
c
o
o

Belgian Journal of Operations Research, Special Issue Constraint Programming Vol. 35 (2) 95

Constraint Programming

Patrick Esquirol, Pierre Lopez

Laboratoire d’Analyse et d’Architecture des Systemes du CNRS

7, avenue du Colonel Roche

31077 Toulouse Cedex, France

e-mail : {esquirol,lopez}@laas.fr

Héléne Fargier

Université Paul Sabatier (IRIT)
118, route de Narbonne

31062 Toulouse Cedex, France

e-mail : fargier@irit.fr

Thomas Schiex

Institut National de la Recherche Agronomique

Chemin de Borde Rouge - BP 27

31326 Castanet-Tolosan Cedex, France

e-mail : tschiex@toulouse.inra.fr

Abstract

There has been lot of interest lately from people solving constrained optimization

problems for Constraint Programming (CP). Constraint programming cannotbe described

as a technique by itself but perhaps better as a class of computer languages tailored to

the expression and resolution of problems which are non-deterministic in nature, with a

fast program developmentand efficient runtime performances.

Constraint programming derives from logic programming, operational research and ar-

tificial intelligence. Logic programmingoffers the general non-deterministic host language

which accomodates dedicated constraint solvers from OR and AI suchas linear program-

ming or constraint satisfaction techniques. In this paper, we first review how pure logic

programming languages evolved into Constraint Logic Programming (CLP) languages,

bringing to light the interface between logic programming and constraint solvers. Some

extra attention is given to a specific class of constraint solving techniques which have

been developed in the Constraint Satisfaction Problem framework and which are cur-

rently used in most CLP languages to solve constrained problemsin finite domains. We

finally conclude by an overview of some existing CP languages, with some examples taken

from scheduling.

Keywords: constraint logic programming, constraint satisfaction, scheduling

 



1 Introduction

A large number of problems which are considered by operational research and which have

also been tackled by artificial intelligence techniques, such as job-shop scheduling, resource

allocation problems or digital circuit validation are combinatorial problems in nature. More

formally, such problemsare often NP-hard [GJ79] and it seems unlikely that algorithms with a
reasonable worst-case complexity exist to solve them.

A traditional approach to solve such problemsis to design a specific computer program

that uses enumerative techniques such as Branch and Boundor, loosing some guarantees,local

search techniques (Taboo search, simulated annealing). This may lead to the utmost efficiency

but usually necessitates a lot of work, which may rapidly becomeuseless if the model evolves

in an unexpected direction and whose reuse is highly improbable.

Another possible approach is to cast the problem in a general framework such as integer

linear programming and to use a dedicated solver to solve the linear model which has been

designed. Usually, the rewriting tends to enlarge the problem size, to distort (to some extent)

the original problem, to ignore nice properties such as possible heuristics or symmetries... In

the worst cases, the final efficiency may be poorand solutions almost meaningless.

Ideally, one would like a general framework for stating large classes of combinatorial prob-

lems, with a language which is general enough to limit distortion and open enough to makeit
possible to use the specific knowledge about the problem, in order to enhanceefficiency.

We now try to show the assets of constraint programming languages as general tools for

representing and solving various classes of constrained problems, with illustrations in job-shop

scheduling. These assets are inherited from logic programming but also from the underlying

constraint solvers. In this paper, we will more specifically focus on AI techniques for solving

constraint satisfaction problemsonfinite domains [Tsa93], even if other solvers, such as Simplex
for sets of linear inequations are often used in CP languages.

2 From Logic Programming to Constraint Programming

Logic programming languages are general programming languages based on mathematicallogic,

and morespecifically first order logic. The language Prolog, with its numerousdialects, is the

main representative of the logic programming languages community. Theoriginal idea of Prolog

is to let the user specify the properties he wants to satisfy using a subset of the first-order logic
language and to use a generallogical inference mechanism, the resolution principle (Rob65], to

prove either that these properties cannot be met or to exhibit solutions.

2.1 Logic programming

2.1.1 Description and good properties of Prolog programming

Logic Programmingwill be presented here through its most representative implementation, the
Prolog language. This languageis a restriction of the first-order logic language to Horn clauses.

It acts as a theorem prover, and applies a general inference mechanism based on theresolution

principle. To get started with Prolog and the use of logic for problem solving, we recommend
the reading of [CM81, CKvC83, Kow79, ACM92, AS93).

Prolog manipulates objects, called terms, that form the so-called “Herbrand universe”.

A term may be a constant such as “1”, a variable such as “X”, an atom such as “a”, or a3

compound term such as functional terms (“f(X,1)”) and lists. A Prolog program can be

 



viewed as a sequence of declarative statements, the clauses, each of them stating how a given

relation between some terms(the head ofthe clause) may be derived logically from a conjunctive

set of relations (the tail of the clause), defined somewhereelse in the program. n-ary relations

(possibly n = 0) are all built from a predicate symbol anda set of terms, the argumentsof the

relations.

In the sequel, the chosen syntax to write the clauses will be the Edinburgh syntax. The head

is separated from the tail by “:-”; if not empty, the tail consists of a set of terms separated by

“ ”: and the clause ends with “.”. The character “%” introduces a comment.

% A comment: next line is an example of a clause
head :- termi, term2.

Moreovera variable is denoted by an uppercase letter (A-Z); a list is represented by [HIT]

whereH is the headofthelist (7.e., the first element), T its tail (the other elements). Programs
are clustered into packets of clauses, each packet grouping clauses which headrefers to the same
relation predicate. In each packet, one clause represents one alternative to prove the relation.

In the following example (a path-finding problem), a first packet of 6 clauses describes the set

of pairs of nodes that satisfy the arc-relation of some graph. These clauses have an emptytail

(no conditions) since the graph is given. A second packet of clauses states the path relation,

recursively defined from the arc-relation; a path exists between node X and nodeY,eitherif the

nodes are connected directly by an arc(first clause) or if a path exists between an intermediate

node Z and nodeY, such that nodeX is connected to node Z by an arc-relation (second clause).

%4 Directed non-reflexive graph

% described by its arcs
arc(1,2).
arc(1,3).

arc(2,4).
arc(3,4).
arc(4,5).
arc(4,6).

% Recursive definition of the path

% relation between any 2 nodes

path(X,Y,{(X,Y]) :- arc(X,Y).
path(X,Y,{XIL]) :- arc(X,Z), path(Z,yY,L).

 

Prolog programs are launched by writing queries about one or more relations that must

simultaneously be proved. The standard strategy of Prolog is based on an embedded chrono-

logical backtrack search algorithm, that enables to collect all the possible solutions for a given

query.

If some variables appear in a query, Prolog attempts to give them values, or at least returns

a minimalset of variables substitutions (equalities constraints), that satisfies the query. Values
returned in the answer form onesolution to the problem stated by the query. The query:
“?-path(1,Y,L).” ask for all the paths L and their extremity Y, such that path L starts

from node 1. When the query has no variables, answer is ‘Yes’ if the query is proved to be
true, as for instance for the query “?-path(1,4,[1,2,4]).” that checks the path <1,2,4>

between nodes 1 and 4, or ‘No’ when the queryis not satisfiable, as for instance for the query
“?—path(X,X,L).”, which proves that no circuit can be found in this graph.

Let us note that the same program can also answer to queries like “?-path(X,5,L).”

which returns all the paths terminating on node 5, or like “?-path(X,Y,L).” which returns

7

 



all the paths of the graph. This program is a reversible one, since arguments of the path

relation are not forced to have a fixed input or output role, as opposed to classical programsin

procedural or functional programming. Therelational semantics of logic programminggivesits

declarativeness and its genericity. The embedded backtrack search algorithm and the high-level

facilities for lists processing play also a majorrole in the conciseness of Prolog programs.

2.1.2 Limitations of logic programming for numerical problem solving

Pure logic programming needs and only allows the statement of relations between terms,

without any assumption on numerical properties. When tackling numerical problemsorreas-

oning in domains morestructured than the domain of syntactic terms (Herbrand universe),
the constraint solving algorithm on terms (the so-called unification algorithm) appears to be

too weak for numerical computations, in particular when the search space developed by the
standard backtracking can be pruned by an active interpretation of the numerical constraints,

as shows the next example.

Suppose one wants to determinethe pairs (X,Y) which satisfy the property X < Y, numbers

X and Y belonging to a given enumerated subset of integers.

% Definition of a given subset of integers

is_number (1).
is_number (2).
is_number (3).

% Definition of the ordered-pair relation

ordered_pair(X,Y) :- is_number(X), is_number(Y), X < Y.

Numerical operations and checks (such as X < Y) are extra-logical relations and have been

added under the form of predefined predicates just to make Prolog able to produce ele-

mentary numerical computations. The search tree developed in order to answer the query

“?-ordered-pair(X,Y).” which lists all the ordered pairs of numbers amongst {1,2,3} is
figured below.

?- is_number(X), is_number(Y), X<Y.

   
| X=3

7

  

?- isYN. X< ?- is“patper xy, X< ?- is_number(yY),

q- P q- Q- | ?- P ?- 2- | ?- ?- ?- I

| (X=\ (X=\ | | edY¥=3} | | |

Figure 1: Search tree

This program first generates values for numbers X and Y and then checks the ordering

relation. This approach (generate-and-test) is very inefficient considering the failing branches
of the search tree. For example, X=3is tried evenif it is obvious that no value can be associated

with Y because X has its maximum value andtheorderis a strict one. For symmetrical reasons,

8

 



failures due to Y=1 are unnecessarily explored. Preferably, one couldfirst restrict the domainsof
X and Y before enumerating their possible values. This necessitates that domains be associated

to variables and that the relation X < Y be actively used to restrict the domains before values

have been proposed for X and Y (constrain-and-generate), rather than simply passively checking

it once the variables it involves are assigned.

