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Abstract

Weinvestigate the behaviour of the lag—-k sample serial correlation rin) (O<k<n),

for series realisations (of length n) from any autoregressive integrated moving average

(ARIMA) model, and make comparisons with earlier results reported by Hasza (1980).
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1. INTRODUCTION

Consider a time series realisation of length n, denoted by

{z , ... , 2 }, and define its k-th serial covariance as
1 n

(n) 1 n=k _ -
c =- > ( -z)( -2) (k#0, 1, ..., n-1)
k n iel i i+k

where z = (z +... +z )/n is the sample mean of the observed
n

series. Define the k-th serial correlation by

In both these relations, the superfix (n) serves to emphasise the

length of the series.

Box and Jenkins (1976) have greatly popularised the use

of ARMA(p, q) and ARIMA(p, d, q) processes for modelling time

series. These are defined by 2 satisfying

(1-¢gB-...-4 By (1 - B)'2 = (1-6 -... - 686 ByA (1)
1 P i 1 q i

with d = 0 for the ARMA cases and d > 1 for those ARIMA models

which are excluded from the ARMA class. In (1), (6, ... ,@)

and (6, ... , 6 ) are two sets of real parameters, with the

first subject tothe stationarity condition, namely that the

polynomial,

xi - PtS = as see a

in the complex variable S- has no zero within or on the unit

j
circle; and B is the backshift operator, such that B operating

on any X , for instance A or Z _, produces X . {A} is a white

i i i i-j
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noise sequence of independent but identically distributed normal

zero-mean random variables, all with variance @ say. Note that

it is unnecessary (for our purposes) to impose any further

restrictions on the real Q@-parameters.

In this paper, we will wish to extend the ARMA class to

the so-called ARUMA models, obtained by replacing the d-times

differencing operator (1 - By, in (1), with

U (B) =l-uB-... ~uB,
d 1 d

all of whose zeros lie precisely on the unit circle, but not

necessarily all (or any) taking the value 1. We then study

certain serial dependence properties for the whole ARUMA class.

m particular, we consider the first two moments of Pain and
n

ri .r

Hasza (1980) has discussed the asymptotic distribution of

the sampled serial correlations for ARIMA(p, 1, q) models as

n-—? oo. His theory is rigorous and provides inter alia formulae

for the population mean and variance of a finite-lagged serial

correlation from an infinitely long realisation, namely

(eo)
E{r }=1 (2)

k

and

(eo)
Var{r } = 0, (3)

k

in agreement with Roy and Lefrangois (1978).

However, when application is made to finite-lengthed

series realisations, approximations of unknown validity are
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introduced, and Hasza concentrates on just the mean and variance

(nm).
of the r for the ARIMA(0, 1, 1) [or, more briefly, IMA(1, 1)]

k
case,

(1 - B)Z = (1 - OB)A {el <1; (4)
i i

for which he gets

(n) -1 2
E{fr ]”~ E(n, k, 9) 2 1-n {7.335k+10.6520/(1-8) } (5)

k

and

(n) 2
Var(r ]~ S (n, k, 8)

k

-2 2 2 2 4
azn {19.501k +69.588k60/(1-9) +69.4200 /(1-0) }. (6)

In this paper, we advocate an alternative approach to

predicting finite series behaviour, which also gives rise to

formulae for Bie and Varir’). Again, approximations are

employed, but wewould suggest‘that this does not make the theory

any less rigorous than Hasza'‘s, for the practical purpose of

gaining insight as to how real series behave. Moreover, these

formulae appear superior to Hasza's for short series, and are

certainly in better agreement with the simulations that he gave

to support his theoretical results.

In what follows, Y, will always denote the k-th

theoretical autocovariance for that ARMA part of the model which

remains after any I or U factor has been removed, by appropriate

simplification, from what was originally an ARMA, ARIMA or ARUMA

process.

