subsets doesn’t exceed B?
This NP-complete decision problem naturally gives rise to the associated NP-hard

optimization problem,the first subject of this section what is the best packing, i.e. how many bins
are necessary to pack all the objects into (what is the minimum number of subsets in the above

mentioned partition)?

88

Being NP-hard, there is no known optimal algorithm for BPP running in polynomial time
(and there will most probably never be one). However, [Garey and Johnson, 79] cite simple heuris-
tics which can be shown to be no worse (but also no better) than a rather small multiplying factor
above the optimal numberofbins. The ideais straightforward: starting with one empty bin, take the
objects one by one and for each of them first search the bins so far used for a space large enough
to accommodate it. If such a bin can be found, put the object there, if not, request a new bin.
Putting the object into the first available bin found yields the First Fit (FF) heuristic. Searching for
the mostfilled bin still having enough space for the object yields the Best Fit, a seemingly better
heuristic, which can, however, be shownto perform as well (as bad) as the FF, while being slower.

Note that the problem
treated by [Smith, 85], in spite

of being referred to in the A ao «8B a «(OC
i i Optimal 2a-A

reference as Bin Packing, Bln Packing Fl» = BINSIZE - 20
differs from the BPP defined Solution D ¢ ¢ c= BINSIZE-a-A

above in two aspects. First, b

[Smith, 85] considers two-di-

mensional objects, whereas we

consider the one-dimensional a 8B
problem of [Garey and Johnson, sub-optimal +. E F
79]. Second, more importantly, BinPacking 5 ;

[Smith, 85] tries to pack as b

many as possible of the objects

into one "bin" (actually a \
rectangular area), whereas we Best—filled bin (b + 20 = BINSIZE)

seek to pack all the objects into
as few bins as possible. Clearly,
these are very different
problems. Indeed, Figure 1,
wherea is an arbitrarily small positive value, constitutes a proof that there are instances of the BPP
where the optimal solution contains only sub-optimally packed bins, even though at least one
optimally packed bin can be found. Hence a method using the algorithm of [Smith, 85] will find
the optimal bin and miss the BPP optimum.

To the best of our knowledge, the BPP above has not been treated elsewhere by a GA.

Figure 1 Best-filled Bin is not Bin Packing

The line balancing problem (LBP) can be described as follows: given a set of tasks of

various lengths, subject to precedence constraints (i.e. some tasks have as prerequisite the
completion of one or more other tasks, see [Sacerdoti,77]), and a time constant called cycle time,

how should be the tasks distributed over workstations along a production (assembly) line, so that
(1) no workstation takes longer than the cycle time to complete all the tasks assigned to it and (2)

the precedence constraints are complied with? |
In more formal terms, we define the LBP as the following decision problem:
Given a directed acyclic graph G=(T,P) (the nodes T representing the tasks and the arrows

P representing the precedence constraints) with a constantL, (task length) assigned to each nodeT,,

a constant C (the cycle time) and a constant N, can the nodes T be partitioned into N or less subsets

S, (the j-th station’s tasks) in such a waythat (1) for each of the subsets, the sum of L;s associated

with the nodes in the subset doesn’t exceed C, and (2) there exists an ordering of the subsets such

that whenever two nodesin distinct subsets are joined by an arrow in G, the arrow goes from a
higher-ordered (earlier) to a lower-ordered (later) subset?

It is easy to show that the LBP is NP-complete:it can be reduced to the NP-complete BPP,
which it contains as a special case (namely, the set of precedence constraints, the arrow set P, is

empty for BPP). Needless to say, the associated optimization problem, where we ask what is the

89

minimum numberofstations required, the second subject of this section, is NP-hard.

Let us concentrate on the BPP and try to define a suitable cost function to optimize. The
objective being to find the minimum numberofbins required, the first cost function which comes
to mind is simply the numberof bins used to ’pack’ all the objects. This is correct from thestrictly
mathematical point of view, but is unusable in practice. Indeed, such a cost function leads to an
extremely ’unfriendly’ landscape of the search space: a very small numberof optimal points in the
space are lost in a sea of points where this purported cost function is just one unit above the
optimum. More importantly, all those slightly suboptimal points yield the same cost. The trouble
is that such a cost function lacks any capacity of guiding an algorithm in the search.

Consider the extreme case where just one arrangementof the objects yields the optimum of,
say, N bins. The numberof possible arrangements yielding N+1 bins grows exponentially with N
and is thus very large even for small problem sizes. Nevertheless, all these points in the search
space yield the same cost of N+1 and thus appear to be absolutely equal in terms of merit for
searching their surroundings. In other words, an algorithm would have to run into the optimal
solution by mere chance. That would be impractical, to say the least.