2.1.3 Conclusion

Logic programmingandits well-known implementation through the Prolog languageoffers sev-

eral attractive properties for problem solving (declarativity, genericity, conciseness, exhaustive

search). Facing problems whereconstraints must actively be exploited to improveefficiency, the

unification constraint alone appears too weak. It has to be enlarged by other inference mech-

anisms based on morestructured domains of interpretation, such as finite domain variables,

integers, rationals, booleans, for which efficient constraint solving strategies can be implemen-

ted. The next section lists some of the domainsof variables for which constraints can actively

be interpreted in order to improve the standard strategy of Prolog.

2.2 Constraint Logic Programming

2.2.1 General principle

Constraint Logic programming (CLP) is an attempt to overcomethe limitations of Logic Pro-

gramming by enhancing it with constraint solving mechanisms.

Thefirst objective was to replace an explicit coding of semantic properties between objects

submitted to constraints by an implicit description with primitive constraints. This led to

distinguish usual predicates and constraint predicates, usual variables and typed variables. For

example, besides the original predicate “is(X,Expr)” that binds a variable to the evaluation

of a closed arithmetic expression, new equality constraints have been introduced, which state

equations in typed domains. This work was concerned with the integration of new computation

domains and their associated constraint solvers. In the remainder of this paper we will denote

by CLP(4’) a CLP system acting on some constraint domain 1.

The second objective was to replace the depth-first search strategy of Prolog andits resulting

generate-and-test behavior. Constraint propagation has been investigated in the Artificial

Intelligence community since late 70’s [Mon74, Mac77, Ste80]. Techniques like local value

propagation, data-driven computation, forward checking and look ahead have been developed.

Someof these techniques have been integrated as new inference rules in CLP systems.

It is often admitted that the embryonic attempts to introduce constraints in Prolog are

due to Alain Colmerauer with its design of PROLOG II [Col82b], able to solve equations in the
domainofinfinite trees [Col82a]. PROLOGII also initiated the use of the “dif (X,Y)” primitive
with a co-routining mechanism that postpones the disequality check until both arguments

become instantiated and produces a backjumping to the clause containing the dif in case of
failure.

The core idea of CLP wasto replace the computational heart of a logic programming system,

namely the unification algorithm, by a constraint handling mechanism in a constraint domain.

2.3. The CLP scheme

A good abstract of the theoretical foundations of CLP languages can be found in [Coh90}.
For a deeper analysis, the survey of Jaffar & Maher [JM94] is worth reading. For the sake of

 



simplicity and understandability we propose to describe what a CLP scheme may be with a

model very close to the one of the abstract PROLOG III machine. This model supposes that

constraints and predicates are syntactically separated in a clause, as opposed to the operational

modelgiven in [JM94]. Thus, a clauseof a logic program will consist of a triplet (h, B,C) where

h is the head, B a sequence of predicates (possibly empty) and C a set of constraints (possibly

empty). A program clause (h, B,C) meansthat h can be rewritten as B under the constraints

C’.. Suppose that the state of the abstract machine at a given time is (G, R), where:

e G is the (ordered) set of goals which remain to be executed;

e R forms the current constraint store.

Initially, goals and constraints are those of the query: So = (Q,,Q,). Onefinal state Sy is

defined by an empty set of goals: S; = (@, Ry). The final constraint store Ry may be non

empty. In that case, the final answer may differ from a CLP system to another, depending on

the constraint domains and some properties presented below.

The computation can be represented by a tree, similar to the search tree developed by

a pure logic program: nodes are labeled by states, edges are labeled by rules (primitive or

program-defined), and leaves are of two types: fail or answer. Fails occur when no rule can be

applied to a state with a non emptyset of goals. Suppose g is the next goal to be executed (the

left-most term of G) in the current state (G, R). If a program clause (h, B,C) can be applied

to g, the following state is (G’,C’) where:

eG=G\{g} UB

e R= solve(R U{g=h} UC).

The equation {g = h} means that g and h have the same predicate symbol andsatisfy

the unification constraints between their respective arguments. When considering numerical

domains, unification means equation, as for example in the unification of g = foo(X,3) and

h = foo(Y,Y +3): the result is X = Y = 0 in a CLP system on numerical domains whereasit

fails in pure Prolog (as 3 cannot be madesyntactically equivalent to Y +3). The solve function

performsa satisfiability check, that, if failed, entails a backtrack and the selection of another

clause of the program. This satisfiability check may be complete or not, depending on the

constraint domains. In the following, we list some important properties of the CLP systems
relating to the constraint domains they propose.

2.3.1 Properties

The major CLP systemsoffer, in a common Prolog environment, several constraint domains

and their attached set of primitives. Programmers are generally interested in the expressiveness

of the constraint domains and in the efficiency of the solvers. It is thus important to evaluate

the various systems and their computation domains through relevant properties such as:

e Satisfaction-completeness, solution-compactness of the constraint domain.

e Incrementality of the constraint satisfaction algorithm.

e Existence of canonical representations of the constraints set.

e Simplification ability for the constraint-handling system.

10

 



A theory on a given domain is satisfaction-complete if it is always provable that every

constraint is either satisfiable or not. It is the case for example for reals with the set {=,4, >

,>,<,<} of constraints and the set {+, x} of functions!. But it is not the case for integers
with {=} constraint and {+, x} functions (the satisfiability of Diophantine equations being
undecidable). CLP systems answer ‘Maybe’, or ‘N constraints delayed’ when this property

is not filled, whereas when it is, the answeris ‘Yes’ or ‘No’.

A theory on a constraint domain is solution-compact when any value of the domain can

be represented by a (possibly infinite) conjunction of constraints and the complement of any

constraint can be represented by a (possibly infinite) disjunction of constraints . True for

the domain of real numbers with {=,4,>,>,<,<} constraints and {+, x} functions, this

property is lost for real numbers with only {=} constraint and the function {+}?. When

both satisfaction-completeness and solution-compactnessare verified, Jaffar and Lassez {JL87|
proved that someof the enjoyable theoretical properties of the Prolog language are conserved’.

Furthermore,the set of constraints that is handled at each node is obtained by adding some

constraints to a constraint set which was previously proved satisfiable*. Thus, the efficiency of

the overall language would benefit from some “incrementality” in the constraint solver: once

a set R of constraints has been shownsatisfiable, the proof of satisfiability of RU R’ should,

whenever possible, be made moreefficient than a proof from scratch, by using someresults
from the previoussatisfiability proof of R.

In practice, solvers often give a “solved form” of the initial set of constraints whose satis-

fiability is “obvious” and which is equivalent to the original set. The “solved form” given by

the solvers can usually be directly used instead of the original constraint set when a constraint

is added, thus automatically giving some “incrementality”. The “solved form” may even be
used for projection if it is an explicit representation of the solution space.

Simplification is sometimescalled a semantic garbage collection. For example the two con-

straints X > 1 and X > 2 can berewritten as only one: X > 2. Another obvious type of

simplification is to rewrite the subset of constraints on a given variable as soon as this variable

receives a single value. Finally redundancies may also be eliminated, but this feature raises

the more general problem of finding a minimal representative set of constraints, for which one

cannot assert that a unique optimal strategy always exists.

To that aim, the existence of canonical forms of sets of constraints may help. A canonical

form can be used as a “solved form” which facilitates both the satisfiability tests and simplific-

ations, for example because constraints are ordered according to their arity, and/or variables
are lexicographically ordered.

Finally, for satisfaction-complete systems, queries can receive non ground answers(t.e., each

variable of the query does not receive a single value): the answer is a projection of the system

of constraints on these variables. The understandability of the answer obviously depends on
simplification and canonical representation facilities.

2.4 Constraint Programming

Although constraint programmingderives from logic programming and the major CLP systems

have been designed as compatible extensions of Prolog (which remains the kernel), some other

important systems have been developed independently. As they keep the non-deterministic
 

‘Tarski’s procedure decidesthe satisfiability of polynomial equations and inequationsoverreals {Tar48].
?In this case, the element m cannot be defined bya finite or infinite numberof constraints.
3Namely the equivalence of the logical, operational and fixed point semantics. See [JM94] for more details.

4Or not yet disproved to be satisfiable in case of satisfaction-incomplete theories.

11

 



computation principle, and their solvers are based on the same constraints domains, they

deserve to be also mentioned in this paper (see Section 4.4). Constraint programmingis the

general framework that covers researches and applications of such constraint-based languages

and systems.

3 Constraint Solvers

As we have seen, CLP needsseveral services from the underlying constraint solvers: a satis-

fiability test to avoid useless exploration of space and the ability to project the solution space

of the current constraint set on a subset of the variables involved (to be able to answer the user

query using only the variables that appeared in the query).

Wenow consider several domains, with their available constraints solvers to see how these

demandsare actually met or relaxed.

3.1 Equalities in finite and rational trees

The domain of finite trees (FT) is the original domain of pure logic programming languages:

Prolog terms that appear in Prolog predicates, such as f(X) or f(g(X),1,Z), are simply the
syntactic expression of labeled trees®. We present this domain forhistoric reasons, evenif it may

look somewhatartificial to the operations research community. The problem ofsatisfiability of

a set of equalities between terms with variables is known as the unifiability problem. A solution

is given by an unifier: a set of variable/term substitutions which, when applied to all the terms,

make them identical. The problem is easy, solvable in linear time [PW78]. Furthermore, the

algorithms build a most general solution to the constraint set (called a most general unifier or

mgu) which can be used as a “solved form”: it may easily be projected on a variable subset
and also used as the basis for the next satisfiability test when new constraints are added.

In the domain of FT, the terms f(X) and f(g(1,X)) are not unifiable: no single FT
can simultaneously match both terms. However, unification algorithms naturally build the

substitution X/g(1,.X) as a possible solution whereas substitutions of the form X/t, where t isa

term that contains the variable X cannot define a solution since they implicitly represent infinite

trees. Therefore, a specific test, called the occur-check should be inserted in the algorithm to

avoid infinite cycles in the solution as above. This test yields a best-case complexity which is

always equal to the worst-case complexity and was therefore omitted, for efficiency reasons, in

most old Prolog dialects.

