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Abstract

A recent developmentin (0-1) integer programming has been theuse oflogic

cuts. These are cuts that can be derived from the logic of the integer program-

ming model and although not binding on the LP relaxation optimal solution, do

improve the traversal of the branch and bound tree. This note will demonstrate

how logic cuts and other valid inequalities can be developed for and appended

to certain standard (0-1) integer programs.

Keywords : bin packing problem, capacitated clustering problem, generalised assign-

ment problem,logic cut, valid inequality
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1. Introduction .

A paper by Hooker (1992) developed valid cuts for (0-1) integer programs

(IP’s) using the process of generalised resolution for a series of standard (0-1)

IP’s. In a later paper, Hooker et al. (1994), the idea of a logic cut was

introduced and further demonstrated to be useful in various problems in

Hooker(1995). An algorithm for generating logic cuts was given in Wilson

(1995). Logic cuts are cuts which can be derived from the logic of a (0-1) IP

model. The cuts were originally derived for network problems to avoid the

IP solution process having to considerillogical flows in the network. Such

network problems arise in the oil and chemical industries and a fragmentof

one is illustrated in Figure 1 and discussed below.

 

28

 



Example 1.1

In Figure 1 x, represents a flow of crude oil which may be processed using

converters A or B (or a mixture of both) and x, and x, represent the quantities

of crude sent to converters A and B,respectively.

Clearly x, 2 X,+%.-

After processing at A three products are produced and x,, x, , and x,

represent their quantities.

XS AG; %Saxy, Sar,

wherea, , a,, a, are constants such that a,+a,+a,<1.0.

A similar situation exists at B where x, , x, , and x,are produced. Set-up costs

are incurred when each of processes A or B are used and consequentlyit

may not be optimal to use both. (0,1) variables d, , d, , and d, are introduced

to denote whether there is any flow to nodes1, A or B, respectively, and

x, S Md, j=1,2,3, where M denotes maximum flow

available to node1.

Two logic cuts can be addedto the IP model

d,s d,andd,<d,.

The cuts developed in Example 1 appear to be redundant, as processes will

not be “opened”, according to an optimal IP solution, unless they are needed

to provide a flow. However, Hookeretal. (1994) discovered that during the

solution of such network problems , branch and bound wassetting d

variables to the value 1 to allow for flows when the corresponding x variable

waszeroin the solution. Although these cuts have noeffect on tightening

the LP relaxation of an IP problem,they usually have useful effects on the

branch and bound tree when the problem is solved. The numberof nodes

required to solve the problem maybe reduced dramatically. In this note

several standard IP will be considered and logic cuts and other valid

inequalities will be derived from their models. The problem types

considered in sections 2-4 are (a) bin-packing problems (b) capacitated

clustering problems and (c) generalised assignment problems. In each .

section results on a simple case of the general problem will be given and
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extensions to other cases outlined. For solving manyof these problems the

branch and bound method ofIP is not always favoured and heuristic

approaches are used. However, as many heuristic approaches make use of

LP relaxations and partial use of branch and bound obtaining a tighter LP

formulation and aiding the branching process are both desirable features.

2. Bin-Packing Problems

2.1 The Standard Bin-Packing Problem

The bin-packing problem can bestated as, see for instance Martello and Toth

(1990):

given n items and n bins, with

w, = weightofitem j

c =capacity of each bin,

assign each item to exactly onebin so that the total weightof the items in

each bin is less than or equal to c and the numberofbins used is a minimum

ie.

minimise y, y; (2.1)
ial

subject to ywj%% SO; ie N ={1,... nh, (2.2)
jul

yx, =1 je N, (2.3)
inl

y,=Oorl ieN . (2.4)

x,=Oorl ie N,jeN, (2.5)

where y,=1 ifbiniis used;

0 otherwise,

x, = 1 if item j is assigned to bin i;

0 otherwise,

Oswseje N,c>0. (2.6)
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Example 2.1

If n=4 and one constraint from (2.2)is

2x, + 3X, + 4%+ 4x, S 7y, (2.7)
then a logic cutis

y,S Xn +xX,+%, +x, °

Further cuts, which are notlogic cuts, are

XS Yi eX S Yi %pSY,-XyS Y,- (2.8)

Such cuts can be added to the existing formulation.

