
Belgian Journal of Operations Research, Statistics and Computer Science Vol. 34 (1)

Minimization of the number of tool switches on a

flexible manufacturing machine

Jean-Pierre Follonier

Ecole Polytechnique Fédérale de Lausanne

Département de Mathématiques

1015 Lausanne, Switzerland

Abstract

In this paper we consider the problem of sequencing a set of jobs on a single

machine having a limited capacity tool magazine. Each job requires a subset

of tools for its processing. If these tools are not present in the magazine, one

or more tools must be removed and replaced by others. The problem is to find

the best job sequence such that the numberoftool switches is minimized. This

NP-hard problem has been proposed by Tang and Denardo.

In this article we propose two new heuristics. The first one is based on an

insertion method andthe second oneis an adaptation of the general tabu search

techniques. These two new heuristics are compared with the previous ones and

tested on problems ofdifferent sizes. They give better results while requiring less

computation time.

Keywords: flexible manufacturing systems, tool management, sequencing. heuristics,

tabu search

55

1. Introduction

The problem underinvestigation involves the processing of a serie of jobs that have been assigned

to a numerically-controlled machine equipped with an automatic tool interchange device. Each job

requires a specific set of tools. These tools must be placed on the limited capacity tool magazine of

the machine before the job can be processed.If the requisite tools are not on the machine magazine,

then one or more tool switches need to be performed; that is some tools must be transferred into

the tool storage area and replaced by someothers. The cost of this operation is proportional to the

number of switches. It includes retrieval from storage, transportation, loading and calibration.

The problem is to determine the processing sequenceof the jobs and the tools to switch on the

machine before each job is processed. We supposethat at the startup C tools are inserted into the

machine magazine andat the end of the job sequence, the C tools are removed. So no switches are

considered at startup and at the end.

The problem of minimizing the number of tool switches was first proposed by Tang and Denardo

(1988). Later, it was revisited by several authors; Bard (1988) formulated the problem as a

nonlinear integer program and solved it with a dual-based relaxation heuristic. Crama et al.

(1991) established basic results concerning the computational complexity of the problem and

implemented severai heuristics.

In this paper, we describe some of the heuristics developed by these people and compare their

results with those given by our two new heuristics. The first one is based on an insertion method

and the second one on the well-known tabu search technique. They both give better results than the

ones developed previously and need verylittle CPU time. Furthermore the tabu search heuristic

allows us to get an accurate estimation of the optimum solution of the problem, if we do not care

about the required amount of CPU time.

Section 2 contains a mathematical description of the problem and its possible decomposition into

two subproblems : a tooling problem and a sequencing problem. In Section 3, the heuristics used

to solve the second subproblem are presented. Section 4 reviews our computational results and

compares the efficiency of the older heuristics with the new ones. Finally, this paper ends with a

conclusion in Section 5.

2. Problem description

2.1 Mathematical formulation

Let N be the number of jobs to be processed on a single machine, and M be the numberoftools

required to process the whole set of jobs. We supposethat each tool occupies only onetool slot on

the tool magazine and that the tool magazine has exactly C tool slots. We assume that no job

requires more than C tools (otherwise the problem is unfeasible) and that there is no tool sharing

with other machines.

57

Let A be a NxM matrix where each row represents a job and each column a tool. An element of A,

aij, is equalto 1 if the processing of job i requires tool j and 0 otherwise. So Aj, the i-th row of the

matrix A, denotes the too! requirement vector of job i.

The underlying problem — we will name it the switching problem ~ is to determine the job

sequence and the corresponding tool loading that minimizes the numberof tool switches. Therefore

we introduce the following 0-1 variables. Let xj, be 1 if the job i is assigned to position n in the

sequence and xjn = 0 otherwise (i, n = 1, 2, N). Let W be a NxM matrix, where each row

represents an instant of the sequence and each column tool. An element of W, Wnj, is equal to 1 if

tool j is on the magazine at instant n, and 0 otherwise. So Wp, the n-th row of W, describes the

tools on the machine at instant n. We assume that at the startup C tools are inserted into the

magazine. Since there is no point in removing a tool from the magazine unless we haveto insert an

other one, the tool magazine contains exactly C tools at any time.