Finally, we define

48



(n) (n) (n)
E = E{[c ] / Ele ] (7)
k,1 k 0

(n)
which can be considered as a first approximation to E[r ]) [with

an O(n ) error] - compare Wichern (1973) - and its second
-1 -2

approximation, correct to order n (with an error of O(n ), and
-3/2

not O(n ) as is frequently assumed - see Anderson (1990a)],

(n) (n) (n)
Cov[ec »c J Var[c ]

(n) (n) k 0 0
E = E {1 - soe e cernnn Fo cre rccenn }3 (8)
k,2 k,1 (n) (n) 2 (n)

E[c JE[c ] E [c J
0 0

-1 (n)

and, correct to order n_, an approximation for Var([r J], viz:
k

(n) (n) 2
v = {S }
k,2 k,2

n (n) (n) (n)
Var(c J 2Cov[c 7c ] Var[c J

(n) 2 k k 0 0 *

= {E } (terrrrtre orercccrrrscscn Fo oscccsccce }. (9)
- &k,1 2 (n) (n) (n) 2 (n)

Ef{ec ] E{c JE{c ] Ef[{c ]
k 0 0

{In (8) and (9), we can of course replace all the Cov(x, y) and

Var(x) by, respectively, E(x)E(y) and E(x ) - should that be more

convenient. ]

2. EXACT COVARIANCE RESULTS

(n) (n)
Explicit formulae for E[c J or E have been obtained for all

k k,1
ARMA and ARIMA models by Anderson (1979a), who also gave the

results for the other ARUMA cases in Anderson (1979b). Similar
(n) (n) (n)

results for Var([c ] and Cov{e ,c¢ ] (0 < k <n), given an
k 0

* (n)
Vv = 0, rather uninterestingly.
k,1
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ARMA or ARIMA(p, 1, gq), have been recorded in Anderson and De

Gooijer (1983) and, for other general homogeneously nonstationary

ARUMA models, in Anderson (1980a). Finally, Anderson and De

(n) (n)
Gooijer (1982, 1988) give Cov{[c , oe } (@ ¢h¢k <n), whilst

k
Anderson and De Gooijer (1985) show how similar results can be

obtained for space-time systems.

Thus, for ARMA(p, q),

(n) 1 k-1 ;
E{[c J] = “5 inca) ay-7) + 2a2DY,

. n-k-1 n-1

-2n > (aed - 2kB(a-dy) (10)
j=l

Again, for any ARIMA(p, 1, q) process, we have that

(n) 1 2 2 k-1

E{c J = ---{n(n-k){(n -4kn+2k “ly - 6n > (k-d)

3 0 j=1 jk
6n

k-2 2 age 2

- an > (k-J5) {(k-3) “l}y + an (n-k-4) ((n-k-4) = 1} 9
j=1 j j=1 j

n-2 2
+ 2k 2 (n-5) {(n-5) -1} 7] (11)

j=1 j

and, in particular, for model (4) this reduces to

2
(n) 2 2 2 co

E[c } = (n-k) {(nS -1)6+(n -4kn+2k -1) (1-98) /6)-- (12a)
k k 2

n

where

1 (k = 0)
5 = (12d)
k 0 (k # 0).

This agrees with formulae given by Roy (1977) - and yields the
(n)

result, for E » previously deduced by Wichern (1973).
k,1
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Given any ARMA(p, da, q) with d > 1, we find that

(n) 2 2 2
E = (n-k)(n -2nk-2k -1)/{n(n -1)}; (13)
k,1

whilst, for any ARUMA model of the form (1) with (1 - B)

replaced by (1 + B), we get

(n) 2 k 2 3
E = {n (n-k)(-1) -n§ -kS—/(n -nS i) (14a)
k,1 n,k n,k n,0

where

0 (n even)
k

$ = {n (mod 2)}(-1) = 41. (nm odd, k even) (14b)
n,k

-1 (n odd, k odd).

a 2
If, instead, we replace the (1 ~- B) by (1 - 2Bcosw + B ); then,

-2
with an error of O(n ), we have that

(n) k
E ~ (1 - -)coske. (15)
k,1 n

The corresponding second moment formulae, for ARMA and

ARIMA(p, 1, q@) models, are much more involved; but they have the

simple form

(n) n=l n-1
Varfc J= 2 Fg ,
“se 36%k i=0 j=0

where the g coefficients are all known. Similarly, for
i,j

(n) (n)
Covic ,c ] - see Anderson and De Gooijer (1983) - or, more

k 0

(n) (n)
generally, for Cov[c , ce J}, which subsumes both the previous

k
results and was more recently derived in Anderson and De Gooijer

(1988). Those for other ARUMA models are less complicated.

