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1, Introduction

Production models have been designed for planning and control purposes

in a production system. Despite the obvious difference in meaning of the

words “planning” and "control", a good deal of confusion has arisen about

their use in production. We will regard production planning as dealing en-

tirely with pre-production activities (e.g. demand forecasting, planning of

eggregate production, etc...). Production control we consider to be essen-

tially a during-production activity, i.e. an activity to ensure that products

are manufactured according to the previously determined production plan (e.g.

recording job progress, modification of original targets, etc...).

Although production models have mainly been presented as pre-production

devices, one should keep in mind - especially during the design phase - that

planning and control are only components of the same overall problem.

Production models may be built for different types of production systems.

Generally one distinguishes :

- large scale, one-time systems or project systems

- continuous or flow-shop systems

- intermittent or job-shop systems.

The objective function of a production model will be a cost minimization

function, the specific terms of which depend on the planning horizon. Generally

one distinguishes three planning levels, namely

a) long range planning, which involves the major adjustments of plant capacity

to match projected demands;

b) medium range planning or aggregate planning, which include hiring, firing

and overtime decisions;

c) detailed scheduling, including machine-worker assignments and sequencing

decisions.

1) Toespraak gegeven ten gelegenheid van de Ronde Tafel ingericht door de
Sogesci over "Volgordeproblemen in de productie-Planning van Werkschema's”
op S en 6 juni 1974. Zie ook Vol.14, Nr4.
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Clearly long range, medium range and short range scheduling problems

are only components of the same overall production Planning problem. However,

the most standard strategy for solving large and complex problems has always

been to break it down into smaller parts which are more manageable. As a con-

sequence, the independent problems of long range, medium range and short range

Planning have achieved as such some measure of acceptance by the business com-

munity.

The Aggregate Planning ProbLem

We will mainly direct our attention to the medium range (or aggregate)

Planning problem, the objective of which is to ensure smooth production, and

to avoid unnecessary fluctuations in the size of workforce, overtime, etc...

Aggregate planning is concerned with the setting of production rates and work-

force levels and, hence, the determination of the finished inventory levels

end overtime or sub-contracting requirements necessary to satisfy a given

(fluctuating) demand pattern.

The following costs are important ;

1. production costs : the cost of production of a particular item at a given
rate

2. stockholding costs

3. costs associated to changes in production rates (capacity costs)

4. shortage costs.

It is easy to understand why aggregate planning attracted so much atten-

tion. Medium term decisions determine the operating conditions, or framework,

within which the short range decisions are made. Short term models typically

consider the assignment of, or rather the sequencing of, jobs on machines. Typi-

cally in a job shop these two models are available. The detailed model is gene-

rally computationally too costly to be used alone and unguided for the period by
period production and workforce decisions of intermediate planning. Conversely,

the computational cost of making aggregate decisions is generally low. But the

aggregate model, because it suppresses so much detail, cannot take detail ac=

count of the period by period conditions.

If computation were sufficiently cheap and fast, a decision maker could

evaluate all interesting sets of production level - workforce decision, over

the decision horizon, and select the best solution. As an example, let us

consider an aggregate decision maker who has to determine two decision varia-

bles over a 10-period horizon. Suppose moreover that each of these 20 (2 x 10)



variables is restricted to 10 possible discrete values. A complete enumeration

will require the evaluation of we possible solutions. Suppose that a computer

requires on the average Tue seconds to make one evaluation of the objective

928 . iol”

seconds. This compares to the average human life-span of 2,2 x 10° seconds.

function. At this speed, total enumeration would require 103 o

As a consequence, a wealth of models has been presented in the aggregate-

planning literature. A summary of these different approaches is given in (4).

This paper is limited to the examination of analytic models.

The Linear Decision Ruke

3.1. The HMMS-Modek

The Linear Decision Rule (LOR) was developed by Holt, Modigliani, Muth

and Simon as a means of making aggregate employment and production rate deci-

sions, and the model was first tested in a paint factory (12). The LOR is based

on the development of a quadratic cost function with cost components made up

to regular payroll, hiring, layoff, overtime, inventory holding, back ordering

and machine setup costs. The quadratic cost function if then used to derive

two linear decision rules for setting work force levels and production rate

for the upcoming period based on a forecast of aggregate sales for 12 periods

(months) ahead. We will summarize the structure of the model.