With the above notation and assumptions, the constraints and the objective function of the problem

can be expressed asfollows :

N-1 M

min DX Wnst,j (1 - Wnj) (0)
n=1 j=1

N

¥ Xin = 1 forn=1,...,N (1)

i=1
N

Yi xin 21 fori= 1, .., N (2)
n=l

Y woaj =c forn =,N (3)
int

aij Xin = Woj fori,n=1,...,N andj =1,...,M (

Xin, Wnj € {0.1} fori,n=1,..,Nandj=1,....M (5)

Constraints (1) and (2) ensure that each job is assigned to exactly one position in the sequence.

Constraint (3) fixes the number of tools in the magazine at C at any instant. Constraint (4)

guaranties that if job i requires tool j and is placed in the n-th position of the sequence, then toolj

must be in the magazine at this moment. The objective function (0) simply counts the numberof

tool switches. Tang and Denardo tried to linearize it in order to apply different standard integer

programming codes. The results they obtained were somewhat disappointing. For small problems

(N=10, M=9, C=4), the programs needed huge amounts of CPU time and did notfind the optimal

solution. So they resorted to a heuristic.

The tool switching problem can be decomposed naturally into two subproblems : the tool

replacement problem and the scheduling problem.

58

2.2 The tool replacement problem

In this case, we consider a given job sequence,i.e. xin are fixed and satisfy constraints (1) to (5).

Then the problem consists of finding the best too! replacementpolicy, that is determining which

tools are to be placed on the machine at each instant. This can be done optimally using the "Keep

Tool Needed Soonest" (KTNS) policy (see Tang and Denardo, 1988), which has the following

properties :

a) At any instant insert all the tools that are required for the current job.

b) If there are no vacant slots when tools need to be inserted on the magazine, then keep the

tools that are needed the soonest.

Here is a possible implementation of the KTNSpolicy; T(j,n) denotes the set of all instants, at or

after instant n, at which tool j is needed and L(j,n) is the first instant at or after which tool j is

needed; Lij,n) is equal to N+1 if tool j is no more used after instant n.

Step 0: Forj=1,..,M andn=1, ..., N, determine

Tn) {k : 3 i, ken, aj = 1 and xix = 1} U (N+1}

Lin) = min {m:m_e T(j,n)}

Set wij := 0 V ij

Step 1: Set wij := 1 for C values having minimal values of L(j,1)

Set n i= 2

Step 2: lfn<sN

then set Wp t= Wa-1

else STOP.

Step 3: If {L(j.n) = n} <> [Waj = 1] V j
then set n := n+1 and goto step 2.

Step 4: Find j such that Li(j,n) = n and wpj = 0; set Wj := 1 and Wax := 0 for a that

maximize L(p,n) over {p : Wnp = 1}; go to step 2.

The numberof tool switches entailed by the job sequence J, can then easily be calculated; it is equal

to the following sum :

N-1

TS(J) =
n

M

s max { 0, (Wn+1,j — Wn,j) }
=1 jal

_ 59

Theorem 1: Each KTNSpolicy minimizes the total numberof tool switches for the

tool replacement problem.

Proof : see Tang and Denardo (1988).
This theorem showsthat the tool replacement subproblem can be solved easily and quickly. Let us

just point out that the KTNS policy has complexity O(MN).

2.3 The scheduling problem

Theorem 1 indicates how to find an optimal tooling for a given job sequence. So the scheduling

problem amounts of finding the optimal job schedule, minimizing the number of tool switches,

among the N! possible sequences.

In some cases, the scheduling problem may be reduced.If the set of tools required to process a job

J2 is a subset of the tools required to process a job J (let us denote this by Ay, < Ayj,), then
processing Ja immediately after J1 entails no additional tool switches. More formally, let F(i) =

{k: k # i, Ax < Aj}. Then the jobs in F; may be processed in any order immediately after job i,

without having to load any additional tools.