Nowadays, in order to sanely avoid the occur-check, Prolog languages prefer to solve the

unifiability problem in the domain of rational trees (RT), which may be infinite, but which

have a finite representation (the finite representation of an infinite tree contains cycles). In

RT, f(X) and f(g(1,X)) are unified by X = g(1,X), which implicitly gives the infinite tree
f(g(1, 9(1, 9(1,...)))) as the solution. Almost linear algorithms are available. The language

PROLOGII of Marseille [Col82b] has been the first Prolog which chose to solve the unifiability
problem in the domain of RT.

3.2 Linear (in)equations in R or Q

Various CLP languages enable the user to express linear equalities and inequalities in the
domain of R (approximatedusing floating point numbers) or Q,using infinite precision rational
numbers.
 

5 f(X) represents all trees with a root labelled f and a single son, which may be anytree.

 



For linear equations, the usual technique of Gaussian elimination may be used, with a

quadratic worst-case time complexity. When inequalities are introduced, polynomial timeal-

gorithmsarestill available [Kha79, Kar84], but since these algorithmsare eitherless efficient

practically or difficultly made incremental, all existing languages have, to our knowledge, de-

cided to rely on variations of the Simplex algorithm, despite its exponential time worst case

complexity. The main variations consist in extending the Simplex to deal with negative num-

bers and strict inequalities [LM92]. As it is well known in the integer linear programming

community, the Simplex can be extended to efficiently cope with a growing set of constraints

andsome incrementality is possible. The projection of a polyhedral set on a variable subset

can be performed using a simple algorithm from Fourier, which has been tuned for redundancy

elimination in [Imb93, JMSY93].

Even if satisfiability alone is actually needed in the CLP framework, the possible optimiz-

ation performed by the Simplex is usually made available at the user level through a specific

predicate.

3.3. Finite domains

The introduction of finite domains (FD) into CLP languagesis certainly connected with the
important growth of the field of “Constraint Satisfaction Problems” (CSP) in theartificial
intelligence community [Tsa93, AS93]. The CSP framework is devoted to the problem of

satisfying a set of constraints, without any limitation on the constraint types, in any FD.

Definition 1 A CSP = (X,D,C) is defined by:

e aset X = {zxj,...,2,} of n variables;

e a set D = {d),...,d,} of domains. Domain d; contains the set of values that may be

considered for variable z;. We note d the size of the largest domain;

e a set of constraints C = {c,...,ce} of e constraints. Each constraint c; is defined by:

— the set of variables X(c;) C X involved in constraint c,;

— a relation R(c;) on the variables of X(c;), t.e., a subset of the Cartesian product

of the domains of the variables of X(ci). This relation defines the tuples of values

which may simultaneously be assigned to the variables involved in the constraint.

Example: Consider a CSP with 3 variables (X = {2,22,23}), all variables
having the same domain { white, black}. Three constraints, c,, c2, and cz involve

respectively {11,22}, {r2,23} and {21,23} and are defined by the same relation

R = {(white, black), (black, white)}.

An assignment of values to a subset Y C X of the variables is said to be consistent (or

locally consistent) iff all the constraints c; € C such that X(c;) C Y are satisfied by the
assignment, z.e., only authorized combinationsof values, as specified in the relations are used in

the assignment. In our example, the assignment {z, + white,r3 «+ black} is locally consistent

while {z, + black, x3 + black} is not. .

A solution of a CSP is simply a consistent assignment of the whole set X of variables. A

satisfiable CSP (a CSP with at least one solution) is also said to be consistent®. Our example

CSP has no solution, the CSP is inconsistent.
 

®One should not confuse the propertyof consistency of an assignment, which is decidable in polynomialtime,
and the property of consistency of a CSP, which defines an NP-complete decision problem.

13

 



In the “pure” CSP framework, the domains d; are supposed to be finite domains and,

when their size remains reasonable, the relation associated to each constraint can effectively

be described by the set of tuples of values that correspond to authorized combinations. The

interesting point is that any type of constraint, either linear or not, can be expressed. Numbers

and symbols may also be simply mixed together. A lot of CSP techniques may be extended

to the case of relations expressed in intention (linear or non linear constraints over N for
example) [Dav87]. Some of these techniques have also been extended to the case ofinfinite

domains(subsets of R usually) and are available in some CLP languages [SH91, Hyv92, Lho93).

In the following, we only consider FD.

An usualrestriction in the “pure” CSP field is also to restrict oneself to binary constraints,

involving only two variables. In that case, two graphs, called respectively the constraint graph
and the consistency graph of the CSP, may bedefined:

e The constraint graph has one vertex for each variable and one edge for each constraint.

For non binary CSP,a similar hyper-graph can be defined. This graph only describes the
problem structure.

e The consistency graph has one vertex for each value of each variable and one edge for

each compatible pair that appear in a constraint. This graph is n-partite since no edge

can appear between two values of a given variable. It completely defines the problem.

al x2

 

Figure 2: The constraint and consistency graphs of a CSP

These two representations are used in Fig. 2 to describe our example CSP. In the FD case,

an important difference with the previous domains of trees and linear programmingin is

that the satisfiability problem becomes NP-complete. This is shown simply by the following
observation:’:

Example: the GRAPH k-COLORABILITY problem can simply be expressed as a CSP.

If you consider a graph (V,E), one variable x, is associated to each verter v, all

the domains are identical and contain k values. Finally, one difference constraint

between ry and Ly is associated to each edge (v,w) € E. Note that our example is

simply the GRAPH 2-COLORABILITY problem on a fully connected graph of 3 vertices
(a 3-clique).

The most naive technique that may be used to solve the satisfiability problem is the back-

track algorithm: given an initial consistent assignment A, of size k, it tries to assign a new

variable z,%+,. If no value in d+; yields a consistent assignment, a backtrack occurs on the

previous variable assigned. The algorithm starts with an empty (and therefore consistent)
assignment and has a worst-case complexity in O(ed”).
 

’This result shows that the satisfiability problem in the binary CSPrestriction is still NP-complete andthis
restriction is made, in theory, “without loss of generality”.

14

 



Since this algorithm is highly inefficient, it would be unreasonable to use it to prove satis-

fiability in the frame of a CLP language(onesatisfiability test being performed after each step

of the computation). Furthermore,it seems difficult to give this algorithm some incrementality.

Therefore, all existing implementations have chosen to weaken the “satisfiability” property by

using the polynomial worst-case time local consistency properties defined in [Mon74, Mac’77].

3.3.1 Local consistency

The notion of “local consistency enforcing” defines a whole family of techniques which, in

practice, transform an initial CSP in a (hopefully) simpler problem, with the samesolutionset.

This process is also knownas a “filtering” process, or as a “constraint propagation” mechanism®

To each type offiltering process is associated a so-called “local consistency” property that

is actually enforced by the filtering. The main class of local consistencies has been defined

in (Fre78] andis called k-consistency.

Definition 2 A CSP (X, D,C)is said to be k-consistent iff any consistent assignment of (k—1)

variables can be extended to a consistent assignment of k variables on any unassigned variable.

A CSP (X, D,C) is said to be strongly k-consistent iff it is j-consistent for all j =1,...,k.

It is quite easy to prove that a CSP of n variables which is strongly n-consistent is satis-

fiable (and furthermore, any consistent assignment can be extended to a solution). However, a

satisfiable CSP is not necessarily n-consistent?.

A polynomial time algorithm (in O(n*.d*)) that enforces strong k-consistency has been
proposed in [Coo89]. The CSP built is called the k-consistent closure of the CSP. Since the
CSP obtained is equivalent to the original CSP, we get the following property:

Property 1 Jf a CSP has an empty k-consistent closure (a domain is empty), then it is.un-

satisfiable. The converse is naturally false.

Therefore, strong k-consistency enforcing offers a polynomial time relaxation of satisfiabil-

ity. The approach followed by most CLP languagesis to only enforce some local consistency

property instead of satisfiability. Backtracking occurs when an empty closure is obtained,

since this actually proves unsatisfiability. Usually, only strong 2-consistency, also called arc-

consistency [Ul1166, Wal72, Mon74] in the framework of binary CSP, is enforced.

Definition 3 A binary CSPis said to be arc-consistent iff none of its domains is empty (this is

1-consistency) and every assignment of one variable can be extended to a consistent assignment
of size 2 on any unassigned variable.

Example: Our ezample problem of Fig. 2 is unsatisfiable, but it has an non

empty arc-consistent closure, and is indeed already arc-consistent (enforcing arc-

consistency on this problem is completely useless).
 

®This process can be related to cutting plane generation in integer linear programmingconsidering the

combined results of [Hoo88] and [dK89]}.
*It can be the case that someconsistent assignment of n — 1 variables cannot be consistently extended to

the n‘* variable. Satisfiability simply implies that some consistent assignment of k — 1 variables do extend to a
consistent assignment ofall variables.

15

 



Basically, arc-consistency enforcing works as follows: if a value of a given domain d; does

not appear in any of the authorized combinations of one of the constraints that involve z;,,

then this value cannot belong to a solution and can simply be deleted. A single pass onall

variables and constraints is usually not sufficient and the process is performed iteratively until

quiescence.

Example: The CSP whose consistency graphis illustrated in Fig. 3, simply obtained

by removing the edge (white, black) between x, and x2, is a good example of non

consistent CSP which ts also non arc-consistent and whose arc-consistent closure is

empty. On a first pass, the values numbered 1 will be deleted because they are not

connected to any value on an adjacent variable, then the values numbered 2 will be

deleted, for the same reason (thanks to the previous deletion)... until quiescence:

here, all the values are deleted. Actually, one could stop on step 2, when the domain
of x3 becomes empty, since it suffices to prove inconsistency.

 

Figure 3: A CSP with an empty arc-consistent closure

This simple arc-consistency enforcing algorithm has undergone several optimizations, from

AC-1 (described in [Mon74, Mac77]) to AC-7 (described in [BFR95]). With AC-4, we get
optimal time complexity in O(ed*) and AC-6 gives furtherefficiency and a space complexity in

O(ed). However, most CLP languages rely on modified versions of AC-5 [VHDT92], becauseit

is easily tuned to handle specific classes of constraints moreefficiently.