For instance, the (1 + B) case yields
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(n) 4 2 2 2 2 2 2 2
Var[ce J 2[n (n-k) -2{n (n -k )-nk}S +(n +k )S J

k n,k n,k

~-------- Bo wennnnnnnnnnnnee (16)
2 (n) 2 k 2 2
E[e ] {n (n-k)(-1) -n& -k&S }

k n,k n,k

and

(nn) (n) 2 2 k 2 2
covte) ,c ]  2{n (n-k){n (-1) -§ }#(1-n (nS +k& YY

k 0 n,k n,k n,k

(n) (n) 2 k 2 2 (17)
E{[c JE{e ] {n (n-k)(-1) -n& -kS— oy} (n -8—OC*D

k 0 n,k n,k n,0

So, on simplifying for the various special cases, (16) and (17)

give

3 2 2
(n) 2 (n) 2 + 8n /{(n-k)(n -1) } (n odd, k odd)

Var([c 1/E[e ] = (18)
k k 2 (otherwise)

and

(n) (n) (n) (n)
cov[c ,¢ ) / E[e JE[c }=2 (all n and k). (19)

k 0 0

Then, using (7), (8) and (9), we can obtain

(n) (n)
approximations to E[r ) and Var([r ). Thus, for instance,

k
with the (1 + B) ARUMA we have

k 2
(n) (n) (-1) (1-k/n) - 2k/{n(m -1)} (n odd, k even)

E =z E = (20)
k,2 k,1 k

(-1) (1-k/n) (otherwise)

and

2 2
(n) 8n(n-k)/(n -1) (n odd, k odd)

Vv = (21)
k,2 0 (otherwise).

(n) (n)
Since the approximations, E and V are both correct

k,2 k,2
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-1
to O(n ), it follows that, for this ARUMA subclass,

(n) k -2

E(r ] = (-1) (1-k/n) + O(n ) (22)

and

(n) -2
Var{r J=O+ O(n ). (23)

k

Thus, actually observed serial correlations will be given by

(n) k -1
x = (-1) (1-k/n) +O (n ). (24)
k Pp

(n) (n)
Using Cov{c , ce ], we can similarly obtain

k
(n) (n)

Cov(r ,r ] approximately.
k h

3. AGREEMENT WITH SIMULATION

The theory of the last section gives rise to approximations which

provide good agreement with simulation in all the cases studied

so far. For instance, see Anderson and De Gooijer (1979, 1980,

1992) and Anderson (1990b).

In particular, using our formulae, we get much better

agreement with the Monte Carlo results, based on 1000

replications and reported by Hasza (1980), than he did with his

asymptotic approximations. Thus, when n = 50 and © = + .8, we

have comparisons for k = 3, as shown in Table 1. Note that,

there, the exact values quoted are those obtained from numerical

integration by a method discussed in Anderson and De Gooijer

(1980) and De Gooijer (1980). Also, we have written the results
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for our E within brackets, as we would not in fact use the
3,1 .

first approximation for this model. [On its own, 1 - B is an

anomalously weak non-stationarity operator, which gives rise to

models that behave similarly in some respects to stationary ones.

See Anderson (1990), say, for a discussion. ]

Table 1

Comparison between Hasza's and our Results for (1-B)Z ™='(1-OB)A
i

Formulae Compared ' 6s -.8 e= .8

_(50) {
Hasza's observed r ! 65 16

3 f]

*
Hasza's E(50, 3, @) r' 61 -3.70

'

(50)
(Our E | 74 .20)

3,1 !

(50) ‘
Our E ' 65 15

3,2 !

(50) '
Exact E[r j ' 66 17

3 ‘

(50) i
Hasza's observed s.e.[r J \ -17 .19

3 '

*
Hasza's S(50, 3, 9) ' 23 3.58

1

(50)
Our S : 13 .21

3,2 '
(50) i

Exact s.d.[r J i 16 .18

3 '

Clearly, our formulae do substantially better than

Hasza's for 6 = -.8, and still perform well in the more testing
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case of 8 = .8, for which Hasza's formulae produce not only very

poor but actually impossible values (no serial correlation can

have an expectation reaching, let alone exceeding, 1 in magnitude

or a standard error as great or greater than 1).

A table comparing results for all of Hasza's length-50

series simulations is given in the Appendix.