The scheduling problem is NP-Hard as shown by Tang and Denardo (1988) and Cramaetal.

(1991). Therefore the use of a heuristic approach is essential. The next Section presents someof

them.

3. Heuristics for the scheduling problem

3.1 Traveling salesman heuristics

Tang and Denardo (1988) transformed the problem of finding a job schedule into a traveling

salesman problem. !n fact, each schedule can be seen as an Hamiltonian path in a complete graph G,

in which the vertices represent the N jobs. The length of an edge (i,j) denoted LB(i,j), is equal to

the smallest possible number of tool switches neededif job j is positioned immediately after job i

in the sequence, without taking into account the tooling decisions before job i or after job j.

LB(i,j) can be defined as follows :

LB(i,j) = max {0, (¥ aj - Yai ae) -(C- ¥ aix)
k=1 k=1

The first part counts the numberof tools required by job j but not by job i, and the second partis

equal to the numberof tool slots available on the machine after the processing of job i. Of course,

we have LB(i,j) = LB(j,i).

The job sequenceis obtained by determining a good Hamiltonian path in the graph G, by using one of

the two following greedy procedures:

3.1.1 Shortest Edge heuristic (SE)

This heuristic was applied by Tang and Denardo (1988). It constructs the path by choosing

sequentially the shortest edges in the graph:

Step 1: Pick the shortest arc on the graph and putit on the list £. Removethat arc from the

graph.

Step 2: \f £ consists of N-1 arcs, then go to step 5.

Step 3: Pick the shortest arc on the remaining graph and remove it from the graph.

Step 4: Check the arc picked in Step 3 with all the arcs on the list £. If that arc forms a

tree (a node with degree 3) or a cycle with some of the arcs on the list £, then go to

step 3; otherwise, add that arc to the list £ and go to step 2.

Step 5: Deduce from £ the job sequence J corresponding to the Hamiltonian path.

The complexity of the Shortest Edge heuristic is O(N2logN).

3.1.2 Farthest Insertion heuristic (Fl)

This heuristic is used to obtain an initial solution for the traveling salesman problem. The

following variation was implemented (see Golden and Stewart (1985), pg. 226) :

Step 1: Start with the partial job sequence 7 := {1}.

Let Q i= {2, 3, ..., N} be the set of jobs not sequenced yet.

Step 2: Find job k « Qand joble J such as LB(I,k) = maxj{min; LB(i,j)}, where ie 9 and

je Q Insert job k in the best position in the partial sequence J.

Q:= Q\ {k}

Step 3: If Q# @ then goto step 2.

This implementation of the Farthest Insertion heuristic has complexity O(MN‘4),

3.2 Simple Greedy heuristic (SG)

This greedy heuristic was proposed by Crama and al. (1991); the sequence J is constructed job by

job:

Step 1: Start with the partial job sequence 7 := {1}.

Let Q:= {2, 3, ..., N} be the set of jobs not sequenced yet.

Step 2: Choose i such as TS(J ® i) = min (9 ® j, j ¢ Q} where J @ j denotes the partial job

sequence J followed bythe jobj.

Ji=I@iandQ:= Q\ {i}

Step 3: \f Q#@ then go to step 2.

61

At step (b), TS(7 ® j) is evaluated by using the KTNS policy. Therefore the complexity of the

Simple Greedy heuristic is O(MN3).

3.3 Multiple-Start Greedy (MSG)

This heuristic runs N times the Simple Greedy heuristic, starting with every one of N jobs and

retains the best complete sequence found (see Crama et al. (1991)). Hence its compitexity is

O(MN4).

3.4 Best Position Insertion heuristic (BPI)

The above greedy heuristics (SG and MSG)try to complete a partial sequence by adding at the end

the job that minimizes the numberof tool switches entailed by the resulting partial job sequence.

The Best Position Insertion heuristic sorts the jobs according to a certain rule. Starting from the

partial job sequence containing only the first job, it inserts the others, one after the other, at the

best position in the sequence.