Actually, no CLP language, to our knowledge, does enforce local consistency at a level higher
than strong 2-consistency. Pragmatically, a stronger level would mean earlier unsatisfiability

detection, and therefore less nodes explored in the Prolog search tree, but it would also mean

more work at each node. Experimentally, arc-consistency appears to be a reasonable tradeoff.

A last interesting property of all the local consistency enforcing algorithmsis their natural

incrementality with respect to the addition of constraints in the problem. Indeed, the CSP

obtained after arc-consistency enforcing, if non empty, has smaller domains thantheinitial

CSP and is nevertheless equivalent to the original CSP: it may simply be used instead of the
original CSP.

3.3.2 From local consistency to satisfaction

Since CLP languages only enforce arc-consistency, the information available at each nodeof the

Prolog tree is not a “solved form” of the CSP which could be projected on the query variables,
but simply reduced domains with no guaranteeof satisfiability’®.
 

10The strong n-consistent closure of a CSP would give a “solved form”, but at the cost of an exponential
amount of memory in the worst case.

16

 



Since satisfaction is a practically important problem, an additional mechanism must be used

to solve the satisfaction problem. The idea, which originates in the CSP field, is to use a hybrid
of backtrack tree search and arc-consistency enforcing [Nad89, vH89]}.

The algorithm, known as “Really Full Look Ahead”?!, is simply a backtrack tree search
where the assignmentconsistency test is replaced by arc-consistency enforcing. Given aninitial —

arc-consistent CSP with variables z,,...,2, assigned, it tries to assign a new variable 2,4. If

no value in d,4, yields a CSP with a non-empty arc-consistent closure, a backtrack occurs on

the previous variable assigned and domains should be restored to the state they had before this

assignment. The algorithm starts with an empty (and therefore consistent) assignment.

The algorithm always explores less nodes than the simple backtrack algorithm sketched in

Section 3.3 since a locally inconsistent variable assignment of a subset of X will induce an

empty arc-consistent closure. In practice, the algorithm is often several order of magnitude

moreefficient than the backtrack algorithm. It benefits from two main typesof heuristics:

e variable ordering heuristics decide dynamically, during search, which will be the next

variable z, that will be assigned. The general principle underlying all these heuristics is

the so-called first-fail principle: choose a variable which is highly constrained so that if a

failure must occur, it is rapidly detected. A good choiceis to favor variables with a small

actual domain and with a high degree in the constraint graph.

e value ordering heuristics decide dynamically which value should be assigned successively

to the variable z;, that has been chosen. Even if some “general purpose” value ordering

heuristics have been proposed (see [MJPL90]), the best results are usually obtained with

heuristics that take into account the precise problem class at hand.

See [Tsa93], chapter 6 for further information on variable and value ordering heuristics.

In CLP languages, the actual tree search is done using the underlying non-determinism

of the Prolog language. A specific predicate, usually called indomain(X), enumerates and

successively assigns each of the values of the domain of the CSP variable X to this variable.

Since this mechanism is programmed in Prolog, it can actually be completely modified and
tuned to exploit heuristics and specific properties of the problem at hand.

Example: the following CHIP code!” solves the GRAPH 2-COLORABILITY instance

of Fig. 2 using the finite domain solver. The predicate 2-color defines the three do-

main variables and the three constraints, while the labeling predicate 1s in charge

of the enumeration process. The predefined predicate delete(X,L,R,first_fail)

chooses a CSP variable X in the list L with a smallest domain and leaves the re-
maining variables in R.
 

11Some CLP languages actually use a weaker level of local consistency enforcing than full arc-consistency,
defining algorithms known as “Forward-checking” or “Partial Look-Ahead”. See [Nad89, vH89].

12See the beginning of Section 5 for morespecific syntax explanations.

17

 



2-color(X1,X2,X3) :-
labeli .

% Domain declaration abeling((1)
labeling(({XI¥]) :-

* - o % Choice of a variable
* ‘ oo delete(Var, (X|Y] ,Rest ,first_fail),

2: 1.42, ; % Choice of a value
% Three # constraints : :indomain(Var),Xi #\= X2, labeling(Rest)
X2 #\= x3,

s

X3 #\= X1,

% Look for a solution

labeling ([X1,X2,X3]).

If the query 2-color(A,B,C) is given to the CLP language, the tree search will

be very small, since as soon as any of the three variables is assigned, and whatever

its value, an empty arc-consistent closure is obtained and backtrack occurs. The

CSP being unsatisfiable, the answer will simply be ‘No’.

Beyondsatisfaction, optimization is also possible through specific predicates using vari-

ants of the Branch and Boundalgorithm,often related to the “Depth First Iterative Deepen-

ing” [Kor85).

3.3.3 Integrating CSP in CLP

As we said, in “pure” CSP, constraints are often supposed to be expressed by the set of au-

thorized tuples. If this language is extremely powerful, since it allows the expression of any

constraint on a finite domain, it is also very cumbersome. Therefore, all CLP languages have

limited the set of constraints that the user may express to a specific language which usually
contains basic arithmetic constraints, often linear (in)equations with unlimited arity.

The traditional arc-consistency enforcing algorithms of general CSP can befinely tuned to

better take into account the nature of these constraints. Most languages, to our knowledge,

essentially perform a so-called “bound propagation”, related to interval calculus, which can be

easily extended to real (floating point) domains [Dav87, vH89, Lho93].

Example: for a linear equality )> a;.r; = 0, all variables x; having a finite integer

domain, and considering, for the sake of simplicity, that all the a; are positive, it is

possible to update the domain of x; as follows. Since.

zt; < Ss” _ min(a;.2;)/a,;

ij

then all the values in the domain of x; which are larger than the right member can

be removed, without losing any solution. By symmetry, an analogous lower-bound

may be built.

As in traditional arc-consistency enforcing, if the domain of x; is modified, then

the domainsof all the variables connected to x; through a constraint should also be
updated (and so on, iteratively, until quiescence).

18

 



For some classes of constraints, such simple bound propagations may suffice to enforce arc-

consistency [VHDT92].

However, the restriction to somearithmetic language is often too strong to easily express

some natural and useful constraints, especially constraints on symbolic domains. Therefore,

these constraints are usually introduced in the constraint language using specific predicates
which are naturally called “symbolic constraints”. An example of such a constraint is the

“element (I,L,X)” constraint which involves an integer or a domain integer variable I, any

finite domain variable X and a list of values L. The constraint is satisfied iff the I* element

of the list L is equal to the value of X. Such constraints are usually handled using ad-hoc

propagation mechanisms, which may or not, enforce arc-consistency. The important issue here

is to get the right tradeoff between the powerof the local consistency enforcing (in terms of

numberof values deleted) and the actualefficiency of the algorithm.

Since one cannot hopeto extensively introduce all “useful” constraint types in a fixed lan-

guage, some of the expressive power of the CSP frameworkis lost. For example, the disjunctive

constraints that naturally appear in job-shop scheduling (see Section 5) cannot be naturally

expressed as linear inequalities whereas they can be expressed as a single CSP constraint, which

could naturally be propagated using any arc-consistency algorithm.

3.4 Other domains

The three previous domainsare certainly the most frequent ones in CLP languages. Werapidly

review here solvers from other domains that have been implemented in a CLP language:

e boolean algebra: this domain, which only contains the 2 truth values (true andfalse) is a

specialcase offinite domain andthe previous techniques can be used [CD93], with all their
limitations. The usual constraint language is the language of mathematical propositional

logic and includes conjunction, disjunction, implication, equivalence... Thesatisfiability

problem is the GENERAL SAT problem [GJ79], which is again NP-complete.

A large number of techniques have been proposed to solve the satisfiability problem.

Enumerative techniques such as Davis and Putnam’s procedure [DP60], which areclosely
related to CSP tree search algorithms, are not easily made incremental. PROLOG III uses

a variant of SL-resolution described in [BB88]. This algorithm requires that formulas be
translated to clausal form (a conjunction of disjuncts), which may be quite costly. It is

naturally incremental and yields a “simplified” form of the constraint set. Binary Decision

Diagrams [Bry92] offer an efficient, incremental representation of boolean formulas. One

of the boolean solvers of CHIP uses a variable elimination algorithm along with these
BDDs. A BDD explicitly represents all the solutions of the constraint set. Despite

efficient compression methods, it may occupy an exponential amount of memory in the
worst-case.

An important difference with finite domains solvers is that most CLP languages try to

offer the user a “legible” representation of the current boolean constraint set (whereas

only restricted domainsor a solution are available for finite domains). This may define a
very difficult problem.

e non linear equations in R: several approaches exist. In a first approach, the expression

of non linear constraints is possible, but these constraints are simply “frozen” (ignored)

until they become eventually linear, when enough variables get assigned (by the user or

because their value can be entailed from the constraints). These constraints are then

communicated to the linear programmingsolver. The approach is quite simple andal-
lows the use of polynomials or transcendental functions. If some non-linear constraints

19

 



remain nonlinear (and frozen) when a solution is obtained, then the answer given by the
CLP language ignore the frozen constraints and may be meaningless!*. For example, a
constraint such as “X=pow(Y,Z)” stating that X = Y*, will be delayed until either (1) 2 is
knownto be equal to 0 (and X=1) or 1 (and X=Y) or (2) Y is known to be equal to 1 (and
X=1) or (3) two variables among X, Y, Z have a known value and the remaining one can
be evaluated.

Another approach consists in trying to solve the non-linear equations using dedicated

algorithms. CAL [ASS*88] uses a specific solver'* to solve polynomial equations in C (a
relaxation of the original problem in R) to eventually prove its inconsistency.

A last approach, whichis not limited to polynomial equations, is to use extensions of the

finite domainslocal consistency properties to floating point domains (see [Dav87, SH91,
Hyv92, Lho93)).

Several other domains, including strings, sets, features trees... have received attention from

the CLP community (see [Coh90, JM94]).

4 Someexisting tools

In this section, we rapidly present the main features of some well-known CLP language im-

plementations. Most of these languages are actually commercial products whose underlying

mechanismsis not precisely documented: the constraint solvers are black boxes and the precise

operational semantics of some constraints may be unspecified. A lot of other CLP languages

exist and weinvite the reader to fetch [JM94, FAQ95] to better perceive the variety of available
implementations (often for free).