In general, the following cuts are available for the bin-packing problem:

ys Sx, ie N, (2.9)
jel

and x; Sy; ié N,je N. (2.10)

Example 2.2

An example was generated withn = 50 andthecoefficients w, chosen

randomly from the uniform integer distribution [1,10] and c = Sw, /12.0.
jel

When cuts of the form (2.9) were added to the problem the following results

were obtained using the optimisation system Sciconic.

LP value LP nits nodes to opt total nodes total time

without cuts 12.565 363 123 231 102.8

with cuts 12.565 425 84 147 91.5

key:

nits = simplex iterations

opt = optimal solution.

All time are in CPU seconds on a Honeywell-9000.

As can be seen from this example, although the numberof simplex iterations

increases, the number of branch and bound nodesis reduced substantially

and thetotal time taken drops moderately. When cuts of the type (2.10) are

added,the situation becomes worse,indicating thatthe rise in overhead

caused by the cuts at the LP relaxation stage is not worth carrying. In such

circumstances it may be better to generate these cuts only when they are

31



violated, as can be done easily with certain optimisation software such as

XPRESS-MP. (See for instance Brailsfordet al. (1995)).

Othervariants of the bin-packing problem exist e.g. w, = w’,(differential

weights on bins) and c = ¢’, (bins of different sizes). In these cases conditions

such as w’, Sc’, i€ N,j € N,will be unlikely to hold butwill be replaced by

conditions like

for each j € N,thereexists an i € N, such that w’, $ c’,.

Cuts can then be developed analogously with (2.9) and (2.10). A further

generalisation involves replacing the right hand sideof (2.2) with

yo.
k=l

and they, variables with y,(k = 1,... I) in (2.2), (2.4) and (2.6) and the term

‘bin’ with the term ‘bin-group’in (2.6). The cuts (2.9) are replaced by

Dye s dx,
kel jul

and the cuts (2.10) by

x, S Dy.
k=l

2.2 The Bin-Unpacking Problem

Associated with the problem given by (2.1)-(2.6) there will be a

complementary problem. This maybe stated as, place the maximum

numberofbins in the space occupied by the items (where the bins and items

are as defined in Section 2.1). For convenience this problem will be named

the bin-unpacking problem. Mathematically the problem maybe stated as:

maximise )/y, (2.11)
izl

subject to _),w,x, 207, ieN (2.12)
fl

yx, =1 je N, (2.13)
i=l

y,=Oorl ie N (2.14)

x,=Oorl ie N,je N, (2.15)
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w,20,je N, Yiw,2c, c>0. (2.16)
jal

This problem is introduced to demonstrate that the cuts (2.9) and (2.10) will

be reversedin role for the problem given by (2.11)-(2.16). The cuts (2.9) and

(2.10) are valid for the problem given by (2.11)-(2.16), but this time (2.10) are

logic cuts and (2.9) are not. If the logic cuts (2.10) are violated by the LP

relaxation of (2.11)-(2.16) then the non-zero x variables would be

“reallocated” into constraints where y > 0 held in the solution. Thus if x is

non-zero it occurs in a constraint where y is non-zero.

2.3 The Capacitated Plant Location Problem

A problem related to the bin-packing problem is the capacitated plant

location problem, the problem of deciding which plants to open to satisfy

customers and assigning each customer to a plant-unit of a plant. Leung and

Magnanti (1989) provide a vertex packing formulation of the constraints of

the problem. The formulation is:

y,=1 if plant jis open;

0 otherwise,

and x,,=1 if customeriis assigned to unit k of plantj;

0 otherwise,

with the following constraints:

»Dx~e Ss! Vie M, (2.17)
HN BK,

Dire SY; Vje N, Vke K, (2.18)
aM .

Dre SY, Vie M, Vje N, (2.19)
mK,

y; © (0,1) Vje N, (2.20)

x, © {0,1} Vie M, Vje N,Wke K, (2.21)

whereM = {1,... ,m}, N = (1,... nj, K, = (1, ... k}.