Step 1: Sort the jobs by weight decreasing order : cy > C2 2... 2 CN

Step 2: J := {1} and Q := {2, 3, ..., N}

Step 3: For i:=2 to N do

Choosethe best sequence $ amongthefollowing ones:

{ (i,1,2,...,1-1), (1,1,2,...,1-1), (1,2,1,3,...,1-1), ...
(1,2,...,1-1,1) }

J:= Sand Q:= Q\ {i}

Different weight functions were experimented :

1) cj := uniform(0,1), i.e. the jobs are ordered randomly.

2) cj := numberof tools required to processjobi

3) cj := ~ (number of tools required to processjob i)

4) eachtool j receives a weight ej equalto the number of jobs requiring it and the weight of

a jobivis obtained by summing the weights of the tools it requires :

oie Say gj = Yay De
j=1 jst

These weight functions were experimented on different problem instances which are described in

Section 4. The average numberof too! switches of ten instances are presented in Table 1. The best

results are given by the second and the forth weight functions. Finally the second function was

selected becauseit gives the best results and is the simplest one. So the Best Position Insertion

heuristic inserts the jobs into the partial sequence starting with those requiring the most tools.

These jobs have to be treated carefully since they are likely to lead to large increase in the number

of to too! switches. The complexity of the Best Position Insertion heuristic is O(MN°)like the

Simple Greedy one.

62

Weight Problem 1 Problem 2 Problem 3 Problem 4

function (10,10) (15,20) (30,40) (60,90)

1 7 16 78 184

2 7 15 72 177

3 8 17 83 192

4 7 15 73 177

Table 1: Comparison of the results obtained by BPI

with different weight functions

3.5 Tabu Search heuristic (Tabu)

3.5.1 Sketch of tabu search techniques

Tabu search techniques are mainly used to solve combinatorial optimization problems. These

methods suggested by Glover (1989, 1990) can be sketched asfollows :

Starting from an initial feasible solution, at each step we choose a move to a

neighboring solution in such a way that we move towards a solution giving hopefully

the optimum value of some objective function f.

For this purpose, each solution is represented by a point in some space and we define a

neighborhood N(s) of each point s (s ¢ N(s)). The basic step of the procedure consists in starting

from a feasible point s, generating a subset V* of N(s) and then moving to a neighbor s* in V’,

usually to the one that optimizes f(s) over V*.

Up to this point, this is close to a local improvement technique except the fact that a moveto a

solution s* worse than the current solution s may be accepted.

Theinteresting feature of the tabu search technique is the tabu status that can be given to certain

moves in order to rule them out. The objective of this status is to exclude moves which would bring

the algorithm back where it was at some previous iteration and keep it trapped in a local

minimum. So at each move ss’, the opposite move s*—s is declared tabu; this status is

attributed only for tabulength iterations to avoid cycling to some extent. However it may also act

too violently and prevent us from including in V* solutions which were not visited earlier.

Therefore, for relaxing the action of the tabu status, an aspiration function A_ is introduced : a

solution s’in N(s) which would be forbidden because of the tabu status can nevertheless be

included into V*°if it is associated with a threshold value (given by A) that is greater than f(s’).

In conclusion, the basic step consists in moving from a point s to the best non tabu neighbor s*. At

each step the best solution s* found is stored and updated; so are the tabu status and the aspiration

function A.

A stopping rule must also be defined : in general, we may give a number nbmax limiting the

number of consecutive iterations which can be performed without providing any improvementof

the best value of the objective function. An estimation fof the minimum vaiue of the objective

63

function f can also be used. As soon asthe solution is close enough to f’ or nbmax steps without

improvement have been performed, ihe whole procedure stops.

Tabu search techniques have been applied successfully to solve many different problems such as

graph coloring (Hertz, 1987; Dubois, 1992), timetabling (Costa, 1990, Hertz, 1992) or tool

management (Follonier, 1992).