4. DISCUSSION

Table 2

Percentages of First Serial Correlations falling within various
Ranges for Legth-50 Realisations from (1-B)Z = (1-@B)A

i i

ON)
Range of r Percentage of Distribution

Trrconnnescnsacs~----------+--+

< -.05 6.65

(-.05, .00] 4.54

(.00, .05] 6.27

(.05, .10] 7.98

(.10, .15] 9.40

(.15, .20] 10.31

(.20, .25] | 10.55
(.25, .30] | 10.12
(.30, .35] 9.12

(.35, .40] 7.68

(.40, .45] 6.09

(.45, .50] 4.50

> .50 6.90

i
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Also note that, although the asymptotic distribution of,

say, .” for the IMA(1, 1) model with 9 = .8, is non-normal (as

was demonstrated by Hasza, 1980), the short series distributions

are not highly negative skew, as intuition might suggest. For

instance, when n = 50, the exact probability distribution

function is almost symmetric (perhaps even slightly positive

skew) as is shown by Table 2 (the expectation being .2151). Also

see Anderson and De Gooijer (1980, 1992), where slight (but not

significant) positive skewness was noted, for a simulation with

1000 replications.

Again, the typical shape for the run of serial

correlations, we: k=1, ... , n-1}, from a finite series

realisation of an ARIMA(p, d, q), with d > 0, is not a slow

linear decline - as, for instance, suggested by Box and Jenkins

(1976). Rather, it is a smooth catenary-like curve that starts

with positive values which decrease to a negative minimum and

then increase again towards zero. Compare (12) or (13). That

something like this must happen is also indicated by noting that,

for any series realisation whatsoever of length n > 1,

(n)

k=1 * _
(n)

where r is taken as zero whenever k > n. [A proof is given on
k

(25)

N
i
e

p. 736 of Anderson (1990b).]

Finally, the motivation for our study stems froma

general belief that, for observed series, the finite sample

behaviour of the serial correlations can be very different from

what asymptotic theory has previously led practitioners to
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expect. Thus, we believe that our results provide us with a

means of recognising specific ARUMA models, when they occur; and

then, by a method analogous to differencing d-times for the ARIMA

case, give us a way of reducing the process to just its ARMA

part, by application of the appropriately indicated simplifying

operator. For instance, see Anderson (1980b).

POSTSCRIPT

A different approach for obtaining approximations to the moments

of the serial correlations, for finite series realisations from

stationary ARMA(p, q) models, has been discussed by Davies and

Newbold (1980) and Anderson and De Gooijer (1988). Davies and

Newbold obtained (with some errors) gir”) and Var(r}

approximately, for an ARMA(0O, q) [abbreviated to MA(q)] process,

when q << n. Their mean contained a fundamental error, whilst

their variance formulae (for various lags k) included six

algebraic mistakes. By first extending their method and then

using a rather different means, Anderson and De Gooijer (1988)

deduced the analogous general formulae, given any ARMA(p, q)

model, and also quoted the corresponding covir’”, iy result,

for the MA(q) case (op. cit., equation 26). However, although

the second-moment algebra had been corrected, the fundamental

error in the first moment was not rectified until Anderson

(1994), who also showed that it luckily cancelled out in the

centered second-moment formulae, and further deduced a concise

covariance approximation for general ARMA(p, q) and general lag

k. In fact, it was the proof-checking of the remaining part of

this paper that prompted Anderson (1994), and has lead to some
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appropriate modification of the material that follows.

Here, we outline the derivation of this general

(n)
covariance formula (which of course specialises to Var(r }).

For simplicity, we drop the superscript (n) and we also

work with the non-centred serial correlations for both the

observed mY and its driving shocks {a }, namely
i

2
rte) = Sa moe (0 <k <n)

i=l i i+k i=l i

n 2
r (a) = s aa / ¥ a (0 < k <n).
k i=l i i+k i=l i

First we note some results for the r (a), which tidy up

work reported in Davies (1977). For 0 < k <n, and m any positive

integer:

2m-1

E[r (a)] = 0
k

and

2m -m

E(r (a)] = O(n );
k

with, in particular,

2 (n-k)

Ele (a)] 2 ---77-
n(n+2)

and 3

4 3{(n-k) +2(n-k)+4<n-2k>}
Ele (a)] F creer rrtetortssrcnH

n(n+2) (n+4) (n+6)

where <x> = x, if x > 0, and is zero otherwise. Finally

1 ™ -2

E[r (a)r (a)] = O(n )
j k
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or less, whenever 1 > 0. For instance, should 1 or m (or both of

them) be odd, then

1 m

E([r (a)r (a)} = 0 (J # k)
j k

and

2 2 (n-j) (n-k) +4(n-k) +8<n-j-k>

E[r (a)r (a)) © -r---n-nennnnnn (ij < k).
j k n(n+2) (n+4) (n+6)