Let be

= planning horizon of T periods (t = 1... T)

= demand forecast, period t

= size of workforce, period t

= inventory on hand-backorders, end of period t
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= production level, period t

An optimal (Phe Wo) policy has to be determined. It is clear that fluc-

tuations in demand can be met by continuously adjusting production (P. = S,)-

Such a policy clearly results in important workforce adjustments which are

not desirable per se (hiring + firing cost, poor worker morale, low efficiency).

On the other hand, maintaining a constant workforce results in considerable

inventory costs.

The structure of the cost function, period t, as tested by HMMS is given

by following terms :

- regular payroll costs = cw, (32)

- hiring + firing costs = cy (Ww, a Wy i? (3.2)

- - 2 iovertime costs = c, (Py CW.) + COPE Cow (3.3)



_ = 2inventory costs = C. a, C, c,S,) (3.4)7 8

We then obtain the following problem formulation :

Af

Minimize £ c. (3.5)
tel

subject to the inventory constraints

Ty HP, Shea, FED eT (3.6)

and P, 2 0, W, 2 0 (3.7)
where

C= CW + CW, - Ww )% + cP - cw)?te Ey COIN, Mi ae CaM

2+ CP, - Call, + C)(1,

-

Cy

-

CoS, (3.8)

The constrained optimization problem (3.5) - (3.7) may be solved by

the Lagrangian technique, which yields the following objective function

T T
Ge = CG # B & Uh, oh +P, 289 (3.9)ea © yey Eek Se” TR Pe

where Lae are Lagrangian multipliers.

Differentiation of (3.9) partially with respect to the unknown variables

yields a system of LOR'’s of following type

teT
Pe fs aS, + hyWtk 7 Ky Thy (3.10)

t+T
Wet : BS, # kyileng tf Ky * Re Tey (3.11)

where the a’s, 8's and k's are coefficients which take on particular values

for specific industrial situations, remaining fairly stable as long as rea-

sonably similar circumstances prevail. Equations (3.10) and (3.11) would be

used at the beginning of each period (month). Both equations are extremely

easy to compute. They involve a weighted forecast of sales as well as beginning

workforce and inventory levels (start of period t = end of period t-1).

3.2. Comments

The HMMS-model has achieved considerable prominence in the literature.

Nevertheless it has not been extensively adopted in industry for different

reasons ;



i) the difficulty of estimating cost factors (especially with quadratic

assumptions which do not always apply)

ii) the homogeneous workforce

iii) the need to express all jobs in aggregate figures, using standard

processing hours

iv) the hypothesis that production can be started and completed in the

same period.

Clearly, different results will be obtained depending upon how we set

the planning horizon T, and how often we compute the coefficiants a, and Bye

It is obvious that the ability to predict deteriorates when T is too long.

Therefore, proper validation of the model is needed.

3.3. Extensions of the LOR

A) The following important property was given by Simon (19) : If demand

ts stochastic, and tf the objective is to minimize expected cost over the

planning horizon, and tf the costs are, in fact, quadratic, then the LDR ts

optimal.

B) Sypkens (20) developed an extension of the LOR which includes plant

capacity as a decision variable in addition to W and P. There are some instan-

ces where fundamental physical capacity adjustments can also be made (cfr. 2

parallel production units, each able to perform the operations). A model si-

milar to the HMMS-model was developed and three LOR's were obtained (with res-

pect to P, W and C).

C) Chang and Jones (6) generalized the LDR methodology in a multiproduct

environment where production cannot be started and completed in the same pe-

riod. They introduce a labor distribution matrix Date which specifies the

fraction of total labor effect required for product j in period t. The model

provides for following costs : hiring, lay-off, payroll, idle time, overtime

and inventory. The costs are also assumed to be quadratic thereby permitting

the model to be solved using differential calculus combined with a library

computer program which solves simultaneous linear equations. A disaggregated

print-out (per product) is obtained.