3.5.2 Tabu search for the switching problem

Weused the following implementation of the tabu search techniques. A solution is any permutation

of the N jobs. The neighborhoodis the set of all permutations that can be performed by moving a

job chosen randomly from its position to an other one in the sequence. So the size of V* is equal to

N-1. The objective function simply counts the number of tool switches entailed by the job

sequence (= TS(J)). Following our experiments, the parameter tabulength does not seem to have a

revealing influence on the behavior of the tabu search; due to our definition of a move, the

probability of cycling is minuscule also when tabulength is set to 0. Therefore after many

experiments we set arbitrarily the length of the tabulist to 4.

In order to reduce the computational time of the method, the examination of the neighborhoodis

stopped as soon as wefind a move improving the current value of the objective function. We also

end the search as soon as the CPUtime usedis equal to the maximum of 2 seconds and the CPU time

required by the MSG heuristic. This allows to evaluate the performance of the tabu search

heuristic according to the CPU time it required.

Two different initial solutions were compared. First, the tabu search started from the solution

proposed by the Best Position Insertion heuristic, and then from five randomly generated job

sequences.

3.6 Improvement strategies

Once a job schedule is found, it is sometimes possible to obtain a better schedule, by altering it

slightly. For example, Tang and Denardo (1988) enumerated explicitly the set of the perturbed

job sequences of the best schedule obtained so far in order to find a better one; a perturbed

sequence of a job sequence J is defined as a job sequence Qwhich can be performed by the same

sequenceoftools that is used to processthe job J, that is W(). Applying the KTNS policy to the job

sequence Qmay reduce the numberoftool switches.

Crama et al. (1991) have tested another strategy : the 2-Opt strategy. Starting from a job

sequence J, the idea is to produce a better sequence J’ by exchangingthe positions of two jobs in J.

This can be repeated until no improving exchange is possible :

Step 1: Find two jobs i and j whose exchange results in an improved sequence; if there are

no such jobs, then STOP,else go to step 2.

Step 2: Exchangejobs i and j and goto step 1.

Other improvements strategies are described in Cramaet al. (1991).

4. Computational experiments

The various tests have been made on a Silicon Graphics Iris Workstation (33 Mhz). Different

problem instances were generated as proposed by Cramaetal. (1991).

4.1 Generation of problem instances

The input data for the tool switching problem is :

- the number of jobs (N)

- the numberof tools (M)

— the capacity of the tool magazine (C)
~— the NxM job-tool matrix (A)

Given N,M and C, the number of tools required by a job is set randomly to an integer value

belonging to the interval [t;, to]. Matrices A are generated in the following way : for each job i, an

integer tj was drawn from the uniform distribution over (t1, ta]; this number denotes the number

of tools needed for processing job i, i.e. the number of 1’s in the i-th row of A. Next, a set Tj oftj

distinct integers are drawn over [1,M]. These integers denote the tools required by job i, i.e. aij =

1 if and only if j is in Tj. This process for generating the i-th line of A was repeated until we had

Tj ¢ Tk and Tk ¢ Tj for all k < i. So the scheduling problem cannot be reduced (see Section 2.3).

Five problems were created, using the following parameters, and for each of them 10 matrices A

were generated randomly :

Problem id N M v4 t2

Pb 1 (10,10) 10 10 2 4

Pb 2 (15,20) 15 20 2

Pb 3 (30,40) 30 40 5 15

Pb 4 (40,60) 40 60 7 20

Pb 5 (60,90) 60 90 10 25

Table 2: Size of the generated problems

For each problem size, four different capacities were used, and for each of them 10 matrices A

were generated randomly :

Problem id Cy Co Cy C4

Pb 1 (10,10) 4 5 6 7
Pb 2 (15,20) 6 8 10 12
Pb 3 (30,40) 15 17 20 25

Pb 4 (40,60) 20 22 25 30

Pb 5 (60,90) 25 27 30 37

Table 3: Capacities of the tool magazines

4.2 Detailed results

Becauseit is impossible to compute the optimal solution of the problem in a reasonable amountof

time, we measure the performance of a heuristic as the relative difference in percent between the

objective function given by the heuristic and the best value found during ail our experiments. If we

note F,,(I) the value of the objective function given by the heuristic H applied to the problem

instance |, Fggs,(l) the minimum objective function known for the problem instance I, then the

performance of the heuristic H can be defined by the ratio :

_ Fu) ~ Feast(!) .