Wethus haveto find a cost function which assigns similar (but not equal) values to similar

solutions, while having the same optima as the function above. In other words, we have to identify
the smallest natural piece of a solution which is meaningful enough to convey information about
the expected quality of the solution it’s part of.

Fortunately, this is easy to do in the case of BPP: the bin points itself out as the natural
*information quantum’. We simply realize that the better each of the bins is used, the fewer bins
one needs to pack all the objects in. Or, conversely, a bad use of bins’ capacity leads to the
necessity of supplementary bins, in order to contain the objects not packed into the wasted space.

In order to champion the bin, rather than the overall performanceofall the bins together,
we also have to account for the following: if we take two bins and shuffle their contents among
them,the situation where one ofthe bins is nearly full (leaving the other one nearly empty)is better
than when the two bins are about equally filled. This is because the nearly empty bin will more
easily accommodate additional objects which could otherwisebe too big to fit into either of the

half-filled bins.
Wethussettled for the following cost function for the BPP: maximize

Zia.n(fill; / C)*
fiBPP =

N

with N being the numberofbins used,

fill; the sum of sizes of the objects in the bini,
C the bin capacity and
k a constant, k>1.

In other words, the cost function to maximize is the average, over all bins, of the k-th power
of ’bin efficiency’ measuring the exploitation of a bin’s capacity.

The constant k expresses our concentration on the well-filled ‘elite’ bins in comparison to
the less filled ones. Should k=1, only the total number of bins used would matter, contrary to the
remark above. The larger k is, the more we prefer the ’extremists’, as opposed to a collection of
about equally filled bins. We have experimented with several values of k and found out that k=2
gives good results. Larger values of k seem to lead to premature convergence of the algorithm, as

the local optima, due to a few well-filled bins, are too hard to escape.

90

5.1.2. BPCX - the Bin Packing Crossover

A crossover’s job consists in producing offspring out of two parents in such a way that the
children inherit as much of the meaningful information from both parents as possible. Sinceit is the
bin that conveys important information in BPP, we must find a way to transmit bins from the
parents onto the children. This is done as follows.

Consider the following group parts of the chromosomesto cross (recall that there is one

gene per bin):

ABCDEF (first parent)

abcd (second parent).
First, copies are made of the two parents (in order not to destroy the parents) and two

crossing sites are chosen at random in each of them,yielding for example
A|BCD|EF and
ab|cd|.

Next, the bins between the crossing sites in the second chromosomeare injected into thefirst, at
the first crossing site, yielding

AcdBCDEF.

Now someof the objects appear twice in the solution and must be thus eliminated. Suppose the
objects injected with the bins c and d also appear in the bins C, E and F. Weeliminate those bins,
leaving

AcdBD.

With the elimination of those three bins we have, however, most probably eliminated objects which

were not injected with the bins c and d. Those objects are thus missing from the solution. To fix
this last problem, we apply the FFD heuristic to reinsert them, yielding, say

AcdBDx,

where x are one or more bins formedofthe reinserted objects.

Ascan easily be seen, the child just constructed indeed inherited important information from
both parents, namely the bins A, B and D from the first and ¢ and d from the second. Note,

however, that the bins A, B and D might not be exactly the original ones found in the first parent,
because the FFD might have filled them up with some of the objects reinserted in the last stage of
the BPCX. Nonetheless, this is actually beneficial, since it leads to bins even better filled than in

the parent.

5.1.3 The Mutation

The mutation operator for the BPP is very simple: given a chromosome,weselect at random
a few bins (ie. groups) and eliminate them. The objects which composed those bins are thus

missing from the solution and we use the FF to insert them back in a random order.
In order to improve the chances of the mutation to improve the current solution, we follow

two rules: the emptiest bin is always among the eliminated ones, and we always eliminate and
subsequently reinsert at least three bins (the number of used bins cannot be improved with less).

Note that, as with the BPCX, even some ofthe bins not selected for elimination might be

filled up with objects from the eliminated bins.

5.1.4 Experimental Results

Since the First Fit Descending can be shown to be a good heuristic for the BPP, it
constituted a benchmark in tests of performance of our GA approach.

Weconstructedthetest data as follows: we first generated objects of random sizes admitting
a perfect packing (i.e. fzpp=1), and then subtracted from randomly chosen objects a total of

91

 LEEWAYpercentage of the size
of one bin. For example, with 400
LEEWAYset to 3% and the bin
size of 255, the total size of the
objects was 7.65 less than the total 80
capacity of the bins in the perfect
packing. Thus thetest reflected the
ability of the algorithm to get as

close as possible to the optimum,
rather than its eventual ability to
find the optimum perfect packing.
Indeed, the latter test would be a
-test of optimality, which would be 2

equivalent to asking whether we
can solve in a reasonable time an
NP-complete decision problem - Q
something the algorithm wasn’t OS yy BB Gs
and couldn’t be designed to.