As in classical logic programming, a constraint logic program is a collection of clauses,

possibly involving some constraints.

% Example in Prolog III (non standard syntax)
c1(X,Y,Z) -> c2(R), {Z = 2X+Y, X>=2, Y>3} ;

c2(X) -> {X > 4} ;

% Example in Chip V4 (Edinburgh syntax)

ci(X,Y,Z) :- c2(R), Z #= 2X+Y, X #>= 2, Y #> 3.

c2(X) :- X #> 4.

To activate a program, one has to express a query, i.e., a sequence of goals and constraints;

if no goals are specified, the query is simply to solve the constraint system. The system then

behaveslike a classical prolog, but each time a clause is used, the associated constraints are

added to the current constraint set. Constraints solvers are then used to check the consistency

of the current state. Backtrack occurs when either a goal cannot be proved or the current set

of constraints becomesinconsistent. If the goals can be proved, the current substitutions of the

variables are a solution, provided that they satisfy the set of constraint. Hence the “answer”is

given under the form of a set of variable bindings and constraints. Completeness of the solving
process depends on the domain of computation used.
 

13CLP(R) answers ‘Maybe’ when someconstraintsarestill frozen and a solutionis found.
14Here, Buchberger’s Grébner bases algorithm is used, with a worst-case doubly exponential complex-

ity [Buc85].

20

 



,

4.1 CLP(R)

The language CLP(R) [HJM*92] is an implementation of the general CLP(4’) scheme defined
by J. Jaffar and J-L. Lassez in [JL87]. The first release was available around 1986 and the
current release 1.2 is available for free from IBMfor academic and research purposes only!*.

CuLp(R) is perhaps the best system to start with if you want to discover what “pure”

constraint logic programmingis'®. The only domain tackled, beyond the usual tree domain,is,

as the namesays, real numbers, approximated using floating point numbers. This keeps the

system small, homogeneous and with a simple syntax.

The underlying solver is a Simplex-derived solver, with a specific Gaussian elimination mod-

ule for linear equalities. Because of the floating point implementation, the strict inequalities,

which are available as in PROLOG III, do not have the precise semantics that can be obtained

using infinite precision rational numbers.

The system contains a mechanism for delaying non-linear constraints until enough other

numerical constraints make them linear. As wesaid in Section 3.4, if a solution is found when

a non-linear constraint is still delayed, CLP(R) simply answers ‘Maybe’. Anyway,a large set of
primitives is available to express non-linear constraints (e.g., Z = X *Y, Y = log(X)) and the
language has been essentially used to deal with partially non linear problems.

The system containsfacilities for “meta-programming” with constraints and allowsto expli-

citly manipulate terms and arithmetical constraints, a coded form being available to the user.
Thesefacilities are not available in any of the other languages considered here.

The initial implementation was interpreted. The actual release uses a byte-code compiler

for a better efficiency of the underlying Prolog. It is entirely written in the C language and

runs on most existing Unix workstations and includes MS-DOS support. CLP(R) has been

used to solve various real problems, analysis and synthesis of analog circuits [HMS92], stock

option analysis [HL88] or problems from computational biology such as DNA sequencing by
restriction site mapping [Yap93]}.

4.2 Prolog III

A. Colmerauer and his team first defined the model of a Prolog with constraints around 1984,

as an extension of the PROLOG II model. The commercial version of PROLOG III has been

officially announced in 1990.

Compared with other tools (e.g., CHIP), PROLOG III is very homogeneous, providing, in
particular, a nice uniform syntax. A PROLOG III program, like a Prolog one, consists of

a collection of clauses, which can possibly contain constraints. Constraints are syntactically
distinguished from classical Prolog predicates using braces.

PROLOGIII supports three domains of computation:

e rational numbers: like CHIP, PROLOGIII uses exact precision rational number arithmet-

ics. The numerical module handles linear inequations (where every variable is supposed

to be positive). It is essentially an incremental Simplex-like solver, which checks that the

accumulated numerical constraints can besatisfied (as soon as the resolution processtrig-

gers a new constrained clause, the solver is fed with the attached constraints: it ensures a
 

15For more information, contact Joxan Jaffar via e-mail (joxan@watson.ibm.com).
18 However, CLP(R) does not includea finite domainsolver, one of the main novelty of constraint programming.

People interested in finite domains maytry to get clp(FD), another free systern [CD93] available via anonymous

FTP at ftp.inria.fr:/INRIA/Projects/ChLoE/LOGIC_PROGRAMMING/clp_td.

21

 



complete resolution of the constraint system). Of course, it is also possible to specify some

(linear) criteria to be optimized. Note that in addition to traditional Simplex techniques,

much attention has been paid to strict inequalities.

PROLOGIII also allows the specification of non-linear constraints. They are in fact
delayed until the binding of some variables makes them linear. If it is not the case, the
solving process may give an inconsistent set of constraints as answer, without detecting

the inconsistency.

PROLOGIII does not naturally handle discrete domains. Nevertheless, it is possible to

express somelinear constraints over integers: linear arithmetics constraints over integers

are first solved in Q. Enumeration predicates must be used in order to find an integer

solution.

e booleans: the boolean module is based on clausal forms. The underlying algorithms

are incremental versions of the SL-resolution algorithms. They are able to check the

consistency of a set of boolean constraints; moreover, they simplify the constraint system

into a set of constraints involving a minimalset of variables.

e finite lists (or finite strings): for finite strings, there exists a single function to concat-
enate two strings, denoted by “.” and the only constraint is the equality constraint.

PROLOGIII delays the evaluation of any string constraint until the length of the string is

known. Technically, the string solver is based on a restricted string unification algorithm.

PROLOGIII is developed and distributed by PROLOGIA (France). It is an interpreter with

possible connections to the C language. It is available on Unix workstations, PC and Macln-

tosh. While the other constraint-based tools focus on big industrial accounts, PROLOG III was

first successfully distributed to the academic and research fields. Let us nevertheless cite two

applications: the first one is an expert system analyzing failures in motors (used by Daimler-

Benz and Bosch, Germany). The second one (for Delacroix, France), optimizes the cutting of

woodpanels.

4.3 CHIP V4

Like PROLOG III, CHIP V4is a Prolog-based constraint tool. It is a direct heir of the ECRC

research prototype CHIP, but differs from the prototype in many aspects (notice that the ECRC

continues to develop its own system, ECLIPSE, which, unlike Cuip V4, is an open system). In

a CHIP program, constraints are not syntactically distinguished from the other predicates.

Cup provides a large number of pre-defined constraint predicates, on different domains of
computation:

e integers / finite domains: the most important feature of the CHIP system is the intro-

duction of arithmetic constraints over finite domains. In addition, a rich set of symbolic

constraints is provided (for instance, the “alldifferent(Variable_List)” predicate,

which specifies that all the variables in the list must have different values; let us also cite
the cumulative constraint, dedicated to scheduling applications, see Section 5).

Classical constraint propagation methods (e.g., arc-consistency enforcing) originating

from the CSPfield are used to handle finite domain constraints. Since they are of course

incomplete, choice predicates are also provided which allow the generation of values for
the finite domain variables.

Moreover, minimization is done using Branch & Bound: the predefined predicate

“min_max(Goal,C)” finds a solution which minimizes the maximal valuein list of cost

22

 



terms C. In practice, this is done by finding a first solution, evaluating C and then re-

starting the search with a new constraint requiring C to be lower than this value. Never-

theless, as discussed in [vH89], optimization problemsresolution is still to be enhanced.

e rationals: linear rational constraints are handled by an extended Simplex algorithm as-

sociated with some Gaussian elimination. Only linear arithmetic constraints are allowed

in Cu1p V4. Therational constraint solver is then obviously complete. Note that optim-
ization predicates over rational linear constraints are also provided.

e booleans: boolean constraints are solved by a variable elimination based boolean uni-

fication algorithm, which is totally deterministic but still complete. Nevertheless, since

constraint solving in boolean algebrais NP-complete, CHIP may encounter problems which

cannot be solved in a reasonable time (this is of course a general problem, which may

also occur in other languages).

Finally, Cup gives the user the possibility to define its own constraints and control their

execution, via the use of demons: these have the effect of re-evaluating a specified goal each

time a given triggering event (such as a change in a variable domain) occurs. This mech-
anism implements local consistency algorithms for user-defined constraints. The declarative

“if-then-else” construct also allows a (limited) way of communicating information between

heterogeneous constraints.

Culp V4 is developed and distributed by CosyTEc (France). The product also offers
graphic capabilities, connections to databases and connections to C language. It runs un-
der Unix (Sun, IBM, HP, Dec) and Dos (PC). Many applications have been developed, for

instance, the planning application “Plane” [BCF95] provides 5-year schedules for Dassault-

Aviation (France) and the multi-user scheduling tool developed for Monsanto (Belgium).

4.4 ILOG Solver/Schedule

ILOG-SOLVERis often described [JM94] as a C++ library that implements CSP algorithms on
finite and floating point domains rather than as a CLP language. Presumably, this is due to

the fact that SOLVER does not use the usual Horn clauses language and does not include a

solver on rational or finite trees.

Anyway, this description is somewhat unfair, since SOLVER includes an extension of C++

that enables the expression of non-determinism,traditionally offered by Horn clauses in other

languages. The domainoffinite/rational trees is not included simply because it does not seem
useful for the combinatorial problems addressed by SOLVER.

SOLVER provides several classes of variables, each implemented as a C++-class. These
classes define the domains handled by the language:

e integer variables, whose domainis either an interval or an enumeration of integers. These

variables can be involved in linear or non linear arithmetic constraints. Non linear con-

straints are propagated. According to the authors [Pug94], the handlingis similar to the
propagation mechanism described in [vH89].

e floating point variables, whose domainis an interval. These variables can be involved in

linear and nonlinear arithmetic constraints, or monotonic operators such as “log”. The
underlying solver consists of a limited form of arc-consistency enforcing which, according
to the authors, owes much to [Lho93}.