Ant Foes(I) 100

In order to have Fags;(l) as close as possible to the value of the optimal solution of the problem, we

ran the tabu search heuristic 5 times, starting from different random job sequences, and set

Fees(!) to the minimal value obtained; the heuristic was stopped after it has performed nbmax

iterations without any improvement of the best value of the objective function, where nbmax was

set respectively to 800, 1200, 1400, 1600 and 2800 for the five problems.

In the following tables, each line corresponds to a heuristic :

- Shortest Edge (SE) : with Tang and Denardo's improvementstrategy.

~- Farthest Insertion (Fl)

— Simple Greedy (SG)

~- Multiple-Start Greedy (MSG)

— Best Position Insertion (BPI)

- Tabu Search (BPI) : the sequence found by BPIis used as initial solution.

- Tabu Search (Random) the initial solution is choosen randomly and the values are

averages over 5 runs.

The given values are averages of A,,(I) over the ten instances generated for each size of the

problem. The CPU time is the one used to solve the problem with the smailest capacity of the tool
magazine. It gets smaller as the capacity grows except for the Shortest Edge heuristic (see remark

below). For example, the Multiple-Start Greedy heuristic solves problem Pb 4 (40x60) in 85.0

seconds when the capacity is 20, and in 75.9 seconds when the capacity is set to 30. Mean Fag,,(!)
gives an indication of the numberof tool switches required to process the jobs.

As Tang and Denardo's improvement strategy is a complete enumeration of the perturbed job

sequences, the CPU time required by the Shortest Edge heuristic can be huge; this is particularly

the case when the tool magazine capacity is large. Therefore, we did not run SE with the tool

magazine capacity set to C3 or C4.

Capacity of the tool magazine CPU time

Heuristic 4 5 6 7 (seconds)

Shortest Edge 66.9 64.3 < 0.1

Farthest Insertion 16.4 21.4 35.0 36.7 < 0.1

Simple Greedy 17.4 29.3 43.5 40.0 < 0.1

Multiple-Start Greedy 4.2 6.2 2.5 0.0 0.1

Bes1 Position Insertion 16.5 10.7 32.5 23.3 < 0.1

Tabu Search (BPI) 0.0 0.0 0.0 0.0 2.0

Tabu Search (Random) 0.0 0.0 0.0 0.0 2.0

Mean Fagey(I) 9.9 6.7 4.3 3.0 |

Table 4 : Problem 1 (10x10)

Capacity of the tool magazine CPUtime

Heuristic 6 8 10 12 (seconds)

Shortest Edge 61.0 57.3 < 0.1

Farthest Insertion 28.5 23.5 17.0 10.0 0.1

Simple Greedy 22.5 23.1 25.0 12.5 < 0.1

Multiple-Start Greedy 8.8 10.6 6.0 0.0 0.5

Best Position Insertion 18.6 16.2 16.0 10.0 0.1

Tabu Search (BPI) 3.8 4.6 1.0 0.0 2.0

Tabu Search (Random) 1.2 1.5 0.0 0.0 2.0

Mean Fpest(!) [17.9 13.1 10.0 8.0 |

Table 5 : Problem 2 (15x20)

Capacity of the tool magazine CPU time

Heuristic 15 17 20 25 (seconds)

Shortest Edge 56.7 $9.5 < 0.1

Farthest Insertion 6.9 16.6 24.5 32.5 1.2

Simple Greedy 20.6 23.4 29.3 35.7 0.5

Multiple-Start Greedy 13.1 15.1 17.7 22.1 16.0

Best Position Insertion 3.7 8.6 15.1 31.8 1.3

Tabu Search (BP!) 2.9 6.1 9.0 11.8 16.0

Tabu Search (Random) 5.8 8.0 8.6 13.3 16.0

Mean Faeg(!) { 88.8 67.3 46.9 24.7 |

Table 6 : Problem 3 (30x40)