The Linear Programming Model

4.1. The Modee

Different LP-approaches have been presented in the literature in order

to solve the medium term planning problem (11). The main advantages of such



models over the HMMS model are :

(a) they don’t require the assumption of quadratic costs

(b) they are much simplier to construct and to manipulate

(c) we have the powerful LP-theory to our disposal

(d) disaggregation of the variables is relatively easy.

Let following symbols be defined :

T = planning horizon

Ss = demand forecast, period t

We = size of workforce, period t

8 = increase in workforce, period t

8 = decrease in workforce, period t

+
= hiring cost

= firing cost

= inventory on hand-backorders, at the end of period t

+

= actual hours of regular time production, period t

¢

= regular capacity available per employee, period t

+

cost of regular time production per hour

= actual hours of overtime production, period t

+

= overtime capacity available per employee, period t

= cost of overtime production per hour
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= inventory holding cost.

The objective function to be minimized is total cost. Here such cost is

treated as being reasonably well represented by a linear function consisting

of some combination of payroll, hiring, lay-off, overtime and inventory costs.

Constraints are set on the availability of regular and overtime production

capacity, the amount of capacity that can be added or removed, and restrictions

on inventories that are in line with meeting demand. Standard units are required

to achieve comparability of inputs and outputs in aggregation. The standard

unit will be given in terms of manhours required. A description of the con-

straints and objective function is given below :

Regular production constraint

xe < AL . We for allt =1...T (4.1)

Overtime production constraint

W. for allt=1...T (4.2)Ye SB wy



Inventory constraint

Let I, be the starting inventory level.

Then it follows

i * i, + x) + any = Ss) » and
T

Ie+%y +, - 8, "15+ (X) +X) + (+ Y,) - (S) + S,)

. t t t

i, . i +2 X +2 % = 2% Sy for all t (4.3)
1 a i

Capacity ehange constraints

¥ -
We es Wey = 5 7 & for allt =1...T (4.4)

Recall that any number (+ or -) can be represented as the difference between

two non-negative numbers (sr and by). In the general case (W. ) can
ts” Mea

be represented by an infinite number of different values of 8 and 5, by

simply adding the same constant to both. It is clear however that, with res-

pect to our objective function, the optimum program will not contain both

variables at a positive level.

Non-negativity constraints

4 oo
Xe Yee Sy See Ty Ww 20 forallt=l1...T7 (4.5)

We now formulate the objective function. Let Cc. be the cost in period t.

We then obtain :

CL co 6 4c 8 + aX, + bY, + he476 8 te 8 aX, Ye . t (4.6)

where 8 ’ 5 , x ’ % . I, and We are unknown variables to be determined

according to following objective

uf
Minimize C = £ C. (4.7)

tea ¢

Equations (4.1) - (4.7) determine a straightforward LP for which algo-

rithms are available. Since the number of employees is integral, we can res-

trict the solution to integer values of Wee 5 and 8, + The resultant would

be a mixed integer linear program (MILP). Generally, this restriction is un-

necessary because the lack of accuracy of the data we are using renders such

a refinement meaningless. Moreover, computerprograms for solving large MILP's

are less well developed then for solving simple LP's. Generally one uses ap-

propriate rounding techniques after having obtained the LP solution.



Some simplification of the above model is possible by simply substituting

equation (4.3) in (4.6) and (4.7).

We then obtain :

T + + =
MinC= £ {c 6. +e 6, * aX + bY.

tel t it

t
th ly %, + Ye = 8) + i, i} (4.8)

subject to

XS AL Wy (4.1)

Yee BL «We (4.2)
< -

We 7 Wey * 84 7 8 (4.4)
t

q, + : ™, + % im 8) 20 (4.9)

ws ok
Xe Yer Sy 54 and We 20 (4.10)

The above constraints apply to all t = 1... T. The size of the resulting
LP is rather modest : we have 4T constraints in 5T original variables.

4.2. Extensions

The above model can be enriched in several ways to take into account

other managerial restrictions or to incorporate other cost factors. We limit

Gurselves to a few such examples :

A) Let e be the cost of idle time (per hour). Writing equation (4.1) in

standard form yields

x s AL . W, + Sit =O (4.11)

where the slackvariable Sit represents the amount of idle time. The objective

function has to be completed with a term e.f Sit q

B) Any restrictions on the number of employees hired or laid off can

@asily be incorporated :

+
a sa, Wey fort=#1...7 (4.12)

5 € 8 Wea fort) #1, wee T (4.13)

where a, and 8. are given.