23

 



 

 

 

 

%. &. oy “2,nd .
ag S,%,,%,fan» Oe

te Me, %, ee, ‘&, %, Me, Se, &
> GH “Sp “Sp MW % HM G

CLP(R) - + 0909- - =~ + 0° =
Protoc IIT}/+ - + - + + 9 0° =

CHIP -— + 0 + + +:°04+ ~-
SOLVER -~ -~- - + + - + + +  

+: constraints are handled on this domain

o: authorized variable type, no constraints

—: non-existent variable type

Table 1: Domains addressed in each language

e boolean variables (domain {true, false}). These are also handled using constraint propaga-

tion.

e set variables, whose domain is a set of sets. Initially, the domain of such a variable

contains all the subsets of a given initial set of objects. The constraints that may be

expressed state that some elements must be in the set, that other should be excluded,or

can limit the range of the cardinality of the set.

All these constraints, are handled using a uniform underlying constraint propagation mechan-

ism, related to arc-consistency enforcing. Some additional “symbolic constraints” are provided

and the user has the ability to define ad-hoc propagation mechanisms for user defined con-

straints.

Finally, the library tries to offer “object oriented” features: members of user-defined classes

may be “CSP” variables and the user may define “constraints of classes”, which are inherited

by instances.

SOLVERis developed and distributed by ILoc (France). The product, distributed as a C++
library, is fully compatible with all other ILog C++ software components, including connection

to databases, graphical interfaces, rule-based programming... It runs under several Unix-based

systems and under Windows (PC). SOLVER has been used to tackle several real combinatorial

problems, from locomotive scheduling used by the sNCF [Pug92] to personnel management in
the French army [PPMD94].

ILOG-SCHEDULE[Pap94] is a C++ library of scheduling object classes that automates the

use of SOLVER for representing finite capacity scheduling problems. It offers tuned constraint
propagation mechanisms for the usual constraint types that occurs in scheduling. Typical

classes include activities and various resources types (renewable or not, unary orfinite ca-

pacity...). See Section 5 for a first approach of job-shop-scheduling problems using a CLP
language.

4.5 Summary

Table 1 gives an overview of which domains are addressed by which CLP languages. The lan-

guage CHIP appears to be the more general CLP language. This judgment should be somewhat

tempered. Indeed,all the languages which handle finite domains can also handle booleans and

24

 



integers, with the ability of handling non convex domainssuch as {1, 2,3, 7,8,9}. PRoLoe III

mayalso handleintegers (rationals with a denominator equal to one), but it cannot handle non
convex domains. Since the Simplex only proves satisfiability in Q, an expensive enumerating

process, as for finite domains, must be used.

Note also that one single problem may often be formalized using different models: a schedul-

ing date may be modeled as integer, rational or floating point numbers.

More importantly, if several constraint solvers exist in the same language,it is often im-

possible to use the solvers simultaneously on “mixed” problems, where more than one typeof

variable occurs in the same constraint, because it is usually impossible to relate a variable from

one domain to a variable from another domain. For instance, the relation between a rational

and its integer part cannot be expressed as a constraint in CHIP. Along the sameidea,it

is usually not possible to associate a boolean variable to the fact that a given constraint is

satisfied, e.g., 2= (x < y).

Thanks to its underlying uniform constraint propagation mechanism, SOLVERis quite ad-

vanced in this direction and can handle some “mixed” constraints. For example, a constraint

of equality exists between floating point and integer variables.

5 Application to Job-Shop Scheduling

A scheduling problem arises when a set of interdependent tasks is to be organized in time. Such

a situation appears for example in project planning, service activities, manufacturing shops,

computer systems or examination timetabling. The problem is to locate a set of tasks in time,

each task needing one or several resources during its execution. The constraints to satisfy may

be various: technological (sequencing, routing), resource (limited capacity), temporal location
(release dates, deadlines), ... Most optimization problems in the scheduling field are NP-
hard [GJ79]. To find solutions to these combinatorial problems, operational research developed
exact procedures like Branch & Bound,in orderto find lower and upper boundsof the optimal

solution, or designed heuristics with some refinements specific to the problem at hand for
pruning the search space [ML93]J.

Scheduling problems have been widely studied in the literature (Bak74, Gra81, GOT93,

Pin95]. Amongst manydifferent typologies, a basic classification may be based on the resource

environment: single machine, parallel machines, flow-shop, job-shop, open-shop or resource-
constrained problems.

In this section, an illustration of the application of CLP to scheduling problemsis given

through the job-shop scheduling problem, as in [Wal94]. The following examples of modeling

are written in the same languagefor the sake of unity. The CHIP language was chosen and more

specifically its CSP-based solver over finite domains. A domain variable (the CHIP equivalent

of a CSP variable) is defined via “:: a..b” where “::” is the domain definition operator and

“a..b” a domain of consecutive set of integers. Furthermore, constraints on finite domains are

preceded by the special character “#” to distinguish them from other arithmetical constraint
types in CHIP.

5.1 Problem Statement

In the job-shop problem a set of n jobs has to be processed using a set of m machines. Each
job consists of a set of ordered tasks forming a routing; each task runs on a separate machine.

At any time a machine can process only one task. Preemption i.e., interruption of a started

25

 



task before completion, is not allowed. The objective is often to find a schedule that minimizes

the makespan, i.e., the total duration.

This section aims at giving information about how to simply model such problem, deriving

benefit from assets of CLP. Facing the important numberof constraints for large job-shop

scheduling problems, an approach using CLP does not have to solve the constraints involved

but to propagate them by local consistency techniques, in order to reduce the search space as

drastically as possible.

5.2 Precedence constraints

The jobs are considered one after the other. For each job a list of tasks is given in the order

of the routing. Thus task i (with start time T; and duration D;) from the list must precede
task i+ 1. To satisfy this precedence constraint, one must post a relative location constraint

between tasks 7 and 7+ 1:

T, + Dj < Ty41-

To each task of a job is also associated a start domain variable, posting in this way an absolute

location constraint (Max corresponds to a given horizon).

job((T1]T] , (D11D) ,Max) :-

Ti :: 0..Max, % Declaration of the first variable

routing([T11T] , (D11D) ,Max).

routing([Tm] , [Dm] ,Max) :-

Tm + Dm #<= Max. % Constraint on the latest variable

routing((T1,T21T],[D1,D2/D] ,Max) :-

T2 :: 0..Max, % Declaration of other variables

Ti + Di #<= T2, % Precedence constraint

routing ([T21T] , [D2|D] ,Max).

5.3 Disjunctive constraints

As it is not possible to process simultaneously two tasks on the same machine, one needs

to generate disjunctive constraints between competing tasks. In a general way, a disjunctive

constraint (or competition) between a pair (i, 7) of tasks states that i precedes j or j precedes
i. It yields:

(T; +D;< i) or (T; + D; < T;).

Different ways for modeling this kind of constraint are presented below.

1. Choice points

The most natural way to model an alternative is made through the introduction of choice
points [DSv90, vH89]:

competition(Ti,Di,Tj,Dj) :- Ti + Di #<= Tj. 4 i precedes j
competition(Ti,Di,Tj,Dj) :- Tj + Dj #<= Ti. % j precedes i

This implementationis clearly nondeterministic due to its transcription into a disjunction

of constraints (one packet of two clauses). Hence this way of modeling a disjunctive

constraint is highly inefficient: indeed, for n competing tasks, it develops a search space
in O(2").

26

 



2. Conditional propagation

The conditional propagation of CutP allows the programmerto avoid the aforementioned

choice points. It uses a demon mechanism to limit the nondeterministic behavior of pre-

vious implementation by postponing the choices until enough information can be deduced

from the constraints. As soon as the if condition is true for all possible values for the

variables, the then branch is selected!”. Thus the principle of the disjunctive constraint

implementation is the following: if the minimal finish time of a task j is larger than the
maximal start time of another task i, i must be scheduled before j.

competition(Ti,Di,Tj,Dj) :-

if Tj + Dj #> Ti then Ti + Di #<= Tj,

if Ti + Di #> Tj then Tj + Dj #<= Ti.

Although moreefficient than the previous implementation, this method keeps the incon-

venience to have to wake the demon for pruning the search tree.

3. Cardinality operator

Using the sameprinciple of conditional propagation, van Hentenryck & Deville [vHD93]

introduce the cardinality operator to impose the minimum and maximum numberof con-

straints to be satisfied among a set of constraints. This operator is a mathematical

abstraction which implementsthe principle “Infer simple constraints from difficult ones”,

at the operational level. Thus with such an operator exactly equal to 1, the disjunctive

constraint may be written as follows:

competition(Ti,Tj,Di,Dj) :-
cardinality(1,1,(Ti+Di #<= Tj, Tj+Dj #<= Ti]).

Note that in the case of two disjunctive constraints C1 and C2, the cardinality operator

may be expressed thanks to the conditional propagation [Cos93}:

or(C1,C2) :-

if C1 then true else C2,

if C2 then true else C1.

The authors show that non-primitive constraints built with the cardinality operator give

comparable (or even better) results to builtin constraints, but really improving the flex-

ibility of utilization and expressiveness of cardinality constraints (in order for example to
model more general problems than the disjunctive one).

4. The cumulative primitive

The previous implementations concern the so-called bound propagation also known as

“2B-consistency” [Lho93], that is to say these rules adjust the extreme boundsof the
domain variables (head and tail of a task). However, the disjunctive constraints could

also attempt to achieve arc-consistency, without posting any choice point or waiting for

a demon to be awaken.

This is the goal of the cumulative constraint of CHIP which aims at solving resource-

constrained scheduling problems; it can also be used for disjunctive problems such as the

job-shop problem where the amountsof resources (intensities or capacity) are all equal
to 1.
 

17Using “if-then-else”, the else branch is executed when the condition is alwaysfalse.

a?

 



competition(Ti,Di,Tj,Dj) :-

cumulative((Ti,Tj] , (Di,Dj],[1,1],1).