Thus, we see that all powers, other than squares, of the

r (a)'s, and all proper products of powers of the r (a)'s and
k :

J
-2

yr (a)'s (j # k), only give rise to terms of O(n ) or less, on

k
taking expectations. ([Actually, this is also true for any

product of the serial correlations other than the simple single-
2

lag squares, r (a) (0 < k <n). See Anderson and Chen (1994).]

k
Then, following Davies and Newbold (1980), we can write

n=l -1 n=l

r (z) ~ (142% er (at telat Dele (alte (ay):
k j=l‘ 5 x gat) key k-j

where e = Y./%, denotes the lag-j theoretical autocorrelation.

J j °0
So, ignoring powers or cross products with total degree greater

than 1 (other than single-lag squares) which will eventually (on
-2

taking expectations later) only yield O(n ) or less, we have

first that

n=l n-=1 2 2 n-=1

r(z) 2 (l-22er (a+4 Der (air (a+ Re lr (ater  (a)}}
k j=1°5 3 j=155 3 ko jelsd kt kJ

k-1
and, on assuming*® that adding } r (a) to the terms in

j=O*nt+j k-n-j
the second main bracket, here, will make no difference to final

-2
results which have O(n ) errors, we then get
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2 n-1

(a)} te + > ( )r (a)}
nz1 n=1 2

r(z) ~ (1-22 er (ae4 Dor et
k j=l jj j k jel ‘k+j ok-j jjj=1°5 5

=e + "FF r (a) - 2°56 F (a) (26)
k ji k,j j j=1‘j k,j j

where

Med ° C5 * C5 ” 76.05"

[Note that the asterisked assumption is very weak. For instance,

it is sufficient that ke e . is om) for the assumption to be

valid. In fact the assumption can be avoided, if we agree to

replace the theoretical correlations, e," by zero, whenever j|j[

> n; which just requires that the process is MA(q) with q < n.Jj

Now, Davies and Newbold (1980) implicitly assumed that

the error in (26) was on). However, we can actually show that

it is 1 + on), where te is on) with an expectation of

“kefn which corrects this fundamental mistake. (See Anderson,

1994.) So, we must add in Le to the right of (26). _

Then, the correct working down to terms of O(n )

inclusive, continues as:

n-1

r (z)r (z) ~ (ep te (ep +9) + LPF +p F Jr (a)
k h ty tk Ch ty te h,j Ch k,j jj=1 3 03

n-i 2
- 22 fe Ce F +e F )+F F jr (a).

j=i ‘j ‘k h,j ‘hk,j k,jh,j j

Thus, for 0 < k <n,

k 2 "5

E[fr (z)}] = (i - -) cs osccte (n-j)p ( + ~2 ) (27)
k n C, n(nt+2) j=1 , Cty ne A

which corrects, simplifies and generalises result (2.5) of Davies
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and Newbold (1980); and, when in addition 0 <h<a,

Cov(r (z), xr (z)] 2 Ef{r (z)r (z)] - E[r (z)JEfr (z)]
k h k h k h

1 n-1

777-77 x (n-5)(@
n(n+2) j=1 ke 5Gels? Snags SangSes” (28)

This last relation represents an improvement on

Bartlett's famous approximation (Bartlett, 1946). We also note

that the seven line equation (2.74) of Davies (1977) for

E[r (z)r (z)], from an MA(q), has some algebraic errors and, as a

result, ts unnecessarily complicated. However, even for

stationary ARMA(p, q) processes, as explained in Anderson and De

Gooijer (1988), we still prefer our original type of

approximation to that of this postcript - but, perhaps, with the

expansion, giving (9), taken rather further then - as,

computationally, we can use the simpler, raw, matrix-trace

expressions for the moments (instead of their complicated

explicit evaluations).
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APPENDIX

We give a full comparison, here, of Hasza's approximations to the
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means and standard deviations for the serial correlations at the

firat four lags, for length-50 realisations of the various

IMA(1,1) models that he considered, with the corresponding

approximations achieved from our finite-series methods. See

Table 3. As arbitrator, we use the values which Hasza himself

obtained by simulating 1000 replications of each model, and Table

3 also compares these simulated results with exact ones derived

from our finite-series considerations and numerical integration.