__ Since the total size of the Figure 2: Relative BPP performance of the GGA and
objects was only a fraction of the FFD.
bin size less than the total capacity
of the bins in the perfect packing,
the optimum numberof bins hasn’t
changed. Hence we observed the ability of the algorithm to reach that number of bins, compared
to the FFD heuristic. However, in order to accountfor a practical use of the GA, werequiredit to

reach the optimum numberofbins in at most 5000 generations.
The results are summarized in Figure 1. It shows the average proportion, over 50 successive

runs, oftest instances of 64 objects successfully optimized by the GA and FFD respectively, func-
tion of the LEEWAY(1.5 through 15% ofthe bin size). The chart showsthe net superiority of the
GA in ’tough’ conditions, ie. when the space for the objects to pack is tight.

The running times of the GA were of the order of a minute on a 4D35 Silicon Graphics (33
MIPS).

One could now object that the FFD heuristic is not a ’fair’ benchmark for assessment of
merits of the GGA approach, since much better algorithms for the Bin Packing Problem are

available, e.g. the Reduction method of [Martello and Toth, 90]. However, a look at the crossover
and mutation operators presented above reveals that the FFD and the simpler FF heuristics are the
only ’domain knowledge’ or ’expertise’ exploited. Thus all of the observed difference of
performance between the FFD and the GGAis really due to the GGAitself or, more precisely, to
the recombinating powerof the crossover.

60

40

a

§.2 The Economiesof Scale

This section is made up of excerpts from [Falkenauer, 91a]. This GGA has been successfully

applied to optimization of weekly steel production in a large belgian forge.

5.2.1 The Problem Definition

The Economies of Scale Problem is defined as follows: given a list of orders, for each of
them a list of possibilities of executing it, and a cost function expressing the cost of producing each

order in each of the possible ways, select the way of producing each of the orders in order to
minimize the total cost of the production.

92

More formally, we consider the following optimization problem : Considera set of objects
O, for which there is a set of possible attributes A,;. Select for each object in O exactly oneattribute
from A, in order to minimize a cost function f The problem is grouping when f decreases with the
size and increases with the number of groups of objects with equal attributes.

The problem becomesnontrivial when the cost function decreases with economiesofscale,
i.e. when grouping of several orders into batches produced in the same way accountsfor a gain.
Indeed, when the cost of switching

from one production method to the
other and/or producing too small Production Methods ——-~
quantities of goods in a uniform @® X x
way grows, the fixed costs of

producing each of the orders x xX ®

separately lose their importance in
comparison with the gains attained x @ Xx
by a mass production. ®

Figure 2 illustrates the prob-
lem. In that Figure, each cross @ X
indicates a production method (a
column) which can be selected for x @ xX xX
the corresponding order (the line).

Thecircled crosses, representing the
methodsactually selected, represent
a valid solution of the problem,

since there is just one cross perline. x ®

Note the large numberof crosses in
the second column: these orders are
performed in the same way (in one
batch), implying a big economy.

The Figure also illustrates
the complexity of the problem when the cost of nongrouping growsfaster than linearly*: note that
not all crosses in the third column were selected. This seemingly implies a higher cost of the
production, unless one realizes that doing so would leave the cross in the second line separated,

incurring an even higher overall cost.

O
r
d
e
r
s

@ >

Figure 3 The Economies of Scale Problem

5.2.2 GX - The Grouping Crossover

The grouping crossover proceedsby first copying the first parent into the future child. Then
some of the groups of the second parent are injected into this child. The result is a child having
some of the groups of the second parent and, as long as they were not destroyed by the injection,
the groupsof the first parent.

To see the function of the GX in more detail, consider the following group parts of two

chromosomes:

ABCDEFG and

abcdef.

The GX proceedsfirst by selecting at random twocrossing sites in each of the chromosomes, say

AB|CD|EFG and
albede| f.

To construct the first child, the segment of the second parent delimited by the crossing sites is

6 E.g. when the cost of producing one batch is (C - BATCHSIZE)*, where k>1 and
C>BATCHSIZEare constants.

93

injected into the copy of the first parent, yielding
AB | bcde | CDEFG.

Since the cost function decreases with the size of the groups, the injection of the groupsis followed
by an expansion of the injected groups, i.e. all the objects not injected with the new groups are
scanned and converted, wheneverpossible, to one of the new (injected) groups.
Eventual double occurrences of groups, or groups eliminated by the expansion, are then eliminated,
which gives in the case of the example

AbcdeFG,
the first child. The second child is obtained in the same way, but with the roles of the two parents
permuted. This yields successively

albede|f,
aCDbcdef, and
aCDbef.