In [AB92], the designers of the cumulative primitive present some results in placement,
project management and job-shop scheduling problems. In the latter case and for the

famous 10 x 10 benchmark [FT63], it seems that a simple programming using the cu-

mulative primitive and a labeling procedure based onfirst-fail principle, allow them to

obtain the optimalsolution of cost 930 in 25’ on a Sun4 workstation (12Mb) whilea first
solution is found with a cost of 1088 in 1”.

In the examination timetabling framework [BDP95], this kind of implementation did not
realize sufficient pruning to get acceptable results. The authors improved the efficiency

by using another builtin predicate (“distance”!*) whose utilization has been possible

due to the presence of symmetries in the problem constraints.

While using the cumulative primitive without generating any solution, one can notice that

the impact of the constraint propagation may vary with the order in which constraints

are posted. Hence this builtin predicate, running as a black-box, uses ad-hoc propagation

and does not seem to achieve arc-consistency.

5. Arc-consistency

The disadvantage raised previously led us to build our own primitive for arc-consistency

enforcing. It satisfies proposition 1 (7; and T; stand for the earliest and the latest start
times of i, respectively):

Proposition 1 (see Fig. 4) IfT,+D;+D; >T; then T, € [(Z,,T; — D,JU[L, + D;,T\).

Proof. Two sequences are possible between and j: i before j orj before i. Ifi beforej,

T; + D, < T;. If j before i, T, > 1, + D,. It yields: T; € (Z,,T; — Dj] U[Z, + Dj, Ti].

Thus if both intervals are disjoint T; ¢ IT; — DT, + D;{ with T;-D< T,+D;.0

i UMMM=————KSS
to 4

 

Figure 4: Inconsistent values for start time of 2

Proposition 1 leads to the removal of inconsistent dates of T;, 7.e., in IT; — D,,T; + Df.

The implementation uses the “notin” predicate which allows the removal of values inside

a domain, and the conditional propagation where the same domain variableis used in each

hand of the inequality: in the lines commented by % check proposition 1, in theleft

hand the maximum possible value of the variable is examined whereas it is the minimum
one in the right hand.

revise(Ti,Di,Tj,Dj) :-

D is Di + Dj,
if Tj # Tj +D % check proposition 1

then remove_values(Ti,Di,Tj,Dj), % remove values in Ti

if Ti #< Ti + D % check proposition 1

then remove_values(Tj,Dj,Ti,Di). % remove values in Tj
 

18The predicate “distance” imposes an absolute distance between two domain variables.

28

 



remove_values(Ti,Di,Tj,Dj) :-

domain_info(Tj,Tjmin,Tjmax),
Min is Tjmax - Di + 1,

Max is Tjmin + Dj - 1,

notin(Ti,Min,Max).

Note that the builtin information predicate “domain_info” returnsstatically the smallest

and the largest values in the domain of the variable. It is then interesting to handle demon-

propagation into the “remove.values” predicate (not detailed here), so as to obtain a

complete dynamic behavior.

5.4 Edgefinding

The previous disjunctive constraint (whatever its implementation) can deduce strong conclu-
sions for the global sequencing. In practice, time windowscan be very large related to processing

times, and this rule may be useless and prune no value. It could then be more promising to

study the extreme positions of a single task i relatively to a group S of other ones (i ¢ S).

This technique whose principle is explained through the two following propositions, arises from

constraint-based analysis [|BBD*89, ERV76, ERV80}, immediate selections [CP94] and has also
been studied in [Nui94]; It is called edge finding in [AC91].

Proposition 2 (see Fig. 5) If max,cs(T,+D,)—-T,; < discs Det D; then S is non-posterior

to i, t.e., i cannot be scheduled before all activities of S.

Proof. Suppose i precedes all activities of S and let z € S be the task scheduled last. Thus
(T, + D,) > (LZ, + Di + Myes Ds) > (maxses(T, + D.)) > (Tz, + Dz) which leads to the

contradiction T, > T,. O

sol! : i

bs

: L i Z
st | CS

|ZZ

Figure 5: Non-posterior set

If S is non-posterior to 7 then at least one task of S must precede i. Thus it can be deduced

a lower bound of the start time of 1; it is updated to the smallest earliest finish time among
the tasks of S (the minimum and maximum predefined predicates are used).

non_posterior_set(Ti,Di,S) :-

set_duration(S,DS), % Sum of durations of §

Dis Di + DS,

set_ends(S,Ends), % List of end variables of S

minimum(Min_end,Ends),

maximum(Max_end,Ends) ,

if Max_end #< Ti + D

then Ti #>= Min_end.

29

 



Proposition 3 (see Fig. 6) If max,cs(T, + Ds) — minsesT, < Do,¢5 D, + Dj then is non-
inserable into S.

Proof. Similar to previous one. O

 

[ 7

$3 i :

r 1
82 | |

| :

so
L J

i WUE

Figure 6: Non-inserable task

If i is non-inserable into S then i must be scheduled either before or after S. Moreover, if

S has previously been proved to be non-posterior to 7 then 7 is necessarily scheduled after all

tasks in S. Thus the start time of i can be adjusted to the earliest finish time of whole set S,

value much stronger than with the sole non-posterior condition.

non_inserable_task(Ti,Di,S) :-

set_duration(S,DS), D is Di + DS, set_ends(S,Ends),

set_starts(S,Starts), %, List of start variables of S

minimum(Min_start ,Starts),

maximum(Max_end,Ends) ,

if Max_end #< Min_start + D

then Ti #>= Min_start + DS. % Iff S non-posterior to i

An analogous reasoning symmetrically establishes upper bound on the start time of a task

from a non-anterior set condition. With non-inserability condition, one can derive that 7 pre-

cedes all tasks in S and then refine this upper bound.

6 Conclusion

The constraint programming framework is mostly known becauseof noticeable achievement in

solving large combinatorial problems [Yap93, BCF95, Pug92, PPMD94]. These results have

been obtained both because of the efficiency of the underlying solvers and the extra generality

offered by the host non-deterministic Prolog language.

From the end of the eighties to now, the CLP schemehas integrated an increasing amount

of solvers and domains. There are now CLP languages that use intricate solvers or which are
connected to general systems such as MATHEMATICA!*. An important shortcoming of most
existing systems is the absence of relations between domains:it is not yet possible to think of

hybrid models where constraints are propagated between several domains, even with incomplete

satisfaction mechanisms. For instance, a boolean variable cannot be usually associated to

the truth of one inequality between integer variables, achieving by that implicit propagations
between boolean and finite domain solvers.
 

19See [FAQ95] for an exhaustivelist of existing CLP implementations.

30

 



Such hybrid models would however be promising to model both numerical (time) and sym-

bolic (sequencing) constraints of scheduling problems, and to derive inferences from a computa-

tion domain to another one. On the contrary, certain languages propose “global” primitives for

the solving of some specific problems (e.g., combinatorial problems and moreprecisely schedul-

ing). Surprisingly, although their underlying mechanismsare not complete, they are often kept

top secret and there is no other way for the user than using these primitives as black boxes.

Economical accounts favors more and more the competition between constraint program-

ming tools. It has the advantage to give rise to the application of methods developed by

academics but also to bring some new theoretical problems to light. Unfortunately, it also

leads to the “closing” of the systems, and plays a great part in missing the primary objectives

of CLP, i.e., formalizing and integrating general mechanismsof constraint propagation.

For these reasons, nowadays, the only way to experiment hybrid solvers or to design user-

defined propagation mechanismsis either to build your own system from scratch or from con-

straint programming libraries such as ILOG-SOLVER (which has perhaps the largest set of
event-handling primitives), or to implement it as meta-level CLP interpretor [Boc93].

On the contrary, the authors think that today there still exist good reasons to maintain

Logic Programmingas a basic natural framework for constraint programming,in particular the

need of high-level languages for a concise and declarative representation of problems, and the

rapid prototyping of constraint-oriented applications.

These kinds of facilities require a well-founded generalization of the semantical definition

of constraints in CLP languages?’ whereas the trend of improvingefficiency has led to develop

separately then simply juxtapose each of the constraint domains, their solvers and primitives.

References

[AB92] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling

and placement problems. In Actes des Journées Francophones de Programmation
Logique (JFPL’92), pages 51-66, Lille, France, 1992.

[AC91]} D. Applegate and W. Cook. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149-156, 1991.

[ACM92] Special section on logic programming. Communications of ACM, 1992. 33(7).

[AS93} J-M. Alliot and T. Schiex. Intelligence Artificielle et Informatique Théorique (in
French). Cepadues, Toulouse, France, 2nd edition, 1993. ISBN : 2-85-428-324-4.

[ASS*88] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic pro-

gramming language CAL. In Proceedings of the International Conference on Fifth

Generation Computer Systems (FGCS-88), ICOT, Tokyo, pages 263-276, Decem-
ber 1988.

[Bak74] K.R. Baker. Introduction to sequencing and scheduling. John Wiley & Sons, New-
York, 1974.

([BB88] J-M. Boi and F. Benhamou. Boolean Constraints in Prolog III. PhD thesis, Groupe

d’Intelligence Artificielle, Université d’Aix-Marseille, Luminy, November 1988.
 

20Maybe with the brand-new version of PROLOGIA, PROLOGIV [BT95]?

31

 



[BBD* 89]

[BCF95]

[BDP95]

[BFR95|

[Boc93]

[Bry92}

[BT95]

[Buc85}

[CD93]

[CKvC83]

[CM81]

[Coh90]

[Col82a]

{Col82b}

[C0089]

[Cos93]

[CP94]

G. Bel, E. Bensana, D. Dubois, J. Erschler, and P. Esquirol. A knowledge-based

approach to industrial job-shop scheduling. In A. Kusiak, editor, Knowledge-based

systems in manufacturing, pages 207-246. Taylor & Francis, 1989.

J. Bellone, A. Chamard, and A. Fishler. Constraint logic programmingdecision

support systems for planning and scheduling aircraft manufacturing at dassault

aviation. In Third International Conference on the Practical Application of Prolog

(PAP’95), pages 63-67, Paris, France, 1995.

P. Boizumault, Y. Delon, and L. Péridy. Constraint logic programming for exam-

ination timetabling. Journal of Logic Programming, 1995. To appear.