It is clear that even the timing of hiring and firing can be influenced by

constraints of the above type.



C) A limitation of overtime - as a function of regular time e.g. - can

easily be included :

YeSyg 0% forts1...7 (4.14)

where Yt is given.

0) Different types of overtime can be included. Suppose e.g. that per

unit overtime cost is b) for Og ‘ < Bi We whereas overtime cost becomes b,

above the BY . W, Limit.
In this cas the variable % is simply disaggregated through following proce-

dure :

i,Von ME ove (4.15)

where 0g Yi g et. wey 8 BW,
and where (b) . Ye » by a replaces b Y in the objective function.

Note that this transformation yields the possibility of introducing the fact

that "a small change does not cost as much as a large one” (cfr. HMMS-Model !)

4.3. The Disaggregated Mode

For simplicity of exposition, the above LP model was presented as to

optimize aggregate production, inventory and workforce. It is obvious however

that the LP model offers a high degree of freedom with respect to disaggrega-

tion. In particular, we can optimize the objective function, taking into account

the individual requirements of N products or groups of products.

+
Let us redefine the variables Xser Yat? Sy ue 55 t and Wye to represent

their respective quantities relative to product j = 1 «+. Ne The problem then

becomes :

N oT

Minimize C= E 5 Cy. (4.16)
jel tar J

where

c,, cr b+ 0, 8. tax, + bY4b SY ast” SG deb” SE at Gat
t

¥ 7 .+ hy Le Xe + gat 85,4) + Ty) (4.17)

subject to

Xy¢ < Aye . Wot (4.18)

Ysot € By . wie (4.19)



W.-W 8, - 6; (4.20)jot jet-1 j.t get

t
Th,0 * 7 Xt + ‘oct 7 She 2 0 (4.21)

+ a
Xt / ‘St / 8 yt 7 55% / Ws ve 20 (4.22)

Constraints (4.18) - (4.22) apply to all periods t = 1... T and to all pro-

ducts js1...N

The size of the program is necessarily expanded to 4NT constraints in

SNT original variables.

A further disaggregation of the LP model (over labor classes and machine

groups) was used by Shwimer (17).

4.4. Comments

The LP-formulation given above is clearly an extremely powerful model

for smoothing of production, workforce and inventory. The powerful techniques

and results of linear programming are made available to the analyst and the

manager. Standard computer packages are available. As a result, one might ques-

tion the utility of the HMMS-model.

The Distribution Modek

5.1. The Modek

Bowman (3) proposed a “distribution” or "transportation" formulation of

the aggregate planning problem. Let therefore be

T = decision horizon

S. = sales forecast, period t

I, = stocklevel at end of period t

R = regular time production capacity, period t

Oo. = overtime production capacity, period t.

The sales demand during each time period may be met from one of the fol-

lowing sources : stock, regular production or overtime production. This idea

yields a transportation formulation, where goods available in certain sources,

are to be shipped to certain destinations.

The associated costs are :

c. = per unit production cost on regular time

c, = per unit production cost on overtime

c, = per unit storage cost (per period).
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We might further assume that items produced during period t are not

available to the customer until period (t+1). Consequently, some initial

stock must be available to satisfy demand for salesperiod 1. We can now re-

present the transportation matrix as follows (for the sake of easy illustra-

tion we took T = 4)

 

 

 

   

Produc- Sales Period Final Total

tion stock capacity

Period 1 2 3 4

QO Opening stock 0 c 2c, 3c acy qT,

Regular prod. = Cc. Coe) C420) Co+3c R)

1
Qvertime prod. > Cc, cist) Ci+2c) Cot3C) 0,

Regular prod. - a ce. al Cyt2c, RS

2
Overtime prod. “7 ” Cc, Ci+C) Cr2cy oO,

Regular prod. = = - c ciety Ry

3
Overtime prod. = oa = ey city wr

Total demand during period Ss) Sy S83 Sq       
 

Obviously, it is not necessary that the costs Cae e, and cc should be

the same for each period.