Leung and Magnanti (1989) derive facets for this problem. Logic cuts of the

form



D Yap zy, vje N, (2.22)
eM ek,

can also be added to the formulation given by (2.17)-{2.21).

3. Capacitated Clustering Problems

This section will discuss the capacitated clustering problem andthe related

p-median problem.

3.1 The Capacitated Clustering Problem

The capacitated clustering problem (CCP) is:

allocate n points uniquely to p out ofm clusters such that the capacity of

each clusteris not violated and the points are allocated to maximise the

homogeneity of points within the cluster and, at the sametime, the

heterogeneity of the points between clusters (see for instance Mulvey and

Peck (1984), Osman and Christofides (1994)). The problem may be

formulated as:

minimise ) )id;x, (3.1)
i=l jel

subject to Yw,x, sW, je N={1,... nl, (3.2)
ist

Yx, =] ie M =({1,... ml}, (3.3)
jal

2, =p (3.4)

xy SY; ie M,je N, (3.5)

y,=Oorl ie M, (3.6)

x,=Oorl ie M,je N, (3.7)

where y,=1 if pointi is the centre of a cluster;

0 otherwise,

X,= 1 if point j is assigned to clusteri;

0 otherwise,
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d, = distance between pointi and pointj,

w, = weightof pointi if allocated to clusterj

W,= capacity of cluster j.

This problem has similarities to the bin-packing problem. Logic cuts may be

deduced for the problem given by (3.1)-(3.7) as follows:

ey 2y; je N. (3.8)

Example 3.1

A problem was generated with m =10 and n = 20forthe constraints given by

(3.1)-(3.7) and w, = 1(i€ M,je N),W,=5(j€ N), and p =5,andthen values

were chosen from the randomintegerdistribution [1,9] for d,. The problem

was solved withoutcuts and then the cuts (3.8) were added.

LP value LP nits nodes to opt total nodes total time

without cuts 39.0 68 3 5 0.88

with cuts 39.0 63 1 1 0.68

Thus the addition of logic cuts to the formulation aids convergence for this

problem.

3.2 The p-Median Problem

The p-median problem,see for instance Christofides and Beasley (1982), is

the problem of locating p facilities (medians) on a networkso as to minimise

the sum ofall the distances d, from each vertex i to its nearestfacility j. This

problem is clearly similar to CCP. It can be formulatedas:

minimise >, )id,x, (3.9)
i=l) fel

subject to Sx, S(n-})x, ie M=(1,... nj, (3.10)
iz]

Dx, =1 ie M (3.11)
jal

Yx, = P (3.12)
inl

x,=O0orl ie N,jeN. (3.13)

Cuts of the form
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Sx, 2X, (3.14)
al

maybe added to the formulation given by (3.9)-{3.13).

4. Generalised Assignment and Related Problems

4.1 The Generalised AssignmentProblem

The generalised assignment problem can be stated as, see for instance

Martello and Toth (1990):

given n items and m containers with

Pp, = profit of item j if assigned to containeri,

w,= weightof item j if assigned to containeri,

¢, = capacity of container i,

assign each item to exactly one container so as to maximise the total profit

assigned, withoutassigning to any container a total weight greater than its

capacity i.e.

maximise » p»PyXq (4.1)
isl j=

subject tow,x, Sc, ie M=(1,...,m), (4.2)
jet

¥x, =1 je N, (4.3)
inl

x,=Qorl ie M,je N,

x, = 1 if item j is assigned to containeri;

0 otherwise. (4.4)

Note: In someversions of the problem,if w,, = 0 for some i’,j’ in the above

then it is assumed that x,, is not a variable.

Cuts can be generated for the problem given by (4.1)-(4.4) as is illustrated in

the following small example.
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Example 4.2

Consider an instance of (4.1)-(4.4) with m =3 and n = 4 wherethe constraints

(4.2) are

2x,,+ X,, + 2x, +2x,53 (4.5)

2x,, + X,, + 2x, + 2x, $3 . (4.6)

X%, + 3x,, + 2X, + 3x, 35 (4.7)

Adding constraints (4.5) and (4.6) together gives

2x,, +2X,, + X, +X, + 2X,, + 2X, + 2X, + 2x, S 6 (4.8)

and then it follows that

Xy +H, +X, +X, +X, +X, +X, +X, $3 (4.9)

as constraints (4.3) musthold.