67

Capacity of the tool magazine CPU time

Heuristic 20 22 25 30 (seconds)

Shortest Edge 40.0 48.2 0.1

Farthest Insertion 5.3 8.7 12.6 20.1 4.7

Simple Greedy 11.3 13.2 16.5 21.0 2.1

Multiple-Start Greedy 6.5 7.6 8.9 12.9 84.8

Best Position Insertion 1.4 3.4 8.2 14.4 §.2

Tabu Search (BPI) 1.3 2.7 4.4 8.9 84.8

Tabu Search (Random) 3.6 4.7 5.3 7.0 84.8

Mean Feet!) 205.2 172.2 135.6 92.6|

Table 7 : Problem 4 (40x60)

Capacity of the tool magazine CPU time

Heuristic 20 22 25 30 (seconds)

Shortest Edge 4.9 6.6 74.7

Farthest Insertion 2.3 6.1 7.9 13.6 21.2

Simple Greedy 4.0 8.0 10.9 14.5 43.0

Multiple-Start Greedy 4.2 4.9 7.4 9.7 114.6

Best Position Insertion 1.1 2.4 6.9 11.6 15.1

Tabu Search (BPI) 0.8 1.6 3.7 6.7 130.7

Tabu Search (Random) 1.2 2.5 3.9 6.1 137.3

Mean Faegi(!) 205.2 172.2 135.6 92.6|

Table 8 : Problem 4 (40x60) with Global-2-Opt
improvement strategy

Capacity of the tool magazine CPU time

Heuristic 25 27 30 37 (seconds)

Shortest Edge 36.0 38.9 34.7

Farthest Insertion 3.8 4.7 7.5 13.4 26.2

Simple Greedy 8.8 9.0 9.9 14.6 11.6

Multiple-Start Greedy 5.5 6.1 6.7 8.5 701.2

Best Position Insertion 0.8 1.8 3.9 10.2 28.8

Tabu Search (BPI) 0.7 1.0 2.5 3.4 701.2

Tabu Search (Random) 2.8 3.0 3.3 3.8 701.2

Mean F geg,(I)

435.5 390.7 335.0 240.0 |

Table 9 : Problem 5 (60x90)

68

First of all we can see that there are great differences between the solutions obtained for the small

problems (1 and 2) and those obtained by the others.

The bigger the size of the problem is, the smaller the difference between the performances of the

heuristic is. This can be seen in Figure 1, where the capacities were set to their smallest values.

The mostdifficult problem seems to be the second one. We can also see that the Best Position and

the Farthest Insertion heuristics behave badly when they are applied to small problems (Pb 1 or

Pb 2), but their performance increases with the size of the problem.

The use of Global-2-Opt improvement strategy (see Table 7 and 8) can improve considerably the

quality of the solution but it requires a huge amount of CPU time. This is the case for the “bad”

heuristics Shortest Edge and Simple Greedy. It seems to beinteresting to use this improvement

strategy Combined with Best Position Insertion especially when the tool magazine capacity is large.

Wecan also seethat it is worth to start the Tabu Search with the solution of BPI especially when

the problem has a large size and when the tool magazine capacity is rather small.

30.0

——m-—- Fl
z 20.0

8 —O-— 8G

5 ——¢—~ MSG

« —-_>-— BPI
® 10.0

——~&——_ Tabu (BPI)

0.0 « + + + ;

Pb1 Pb2 Pb3 Pb4 PbS

Problems

Figure 1 : Performance of the heuristics on the five problems

with the smallest capacities (C1)

Contrary to the observations of Crama et al., we can see that A,,(I) grows for all heuristics when

the capacity of the tool magazine is increased. This is shown in Figure 2 for problem 4 (40x60).

This conclusion can be drawn because we have obtained a better estimation of the optimal value of

the problem due to the use of the tabu search techniques. Of course the behaviour of the different

heuristics is not the same : MSG seemsto be morestable than the other heuristics.