5.2. The Multi-Product Modek

The distribution method can easily be extended to cover production plan-

ning for two or more products merely by constructing two or more columns for

each of the sales periods and for the final stock. A condition however is that

common units can be established for all products to express sales, and produc-

tion and storage costs.

5.3. Comments

The distribution method does not account for capacity change costs. Also,

the program results are not all in the most desired form, for one must figure

the number of workers to be hired or laid-off. Moreover all costs are assumed

to be linear.

ll



Major advantages of the distribution method are :

~ the availability of good computer packages

- the flextbility of the model with respect to extensions (different products,
subcontracting, cost modifications, etc ...)

- the program results relate directly to the obvious factors of the problem.

Conckusion and Future Trends

Analytical methods of production planning form the basis for continued
development of newer methods. These models will continue to provide a standard

for comparing the effectiveness of new approaches to the problem, simply be-

cause these methods provide optimum solutions to specific test situations. The

difficulties with analytical methods are in the requirements that cost and/or

revenue functions must be expressed as either quadratic or linear relationships,
thus limiting the realism which can be incorporated in the model. This is the
reason why heuristic methods (cfr. (2), (13) and @2)) will continue to be ex-
tensively examined. Says Buffa (4) : "We face the tradeoff between the destra-
bility of obtaining a known optimum solution to a relatively simplified model
versus obtaining a near optimun solution to a richer, more realistic model."

It should be mentioned here that very recently succesful results have

been obtained by different people in trying to coordinate medium term and
short term planning objectives, e.g. :

~ Newson (15) has dealt with a linear programming aggregate model and a
Wagner-Within (23) type detail model in looking at the capacitated lotsize
problem. He found that iteration between these two models could improve the
overall results.

- Green (10) has dealt with a HMMS-type aggregate model and a relatively
simple job-shop simulation at the detailed level. The detail model is guided

by the aggregate model and used to evaluate conditions for this model. The
coupling of both models is an attempt to enable the aggregate model to use
exogeneous information. Green found that feedback from the detail model, in
particular regarding a specific productivity parameter in the aggregate objec-
tive function, was helpfull in improving the overall shop performance.

- Shwimmer (17) has further corroborated the benefits to be gained by
coordination of aggregate and detail scheduling decisions in the job shap con-
text. He establishes an aggregate model which is a mixed integer linear program.
However the linear approximation is sufficient in practice (when appropriate
rounding techniques are used). The complexity of his detail model precludes

12



the use of an optimum seeking method. Therefore, heuristically based job

dispatching (e.g. COVERT) and labor assignment rules within a simulation

framework are used to obtain a good, but not necessarily optimum solution.

Iteration between these two submodels leads to a good overall solution :

( Start )

  
 

 

  

 

 

     

   
 

Initial

Demands

Solve

Revised aggregate Workers

Demands Model Allocations

Other Shadow

Revisions Price

Make Disaggregate

Revisions| the solutions

Worker

Stop Assignments

?
Other

S Information

Cost

Performance

Stop

Solve a
detailed

Model    

- Gelders and Kleindorfer ((8) and (8)) established an optimum seeking

algorithm for coordinating aggregate and detailed scheduling in a one-machine

job-shop. The fundamental thrust of their work was that the results obtained

in relatively simple cases (for which optimum seeking methods can be elaborated)

very often provide insight into the basic structural aspects of the problem. A

branch and bound algorithm was designed. This algorithm examines explicitely

or implicitely all possible combinations of capacity decisions on the aggre-

gate level and sequence decisions on the detail level. The lower bounding pro-

13



ding problem for this BB-algorithm is a relatively simple ILP.

The implication is that, although the optimum seeking method may be
unfeasible for large scale problems, real benefit may be gained from the

possibility of delineating an excellent capacity plan x at low computational
cost.

As a matter of fact, the complexity of the detailed scheduling problem
led to the generalized use of dispatching rules (applied to the capacity
plan derived from the medium term model). A considerable improvement may be

expected when applying these dispatching rules at capacity plan x instead of
the capacity plan resulting from the aggregate model alone.
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