Note that in this example both children indeed inherited important information from both
parents. The first child inherited the groups b,c,d and e from the second and, supposing notall of

their members were converted by the injection/expansion, the groups A,F and G from the first
parent. The second child inherited the groups C and D from the first parent and a,b,e and f£ from
the second.

5.2.3. Two Grouping Mutations

The first operator, the grouping mutation, proceeds as follows: it selects at random one of
the possible attributes and tries to convert as many as possible of the objects of a chromosomeinto

this group. Most probably, it will be possible to gather into the new group only someofthe objects
in the chromosome, because notall of them might have the new attribute in their list of possible
attributes (A,). Nevertheless, in comparison to the classic one-object mutation, the chances are much
better that the new group will be strong enough not to decrease too much the fitness of the
individual.

The second operator, the eliminating mutation, selects at random one of the groups present
in a chromosomeandthentries to eliminate it. This is done by scanning the objects in the group
and converting each of them to another group. If the group is not necessary, i.e. each of its members
has at least two possible attributes, the group will be completely eliminated. This is the other way
around to avoid formation of groups too small to survive the comparison with non-mutated
individuals.

5.2.4 Experimental Results

5.2.4.1 Artificial Testbed

In orderto test the algorithm, we have considered a set of 254 “orders”, each of them having

an average numberof 15 possibilities of being produced, selected at random outof a set of 80. In
other words, there were 254 lines and 80 columns, with an average of 15 crosses in each line.

However, the objects were evenly divided into 6 groups according to the columns 0 through 5: each
object had exactly one cross in these columns (beside the random ones). This constituted our

testbed - clearly, the best grouping consisted in selecting all the crosses in the first six columns,
leading to the smallest numberof largest groups possible (provided the other attributes were indeed
uniform and didn’t allow a grouping into less than six groups).

In a sample of 10 typical runs,the first random population (47 individuals) selected crosses
in 71 columns(i.e., the orders were divided into 71 groups), sensibly near to the maximum of 80.

However, an average of 38.2 generations of the GGA were enoughto select the first 6 columns as

94

the best basis for the grouping oftheset, eliminating the noise.

5.2.4.2 Industrial Implementation

Wehave applied the above algorithm to the following problem from metalworking industry.
A list of orders for a foundry is given and for each order a list of possible ways of producing the
ordered quantity of the metal. By selecting an appropriate method for each of the orders, economies
of scale can be achieved by grouping the orders into lots produced in the same way. This results
in a smaller numberof production cycles, each of them concerning a larger quantity of metal. The
production of large quantities implies smaller inventory relative to the total production.

The interesting point of this application is that for any of the orders, each of the production
methods implies a different fixed cost due to the method itself, ie. independent of the eventual

grouping with other orders. Hence the algorithm must find the proper way between the grouping
which reduces the variable cost (mainly the cost of the inventory) and the fixed cost.

Evaluating the performanceofthe algorithm in this case is moredifficult, because the optima
are not known in advance. To get an idea anyway, we have compared the GA to a classic
enumerative method, the A“ ’.

Onrelatively small sets of data (say 50 orders with 10 possibilities for each of them), the
GGAalways found the sameor bettersolution than the A", while taking less time. Given the fact

that on small problems the A” has good chances to come across the optimum, we concludethat the

GGAdid so as well.
Onlarger sets of data (150 orders) the use of the A” algorithm becomesdifficult, because

it is hard to estimate the influence on the total cost of eventual groupings of a large number of
orders. On the other hand, with a weak estimator (see footnote 7), the A” algorithm easily overlooks

goodsolutions, because the search space is too large to be searched nearly exhaustively. In any case,
the GGA performed substantially better and faster on large problems. More importantly, it enabled
the enduser to optimize previously unmanageable productions.

Recently the implementation of the algorithm was enhancedin orderto handlelists of orders
of up to a thousand lines. The complexity of finding a good grouping for such large instances is
daunting and well beyond the human capabilities. Still, the algorithm finds good solutions to those
problemsin reasonable running times (a few hours on a 4 MIPS workstation).

5.3 Creating Part Families - The Conjunctive Conceptual Clustering

This section is made up of excerpts from [Falkenauer, 91b] and [Falkenauer and Gaspart,
93].

5.3.1 The Problem Definition

In informal terms, we are interested in ’telling the pears from the apples’, which translates
into the following problem: given a set of objects (parts) with various attributes observed on each

of them (the observations), how to form definitions of concepts over those attributes, fitting the
objects in the set. Our aim here is to find out ’what properties at /east must a pear have to be a

pear’, i.e. we are looking for conjunctive definitions of the concepts.