69

15.0

~——/—- FI

3 10.0 a SG

$ ——+— MSG
2
Zz 5.0 —_—o— BPI

———&—— Tabu (BP!)

0.0 + 4
C1 C2 c3 C4

Capacity of the tool magazine

Figure 2 : Performance of the heuristics on problem 4 (40x60)
according to the capacity of the tool magazine

When wetake into account the required CPU time, the conclusions are totally different. Simple

Greedy is a very fast heuristic, but it gives rather poor results. On the contrary, BPI gives

rapidly very good solutions except for small problems. Tabu Search is very efficient but it

requires more CPU time. As we stoppedthis heuristic as soon as the elapsed CPU time was equalto

the CPU time required by MSG, Tabu Search (BPI) could not improve significantly the solution

given by BPI and Tabu Search (Random) wastes time becausetheinitial solutions are too far from

the optimal one.

30.0

x ——s— Fl

8 20.0 —t—__ 8G

& ——+— MSG

£ 10.0 ——>—— BP!5 10.

8 ——’—— Tabu (BPI)

0.0

Pb1 Pb2 Pb3 Pb4 Pb5

Problems

Figure 3 : CPU time required by the heuristics on the five problems

70

5. Conclusion

In this paper we have given an overview of the problem of minimizing the numberof tool switches

on a flexible manufacturing machine and have presented two new heuristics : the Best Position

Insertion heuristic and a tabu search heuristic. They turn out to be efficient. BP! is a very fast

insertion method which gives better results than the existing algorithms especially when the

problems are of medium or large size (more than 20 jobs) and the tool magazine capacity rather

small. On the contrary, tabu search is slower but gives the best results. A lot of CPU time can be

saved if the search is started from a goodinitial solution.

The modelpresentedis limited to the situation where jobs are to be scheduled on a single machine.

It should be interesting to consider the case where more than only one machine are involved and

where the tools have to be shared by the machines. A new tool managementstrategy should be

determined since the Keep Tool Needed Soonest policy is no more optimal.

Acknowledgements

The author would like to thank Dr Alain Hertz and Daniel Costa for valuable comments about

earlier versions of the paper and Prof. D. de Werra who offered him the opportunity of doing this

research.

References

Bard J.F., “A heuristic for minimizing the number of tool switches on a flexible machine", HE

Transactions, vol 20, 1988, pp 382-391.

Costa D., "A Tabu Search Algorithm for computing an operational timetable", ORWP 90/19, DMA-

EPFL, Lausanne, Switzerland,1990. To appear in EJOR.

Crama Y., Kolen A.W.J., Oerlemans A.G., Spieksma F.C.R., “Minimizing the numberof tool switches

on a flexible machine”,.Research Memorandum 91-010, University of Limburg, Maastricht,

The Netherland, 1991.

Dubois N., "EPCOT : an efficient procedure for coloring optimally with tabu search”. To appearin

Computers & Mathematics with Applications, 1992.

Follonier J.-P., “On grouping parts and tools and balancing the workload on a flexible

manufacturing system", ORWP 92-05, DMA-EPFL, Lausanne, Switzerland, 1992.

Glover F., "Tabu Search-Part |", ORSA Journal on Computing, vol 1(3), 1989, pp 190-206.

Glover F., “Tabu Search-Part tI", ORSA Journal on Computing, vol 2(1), 1990, pp 4-32.

71

Golden 8.L., Stewart W.R., “Empirical analysis of heuristics", in The traveling salesman problem,

E.L. Lawler & al. (eds), John Wiley, 1985, pp 207-249.

Hertz A., de Werra D., "Using tabu search for graph coloring", Computing, vol 39, 1987,

pp 345-351.

Hertz A., “Tabu search for large scale timetabling problems", European Journal of Operational

Research, vol 54, 1992, pp 39-47.

Tang C.S., Denardo E.V., "Models arising from a flexible manufacturing machine, Part |:

Minimization of the number of tool switches", Operations Research, vol 36, no 5, 1988,

pp 778-784.

72