(Note that, in virtually every case, the finite series

approximation outperforms the asymptotic one - sometimes

dramatically. In the four cases, out of forty, where the

asymptotic result shows "better", the two approximations are on

opposite sides of the simulated result; and then the difference

in closeness of only .01 each time could well be ascribed to

rounding error.)

For higher lags (not reported by Hasza), or for values of

6 closer to 1, the disparity between the asymptotic and finite-

series approximations is greater, with the Hasza approximations

deteriorating rapidly with increasing k/n or increasing 8. This

is unlike our finite-series formulae, which would be close to

values achieved by simulation for all k. However, to be fair,

Hasza also reported similar results for series of length 250 from

the same models; when, apart from the case 6 = +.8, his

approximations are not so markedly inferior to ours (on

restricting attention to just these initial four lags which,

relative to the much longer series length, are indeed now very

low lags).
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Of course, with 6 extended to +1, model (4) reduces to

white noise; that is, the series realisations are then merely

random samples of n standardised normal variates - and, in such a

situation, one would expect a sample size, even of only 50, to

allow confident use of appropriate asymptotic formulae. But now

the Hasza results (as he indeed noted) are completely inadequate,

as they are for all 8 moderately close to 1 (where what value of

@ might be termed just "moderately close to 1" is a monotonic

increasing function of series length, n). However, our finite-

series results ensure good approximations are obtained, no matter

how short the series are, and no matter how close @ is to +1. In

fact, our results become exact when @ actually attains the value

1.

Then, for instance, (12) yields

(n) 2 -2
E[e ] = (n-k)(n§ -1)6 n (0 <k <n)

k k
2

{(n-1) /n}e (k = 0)

2 2
- {(n-k)/n 36 (0 <k <n);

so (7) gives

(n) (n-k)
E sos eoe--- (0 < k <n),
k,1 n(n-1)

(n)
which agrees exactly with Moran's well-known result for E[r 1,

given a white noise process (Moran, 1948).

Finally, we note that numerical integration (as described

in De Gooijer, 1980, allows us to get "exact" values for the mean

and standard deviations, from finite series considerations, where

“exact" ig interpreted as being accurate to any degree of
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precision that we may chose.

As an indication of why the asymptotic approximations

perform so much more poorly than the finite-series theory ones,

compare Hasza's and our approximations for E[r mo E(n,k,@) and

ie respectively, given series realisations of length n from

model (4). Hasza's approximation (4.1) for tir), as given in

(5) above, is bound to be unsound globally, since then

n-1 2
2 E(n,k,9) = -(n-1)[2.6675 + 10.6520/{(1-8) n}]; (29)

whereas, in fact, we have from (25) that

n-1 (n) 1

> Elr J3a--, (30)
k=1 k 2

for any series whatsoever of any length n> 1. [That is, (30) is

an inevitable algebraic constraint imposed by the "mean-

(n)
correcting" in the definition of r -j

For instance, given a random walk (ie ® = 0) of length

50, the average bias of (29) per lag (0 < k <n) is the

staggering -2.6675; while our two finite series approximations

are virtualy without global bias. . our second finite-series

approximation for tir} is complicated to write out in terms of

powers in k and n, sowe just demonstrate our point with the

first (less accurate) finite-series approximation, which for a

random walk is, from (12),

(n) 2 2 3 3
E = 1 - Sk/n + (6k - 1)/n - (2k - k)/n.
k,1

Then
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n-1 (n) 1 1

iit es
k=1 k,1 2 2

2n

which, when n = 50, gives an average bias of less than +.0000041

per lag.
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Review :

This book written in French by Bernard Roy and Denis Bouyssou is a comprehensive

and user-oriented synthesis of the state of the art in multicriteria decision aid (MCDA).
It is oriented towards the user of multicriteria methods and establishes an important
link between theory and practice.

The bookis structured as follows :

Chapter 1: Introduction and general concepts

This first chapter gives a summary of the underlying MCDA methodology as it is
presented in the previous book of B. Roy (Méthodologie multicritére d’aide a la décision,
Economica, 1985). Different basic concepts are defined : decision process and decision
aid, alternatives, preference modelling, criteria. The problem of the aggregation of
preferences is also introduced.