The task of creation of part families is in fact the one of conjunctive conceptual clustering.
Indeed, each part can be seen as an instance of a concept, having all the features (attributes) that

7 A ’blend’ of the depth-first and breadth-first tree-searching techniques. An estimator
of the quality of the solutionsat the leaves of the search tree is used to limit the breadth of
the search to ’promising’ branches.

95

define that concept*. Conversely, a part family
can be seen as a concept defined by a Object Attribute andmeaning
conjunction of carefully selected (salient) 0, O, 0,0, O, O, O, O,
features, instantiated by the parts which
comply with the definition. An example of * * * a’ Softbody
clustering ’fruits’ as apples’ and ’pears’ is x x A, Worm hole

x x x x

given in Table I, where the salient (defining) x x x x x x * x ™ Sphericalbody
features are represented by the bold xs. xx xx A Top bulge

The conceptual clustering is formally x x x x x x x x A, Size about 10cm
defined as an optimization problem, the cost * * * * * * x * A, Main color green
function to optimize being a measure of quality (pears) (apples)

of the clustering. Note that the number of
‘clusters is a result of the optimization, ie. it Table I Example of a clustering
doesn’t have to be specified in advance.

The cost function results from an application of the Occam’s Razor and aimsat reconciling
two antagonist tendencies: (1) describing as many attributes as possible of the parts on hand, while
(2) using concept definitions as simple as possible. Thus the resulting clustering strikes a balance
between (1) the precision of the description of the parts offered by the part families and (2) the

understandability of the family descriptions supplied, hencefulfilling the aim of creating a simple
yet precise description of the data.

Moreprecisely, we consider the following optimization problem: given the set of objects,

select concept-defining attributes which minimize the sum of (1) the numberof observations not
accounted for by the concepts and (2) the numberof attributes necessary to define all the concepts.
Note that each of the concepts in a solution needs to be defined just once, no matter by how many
objects in the test set it is instantiated, i.e. the sum is not a constantof the set - it decreases as the
quality of the concepts improves.

The reasons leading to the above definition of the cost function, beyond the scope ofthis
paper, can be found in [Falkenauer, 91b].

5.3.2 CXM - The Clustering Crossmutation

The following main operator for conjunctive clustering is basically a crossover, in thatit
constructs the progeny using information from two parents. However, as we will see, a certain
amountof modification of the information takes place during the crossover. The genetic contents
of the two parents is thus not always used as is and that’s why the denomination crossmutation
seems to be better suited for this recombination operator.

The operator proceeds by first copying thefirst parent into the future child. Then some of
the concepts of the second parentare injected into this child. The result is a child having some of
the concepts of the second parent and, as long as they were not destroyed by the injection, some
of the concepts of the first parent.

To see the function of the CXM in more detail, consider the following group (concept) parts

of two chromosomes:

ABCDEFG and

hijklm.
The CXM proceedsfirst by selecting at random twocrossing sites in each of the chromosomes, say

AB|CD{EFG and
h{ijk1|m.

® At this stage of the research, we only consider nominalattributes, i.e. a part either has

or doesn’t have the feature.

96

To construct the first child, the segment of the second parent delimited by the crossingsites is
injected into the copy ofthe first parent, yielding

AB| ijkl|CDEFG.
The injection implies an update of the object part of the chromosomein order to reflect the group
part’s modification. This is done by scanning the object part of the child and converting whenever
possible the objects into one of the groups being injected, ic. when an object’s observationlist
allows it, it is declared to be an instance of one of the imported concepts. Eventual double
occurrences of concepts or concepts stripped of all their instances are then eliminated from the
group part. Suppose, for instance, that B and D already appear in ijkl, and C and lostall their
instances, yielding

Aijk1EF,
the first child. The second child is obtained in the same way, but with the roles of the two parents
permuted. This yields a chromosome with the group part

h|CD|ijklm, becoming after the ’group cleanup’ of e.g. j,k and 1
hcDim.

Note that in this example both children indeed inherited important information from both
parents. Thefirst child inherited the concepts i, j,k and 1 from the second and A, E and F from

the first parent. The second child inherited the concepts C and D from the first parent and h, i and
m from the second. Note also that the possibility for a concept of being deprived of all its instances
and be thus eliminated due to mating sets the CXM apart from other GA operators. Indeed, the
recombination operator is no longer the usual concatenation of two or more parts of the parental

chromosomes. This is a distinctive feature of the GGA.