C. Bessitre, E.C. Freuder, and J.C. Régin. Using inference to reduce arc-consistency

computation. In Proc. of the 14** IJCAI, Montreal, Canada, August 1995.

A. Bockmayr. Logic programming with pseudo-boolean constraints. In F. Ben-

hamou & A. Colmerauer, editor, Constraint Logic Programming: Selected research,

Logic ProgrammingSeries, pages 327-350. MIT Press, 1993.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24(3):293-318, September 1992.

F. Benhamou and Touravane. Prolog IV : langage et algorithmes. In Actes des

Journées Francophones de Programmation en Logique (JFPL’95), pages 51-64, Di-

jon, France, 1995.

B. Buchberger. Grébner bases: An algorithmic method in polynomial ideal theory.

In N. K. Bose, editor, Multidimensional Systems Theory, pages 184-232. Reidel

Publishing Co., 1985.

P. Codognet and D. Diaz. Boolean constraints solving using clp(fd). In Interna-

tional Logic Programming Symposium, pages 529-539, 1993.

A. Colmerauer, H. Kanoui, and M. van Caneghem. Prolog, bases théoriques et

développements actuels. Techniques et Sciences Informatiques, 4(2):271-311, 1983.

(in French).

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag, 3rd

edition, 1981.

J. Cohen. Constraint logic programming languages. Communications of the ACM,

33(7):52-68, July 1990.

A. Colmerauer. Prolog and infinite trees. In New York Academic Press, editor,

Logic Programming, pages 231-251. K.L. Clark and 8.A. Tarnlund, 1982.

A. Colmerauer. PROLOGII reference manual and theoretical model. Technical

report, Groupe Intelligence Artificielle, Université Aix-Marseille II, October 1982.

M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89-95,
1989.

Cosytec. Cuip Reference Manual, June 1993. COSY/REF/001.

J. Carlier and E. Pinson. Adjustment of heads andtails for the job-shop problem.

European Journal of Operational Research, 78:146-161, 1994.

32

 



[Dav87]

[dk89|

[DP60}

[DSv90]

[ERV76]

[ERV80]

[FAQ95]

[Fre78]

[FT63|

[G.J79|

(GOT93]

[Gra81]

[HIM+99|

(HL83}

[HMS92}

[Hoo88}

BE. Davis. Constraint propagation with interval labels. Artificial Intelligence,

32(3):281-331, July 1987.

J. de Kleer. A comparison of ATMS and CSP techniques. In Proc. of the 11**

IJCAI, pages 290-296, Detroit, MI, August 1989.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal

of the ACM,7(3):210-215, 1960.

M. Dincbas, H. Simonis, and P. van Hentenryck. Solving Large Combinatorial

Problems in Logic Programming. Journal of Logic Programming, 8(1-2):74-94,

January-March 1990.

J. Erschler, F. Roubellat, and J-P. Vernhes. Finding someessential characteristics of

the feasible solutions for a scheduling problem. Operations Research, 24(4):774-783,

1976.

J. Erschler, F. Roubellat, and J-P. Vernhes. Characterizing the set of feasible

sequences for n jobs to be carried out on a single machine. European Journal of

Operational Research, 4(3):189-194, 1980.

FAQ of the comp.constraints newsgroup. Available at URL http://web.cs.-
city.ac.uk/archive/constraint/, 1995.

E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,

21:958-966, November 1978.

H. Fisher and G.L. Thompson. Probabilistic learning combinationsof local job-shop

scheduling rules. In J.F. Muth & G.L. Thompson, editor, industrial Scheduling,

pages 225-251. Prentice Hall, Englewood Cliffs, NJ, 1963.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-completeness. W.H. Freeman and Company, New York, 1979.

GOThA. Les problémes d’ordonnancement. RA/RO-RO, 27(1):77-150, 1993. (in

French).

S.C. Graves. A review of production scheduling. Operations Research, 29:646-675,

1981.

N.C. Heintze, J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R)

Programmer’s Manual. IBM T.J. Watson Research Center, PO Box 704, Yorktown

Heights, NY 10598, September 1992. (Version 1.2).

T. Huynh and C. Lassez. A CLP(R) options trading analysis system. In Robert A.

Kowalski and Kenneth A. Bowen, editors, JICSLP’88: Proceedings 5th Interna-

tional Conference and Symposium on Logic Programming, pages 59-69, Seattle,
Washington, U.S.A., 1988. MIT Press.

N. Heintze, 8. Michaylov, and P. Stuckey. CLP(R) and someelectrical engineering

problems. Journal of Automated Reasoning, 9:231-260, October 1992.

J.N. Hooker. A quantitative approach to logical inference. Decision Support Sys-

tems, 1(4):45-69, 1988.

33

 



[Hyv92]

[Imb93]

[JL87]

[JM94]

[JMSY93]

([Kar84]

[Kha79}

[Kor85]

[Kow79]

(Lho93]

(LM92]

{Mac?7|

[MJPL90}

[ML93]

[Mon74]

{[Nad89]

[Nui94]

E. Hyvénen. Constraint reasoning based on interval arithmetic: the tolerance

propagation approach. Artificial Intelligence, 58:71-112, December 1992.

J-L. Imbert. Fourier’s elimination: Which to choose? In First Workshop on Prin-

ciples and Practice of Constraint Programming, pages 119-131, Newport, April

1993.

J. Jaffar and J-L. Lassez. Constraint logic programming. In POPL’87: Proceedings
14th ACM Symposium on Principles of Programming Languages, pages 111-119,

Munich, January 1987. ACM.

J. Jaffar and M.J. Maher. Constraint logic programming: a survey. The Journal of

Logic Programming, 19(20):503-581, 1994.

J. Jaffar, M.J. Maher, P.J. Stuckey, and R. Yap. Projecting cLP(R) constraints.

New Generation Computing, 11:449-469, 1993.

N. Karmarkar. A new polynomial time algorithm for linear programming. Com-

binatorica, 4:373~395, 1984.

L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Dokl.,

20(1):191-194, 1979.

R.E. Korf. Depth first iterative deepening : An optimal admissible tree search.

Artificial Intelligence, 27:97-109, 1985.

R.A. Kowalski. Logic for Problem Solving. North Holland, 1979.

O. Lhomme. Consistency techniques for numeric CSPs. In Proc. of the 1%" IJCAI,

pages 232-238, Chambéry, France, August 1993.

J-L. Lassez and K. McAlloon. A canonical form for generalized constraints. J.

Symbolic Computation, 13:1-24, 1992.

A.K. Mackworth. Consistency in networksof relations. Artificial Intelligence, 8:99-

118, 1977.

S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-scale constraint

satisfaction and scheduling problems using a heuristic repair method. In Proc. of
AAAI-90, pages 17-24, Boston, MA, 1990.

B.L. McCarthy and J. Liu. Addressing the gap in scheduling research: A review of
optimization and heuristic methods in production scheduling. International Journal

of Production Research, 31(1):59-79, 1993.

U. Montanari. Network of constraints: Fundamental properties and applications to
picture processing. Inf. Sci., 7:95-132, 1974.

B.A. Nadel. Constraint satisfaction algorithms. Comput. Intell., 5(4):188-224,

November 1989.

W.P.M. Nuijten. Time and resource constrained scheduling. PhD thesis, Eindhoven

University of Technology, 1994.

34



[Pap94]

[Pin95)

[PPMD94]

[Pug92|

[Pug94]

[PW78]

[Rob65]

[SH91]

[Ste80}

[Tar48]

[Tsa93]

(Ui66]

[vH89]

(vHD93}

(vHDT92|

[Wal72]

[Wal94]

C. Le Pape. Implementation of resource constraints in ILOG-SCHEDULE: A library

for the development of constraint-based scheduling systems. Intelligent Systems

Engineering, 3:55-66, 1994.

M.Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice-Hall, Englewood

Cliffs, NJ, 1995.

C. Le Pape, J-F. Puget, C. Moreau, and P. Darneau. PMFP: Theuse of constraint-

based programming for predictive personnel management. In Proc. of the 11%

ECAI, Amsterdam, The Netherlands, 1994.

J-F. Puget. Object oriented constraint programming for transportation problems.

In Proc. of ASTAIR’92, 1992.

J-F. Puget. A C++ implementation of CLP. Technical Report 94-01, Nog, 1994.

M.S. Paterson and M.N, Wegman.Linear unification. JCSS, 16:158-167, 1978.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12:23-44, 1965.

G. Sidebottom and W.S. Havens. Hierarchical arc consistency applied to numeric

processing in constraint logic programming. Technical report, Center for Systems
Science, Simon Fraser University, Burnaby, Canada, 1991.

G.L. Steele. The definition and implementation of a computer programminglan-

guage based on constraints. Technical report, Dept. of Electrical Engineering and

Computer Science, M..T., August 1980.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of

California Press, 2d revised edition, 1948.

E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press Ltd., Lon-

don, 1993.

J.R. Ullman. Associating parts of patterns. Inform. Contr., 9:583-601, 1966.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-

ming Series. MIT Press, Cambridge, MA, 1989.

P. van Hentenryck and Y. Deville. The cardinality operator: A new logical connect-

ive for constraint logic programming. In F. Benhamou & A. Colmerauer, editor,

Constraint Logic Programming: Selected research, Logic ProgrammingSeries, pages

383-403. MIT Press, 1993.

P. van Hentenryck, Y. Deville, and C. Teng. A generic arc-consistency algorithm

and its specializations. Artificial Intelligence, 57:291-321, 1992.

D. L. Waltz. Generating semantic descriptions from drawings of scenes with shad-
ows. Technical Report AI271, M.I.T., Cambridge MA, 1972.

M. Wallace. Applying constraints for scheduling. In B. Mayoh, E. Tyugu, and

J. Penjaam, editors, Constraint Programming: Proceedings 1993 NATO ASI Parnu,

Estonia, NATO Advanced Science Institute Series, pages 161-180. Springer-Verlag,
1994,

35

 



[Yap93] R.H.C. Yap. A constraint logic programming framework for constructing DNA
restriction maps. Artificial Intelligence in Medicine, 5:447-464, 1993.

36

 