Chapter 2: Family of criteria : consistency and independence

The choice of an adequate family of criteria is a crucial step in a decision process.
The authors define minimal consistency axioms that should reasonably befulfilled by
the criteria. These lead to the definition of the notion of consistent family of criteria.

Several properties of such families are then studied and adviceare given for the selection
of the criteria. Different actual cases studies are mentioned as examples.

Chapter 3: Conflicting criteria and elementary multicriteria aggregation procedures

In this chapter, the authors emphasise the notion of conflicting criteria and its link with

the way that pairwise comparisons between actions should be made. The concordance-

discordance principle is then introduced and leads to the problem of assessing therel-

ative importance of the criteria. More generally, the important role of inter-criteria

information is analysed. The central concept of a multicriteria aggregation procedure
is then introduced : it is defined as a rule that associates to a performance table and

additional inter-criteria information a preference relation on the set of alternatives.

Several examples of elementary procedures are given (e.g. lexicographic aggregation,

concordance—discordanceprinciple, weighted sum). Finally, the problem of taking into
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account the relative importance of the criteria is more deeply discussed. In particu-

lar, the authors insist on the dependence between the aggregation procedure and the

meaning of coefficients such as weights associated to the criteria.

Chapter 4: Multicriteria aggregation procedures based on a unique synthesis criterion

The general principles of aggregation procedures that build a preference relation on
the set of alternatives based on a single synthesis criterion are first given. Different
types of procedures are then considered, depending on the kind of criterion used :

either a true criterion (e.g. additive value function) or a more sophisticated quasi- or
pseudo-criterion. A specific section is also devoted to the expected utility theory.

Chapter 5: Multicriteria aggregation procedures not based on a unique synthesis cri-
terion (e.g. ELECTRE methods)

These procedures define preference relation structures that can encompass incompa-

rability and intransitivity as in the outranking method developed by the European
MCDAschool. They are compared to those of the previous chapter and the respective

advantages of both approachesare explained. Morespecifically, the following methods

are considered : ELECTREI, IS, II, III, IV, TACTIC and PROMETHEE.The con-

cept of robustness is also introduced and discussed, as well as the properties of such

procedures and their possible axiomatization.

Chapter 6 : MCDA based on methods of the ELECTRE type

The ELECTREtype methods belong to the class of procedures described in the previ-

ous chapter. Their principles are fully described, according to their purpose : selection

problem (ELECTREI andIS), sorting (ELECTRE TRI) or ranking (ELECTREII,
III and IV ; PROMETHEEI andII)ofthe alternatives. The corresponding algorithms

are presented and useful practical as well as theoretical comments are given.

Chapter 7: Interactive methods

After analysing the American school in chapter 4 and the European one in chapters 5

and 6, the authors consider interactive MCDA methods. In this case, no aggregation

procedureis explicitly used but instead a stepwise dialogue between the decision maker
and an analyst allow to progressively issue recommendations. The problem of the
convergence of such procedures is analysed and this leads to distinguish two notions

: an algorithmic convergence and a psychological convergence. A general structure for
interactive methods is then proposed. Four specific methods are also presented. A

section is also devoted to methods such as PREFCALC,that handle ranking or sorting

problems(as opposed to the majority of interactive methods that are designed to assist

in selection problems).

Chapter 8-9-10 : Case studies

These last chapters describe three case studies:

e selection of a sorting machine (application of ELECTREIS)
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e location of a nuclear power plant (comparison of two approaches : multi-attribute
utility model and ELECTREIII)

© programming of heavy investments (comparison between ELECTREIV and an
empirical approach) Thedifferent steps of each study are well detailed : definition
of the alternatives andofthecriteria, selection of an appropriate method, analysis

of the results, ...

Three additional sections complete the book :

e a detailed listing of a hundred actual applications of MCDA methods.

e an impressive list of references (about 300 papers).

e a useful index of specific terms pertaining to MCDA.

As a conclusion, this book is an invaluable source of information for anybody involved in
or interested by multicriteria decision aid. The theoreticians will find here a summary
of the state of the art in the field, as well as a link with more practical aspects.
Potential users of MCDA methodswill gain a better understanding of how to handle
their decision problemsefficiently and to avoid commonpitfalls. The only drawback
of the book is that it is currently accessible to French-reading people only.
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