As we have pointed out above, the main difficulty in clustering consists of fighting two
extreme positions: taking either too many or too few attributes into account while defining the

concepts. Since there are (typically) several attributes to be selected for each concept and since we
are working with data polluted by noise, the crossover must do more than just importing concepts

(i.e. their definitions) from one parent into the other, because the probability is high, especially in

the beginning of the genetic search,that the concepts being injected are defined over attributes with

little significance (i.e. shared by too few objects). The operator must in fact adapt the concepts in
one parent to those in the other. Otherwise, the ill-defined concepts would be transmitted to the
offspring, lessening its chances for survival. Note that this problem is a side-effect of the very large
alphabet used by the chromosomes(its size is equal to the numberof all possible concepts over the
objects on hand)- the choice of the right ’letters’ is guided by the recombination process.

The main idea behindthe adaptation during crossoveris to view the grouping GAasintegra-
tor of multiple sources of evidence, a source of evidence being a gene in a chromosome(here a
concept definition in the group part). The rationale is that as the genetic search progresses, ever

better genes appear in the genetic pool (provided the Thesis of good building blocks is complied

with), so it usually pays to create new ones from those already present in the pool’. We therefore

fitted the crossover with two mutation aspects.
Whena concept being injected has few instances, suggesting its definition is too ’strong’ (too

many attributes to be applicable to a large number of objects), some of the attributes from the

definition are dropped to accommodate at least one object from the other parent. The object is
selected by minimizing the Hamming distance between the original and the reduced concept

definition. Such a definition reduction, a departure from a pure crossover, acts against too strong
concept definitions.

For instance, consider again the fruit example above and suppose the concept [2,4,5,6]

° Bouncing of old ideas against each other’ has been suggested many times as the
process leading to creation of good novelideas.

97

appears in an individual in the population. Such a concept can only accommodate one object,
namely O,, and without the adaptation property of the CXM only a mutation of the definition could
achieve an inclusion of another object into the group. However, suppose this concept is being
injected into an individual containing the concept [2,5,6,7]: by dropping A, (i.e. the attribute not
present in the other gene) from the definition (yielding [2,5,6]), the concept can accommodate two
objects (O, and O,). Note that the reduction of [2,4,5,6] to [2,5,6] is likely, since the Hamming

distance between them is just 1.
The exampleillustrates well the integrating aspect of the CXM. The fact that the [2,4,5,6]

concept has just one instance is a good clue ofit being too restrictive, but doesn’t show us which
of its attributes should be dropped. So, in informal terms,welet the [2,4,5,6] ’idea’ "bounce’ against
the [2,5,6,7] ’idea’, yielding a concept defined over attributes with which they both agree.

Conversely, a low rate of group definition expansion takes place during the operator. When
a concept being injected is large, suggesting its definition might be too weak, the definition is
augmented with an attribute randomly selected from the observedattributes of one of the concept’s
instances. This mutation aspect of the CXM acts against too weak concept definitions.

As can be seen, the ’mutation’ aspects of the CXM are not completely random,i.e. an

increased rate of a classic mutation operator wouldn’t have the sameeffect. Indeed, what the CKM
does is an interchromosomal gene adaptation during mating. To our knowledge, no other GA
operator in the literature possesses such a quality. It is another distinctive feature of the GGA
paradigm.

5.3.3 Two Clustering Mutations

The mutation operator for this problem is implemented in the form of two distinct operators,
as suggested in section 4.2 above. The first operator, the grouping mutation, proceedsas follows:
it takes the observation list of a randomly selected object, drops at random someofthe attributes
and tries to convert as many objects as possible into the concept defined by the attribute list thus
obtained. Most probably, it will be possible to gather under the new concept only some of the
objects in the chromosome,because not all of them might have all the defining attributes on their
observation list. Nevertheless, in comparison to the classic one-object mutation, the chances are

much better that the new group will be strong enough not to decrease too muchthe fitness of the
individual, while introducing a new group definition into the genetic pool.

The second operator, the eliminating mutation, selects at random oneof the groupspresent
in a chromosomeandthentries
to eliminate it. This is achieved
by scanning the objects in the

group and converting each of
them to another group. That is |-) -ti-:- fist: +3 Lady
done again by minimizing the |: *7i-7#iteeo e8 PTE ES
Hamming distance between the | ,
observation list of the objects
and the (eventually reduced)

definition of the target groups.
This is the other way around to

avoid formation of groups too Teed

small to survive the comparison +--+: *+:?+) :-?*
with non-mutated individuals. : SCnn i!

5.3.4 Experimental Results Figure 4 Example of test data shown in random order

In order to test the performanceofthe algorithm, we set up the following testbed : for a set

of objects with randomly generated attributes, we generated a part of the observations following a

98

regular pattern, dividing the objects
into a small number of groups. The
algorithm was then required to
classify the objects into clusters de-
fined by the pattern, which amounts . : wan,
to discovering the regularities of the sep Cee Cay PR oe ae :
pattern and disregard the randomly irs Pat Teje Jit peat eda a
generated attributes, thus Wp Perel yi oD dre
distinguishing between important vid oy EBB frp.
(salient) features and noise. The : Tri, rm
advantage of this approach over senctaggeeeeeaed: soo] veensentseenue
tests on "natural domains’ real-world eae itt HAL Set
data sets is that here we know what AH PrP pe Cay ote,
kind of behavior should take place. 4 f st dsee
This is important, since not only the Figure 5 The underlying pattern hidden in the above

ability of the algorithm to optimize data
the cost function, but also the
adequacy of the cost function itself must be verified.

A typical example of suchtest data is shown in Figure 3, where 56 objects (columnsof the
matrix) and 64 attributes (lines of the matrix) are in random order, i.e. how they appear to the
algorithm. The distribution of observations seems to be completely random, but there is an
underlying pattern, as can be seen in Figure 4, where the objects and attributes are in the proper
order. In the figure, the group boundaries are represented by vertical lines and the attributes over

which the pattern has been imposed (21 of them) are below the horizontal line (the analogous
horizontal line in Table I would be drawn between the attributes A, and A,).

We considered that the [:..: [' [) ” : PP oT iF Te

algorithm successfully classified the
data if it found a solution which
cost was equal to or smaller than

the cost of ’our solution’, i.e. the

one consisting of selecting all the |:: -:. j.- 1. a : : : -‘. ;
observations in the pattern andnone f° j**) -) 2 eH. iif fo fy bo pee ebTe
among the random ones, as in the [’-:*.! . PUP ppt seb pb ort
Figure 4, where the salient
observations are represented by
boxes. The largest data sets we i
treated so far (not shown here for i

space reasons) had 150 objects with jj i
96 attributes, 30 of which followed lsaistais
a pattern similar to the one shown Figure 6
in Figure 4.

The performanceofthe algorithm on these problems is summarized in Table I showing the

number of generations (Gens columns) and the time on a 486 PC at 25 MHz (Secs columns)

required to classify the data in 10 successive runs on the problems with 150 objects, 96 attributes,
30 attributes inside the pattern and an average of 25, 35 and 60 observations per object generated
at random outside the pattern (AttOutpairs of columns).

Note that generating test data for this problem is nottrivial. With too few randomattributes,

the algorithm quickly figures out the pattern, showing that the problem is too easy. On the other
hand, with too many of them,the algorithm discovers other equally good or better solutions (in
terms of our cost function), pointing outthe difficulty to generate data which do not admit good
solutions different from the ours. Indeed,all of the solutions found for the problems with 60 attribu-
tes outside the pattern were different from (and better than) the one suggested by the pattern.

 nF

A GGA classification of the above data ~

99

Figure 6 shows an example of such a ’creative’ solu-
tion (the intermediate stages are not shownhere dueto AuntGens”secs Gens*’secs Gens”“Secs
space constraints): in classifying the data from Figure 3. . ee 1 16 206 18 178 26 420
and Figure 4, the algorithm correctly identified the 2 9 118 2 71 16 259

wa Penne . 3 3 82 38 312 14 227
pattern. In addition, it found similarities among objects 4 11 130s 15—s«196 13 229

in the fourth group from Figure 4 and so the group was é a 155 14 33 2 320
Hea fect j 7 7 90 8 145 414 221split in two. It also found an object in the fifth group to a 3 102 7 128 2 367

be so similar to those in the first group that it relaxed 9 9 126 13 212 6 180
we : . 10 10 149 #9 152 7 210

the definition of the latter group to include that object as
il Mean 93 1266 131 1665 13.4 249.2

well. StiDev 31 342 94 613 67 71.2

. Table II Summary of performance
6. Conclusions tests of the algorithm

Despite their praised (and well documented)

robustness, the classic or ordering GAsare not well adapted to grouping problems. This is because
their object-to-gene encodings do not capture the structure of those problems.

Nevertheless, we have shown that a new encoding can lead to efficient GA operators for
these problems. The successful applications described suggest that the Grouping GA paradigm holds
a promise for many other important problems.

7. References

[Belew and Booker, 91] Belew Richard K. and Booker Lashon B. (Eds) Proc. of the Fourth Int.

Conference on Genetic Algorithms, University of Califomia, San Diego, July 13-16, 1991, Morgan
Kaufmann Publishers, San Mateo, CA.

{Bhuyan et al., 91] Bhuyan Jay N., Raghavan Vijay V. and Elayavalli Venkatesh K. Genetic
Algorithm for Clustering with an Ordered Representation in [Belew and Booker, 91].

[Davis, 87] Davis Lawrence (Ed) Genetic Algorithms and Simulated Annealing, Pitman Publishing,

London.

[Delchambre et al, 92] Delchambre Alain, Falkenauer Emanuel and Hamers Pierre, Design for

Assembly, Resource & Motion Planning in ROBCAD/Rose, in Proceedings of the 3rd International

ROBCADUser Meeting, June 23-26, 1992, Toulouse, France.

(Ding et al., 92] Ding H., El-Keib A.A. and Smith R-E. Optimal Clustering of Power Networks
Using Genetic Algorithms, TCGA Report No. 92001, March 5, 1992, University of Alabama,

Tuscaloosa, AL.

(Falkenauer, 91a] Falkenauer Emanuel A Genetic Algorithmfor Grouping, in "Proc. of the Fifth Int.

Symposium on Applied Stochastic Models and Data Analysis”, Granada, Spain, April 23-26, 1991,
R.Gutiérrez and M.J.Valderrama (Eds), World Scientific, Singapore.

[Falkenauer, 91b] Falkenauer Emanuel, A Genetic Algorithm for Conceptual Clustering, Report

FMS39, CRIF Industrial Automation, Brussels, December 1991.

100

[Falkenauer and Delchambre, 92a] Falkenauer Emanuel and Delchambre Alain A Genetic Algorithm
for Bin Packing and Line Balancing, in "Proc. of the IEEE 1992 Int. Conference on Robotics and

Automation (RA92)", May 10-15, 1992, Nice, France.

[Falkenauer and Delchambre, 92b] Falkenauer Emanuel and Delchambre Alain, Resource Planning
in the SCOPES Project in "Proc. of the 26th Int. Symposium on Automotive Technology and
Automation, dedicated conference on Lean Manufacturing in the Automotive Industries", September
13-17, 1993, Aachen, Germany. Automotive Automation Limited, England. pp 295-302.

[Falkenauer and Gaspart, 93] Falkenauer Emanuel and Gaspart Pierre, Creating Part Families with

a Grouping Genetic Algorithm, in "Proc. of ISIR ’93 - Int. Symposium on Intelligent Robotics",
Bangalore, India, January 7-9, 1993, M.Vidyasagar (Ed), Tata McGraw-Hill, New Delhi, India.

[Garey and Johnson, 79] Garey Michael R. and Johnson David S. Computers and Intractability -
A Guide to the Theory of NP-completeness, W.H.Freeman, San Francisco.

[Goldberg, 87] Goldberg David E. Simple Genetic Algorithms and the Minimal, Deceptive Problem
in [Davis,87].

[Goldberg, 89] Goldberg David E. Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wessley.

[Grefenstette, 85] Grefenstette John J. (Ed) Proc. of the First Int. Conference on Genetic Algorithms

and their Applications, Carnegie-Mellon University, Pittsburgh, PA, July 24-26, 1985, Lawrence
Erlbaum Associates, Hillsdale, NJ.

[Grefenstette, 87] Grefenstette John J. (Ed) Genetic Algorithms and their Applications: Proc. of the
SecondInt. Conference on Genetic Algorithms, MIT, Cambridge, MA,July 28-31, 1987, Lawrence

Erlbaum Associates, Hillsdale, NJ.

(Holland, 75] Holland John H. Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor.

[Holland, 86] Holland John H. Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems in “Machine Learning: An Artificial Intelligence
Approach, Vol 2”, Michalski et al. (Eds), Morgan Kaufmann, Los Altos, CA.

[Holland et al., 86] Holland John H., Holyoak Keith J., Nisbett Richard E. and Thagard Paul A.

Induction: Processes of Inference, Learning and Discovery, The MIT Press, Cambridge.

[Jones and Beltramo, 91] Jones Donald R. and Beltramo Mark A. Solving Partitioning Problems
with Genetic Algorithms in [Belew and Booker, 91].

[Laszewski, 91] von Laszewski Gregor Intelligent Structural Operators for the k-way Graph
Partitioning Problem in [Belew and Booker, 91].

[Manner and Manderick, 92] Manner Reinhard and Manderick Bernard (Eds) Parallel Problem

Solving from Nature, Proc. of the Second Conference on Parallel Problem Solving from Nature

(PPSN2), Brussels, Belgium, September 28-30, 1992, North-Holland, Elsevier Science, Amsterdam,

The Netherlands.

101

(Schaffer, 89] Schaffer David H. (Ed) Proc. of the Third Int. Conference on Genetic Algorithms,

George Mason University, June 4-7, 1989, Morgan Kaufmann, San Mateo, CA.

(Smith, 85] Smith Derek Bin Packing with Adaptive Search in [Grefenstette,85].

(Radcliffe, 92] Radcliffe Nicholas J., Forma Analysis and Random Respectful Recombination in

{Belew and Booker, 91].

[Van Driessche and Piessens, 92} Van Driessche Raf and Piessens Robert Load Balancing with

Genetic Algorithms in [Manner and Manderick, 92].

102