Using (4.3) and (4.9) we can deduce

Xy +X. +X, +X, 21. (4.10)

Using the objective function given by p, = 6.0 (i < 3, j=1,2,3,4), p, = 1.0 (i =3,

j=1,2,3A) in (4.1) with the constraints (4.3)-(4.7), the LP relaxation of the

problem has the solution x,, = x,,= X,, = X, = 0.5, x,, =X, = 1.0, all other

variables equal to zero. Thecut (4.10)is clearly violated by this solution.

Solving the problem with and withoutthe cutyields the following results:

total nodes total time

without cut 18 0.18

with cut 1 0.02

Moregenerally the cuts are derived as follows:

for eachi’e M,let N, be theset of values of j such that w,, > 0 iff j € N,

Form the constraint

> Dw,3, <> C; -> Ws (4.11)
i eM eM

and solve the problem

maximise z, = >D3; (4.12)
iM RN,

subject to (4.3), (4.4) and (4.11), then provided z, <n, the cut
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Sx, zBn-z,; (4.13)
jal

isnon-trivial. (The second term on the right hand side of (4.11)is

included to conform with the note following (4.4).)

Note that(4.13) is not the strongest cutofits type available, butis introduced

because solving the problem given by (4.3), (4.4),(4.11) and (4.12) can be

performed by a simple inspection. Gottlieb and Rao (1990a), (1990b) propose

procedures for generating facets for the generalised assignment problem

which will in general be more time consuming than the above, but produce

stronger cuts. However, considering two examples used by them in Gottlieb

and Rao (1990a)it is found that useful cuts of form (4.13) can be generated as

the following shows.

Example 4.3 (from Gottlieb and Rao (1990a))

Let m=5,n=5,

(WW) = (1,1), = 1,
(WaWaW-s) = (1,1,2), c, = 2,

(Wa,W3yW;,) = (1,1,2), c, = 2,

(Wa/WaWe) = (1,1,2), ¢, = 2,

(WssWeeWey) = (2,1,1), ¢, = 2.

Then x, + X,, + X,, 22 is a valid cut which cuts off the solution

Xs5 = Xsq = X5,= 0.5 as required by Gottlieb and Rao (1990a).

Example 4.4 (from Gottlieb and Rao (1990a))

Let m=4,n=8,

(w,, -- Ws) = (1,1,1,1,1), ¢, = 2,

(WWWWz) = (1,1,2,2), &, = 2,

(Way,WayWyW7/W3,) = (1,1,2,2,2), C, = 4,

(WysWoWy) = (1,1,1), ¢, = 2.

Then x, +Xy + X, 22 is a valid cut which cuts off the solution

Xs = Xy = X= 0.6 as required by Gottlieb and Rao (1990a).
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4.2 The Multiple Knapsack Problem

The multiple knapsack problem,see for instance Martello and Toth (1990),

hassimilarities to the generalised assignment problem.Its principal

difference from the problem given by(4.1)-(4.4) is that the equations (4.3) are

replaced by inequalities

Ly, <1 je N=(1,... a). (4.14)

A further modification is ususally made, namely replacing (4.2) with

Dwxy 26; ie M=(1,... ,m). (4.15)
jal

Forthe resulting problem cuts analogous to (4.12) to be derived.

Example 4.3

If m = 3 and n = andthe constraints (4.15) are given by

2x,,+ X,, + 2X, + 2x,, 22

2x,, + Xq+ 2X, + 2X,, 22

Xo + BX, + Wy + 3x, 25
then a cut can be derived byfirst solving the problem

minimise z, =X, + %4. +X3 + XytXy + Xy t+ Xy t+ Xy

subject to 2x,, + x,, + 2x,, + 2X,,+ 2x, + X,. + 2x, + 2x, 24,

(4.4) and (4.14).

This has solution z, = 2 and so the inequality

Xqy t+ Xqq + Xqyq + XS 2 is valid.

A procedure analogous to that given by (4.11)-(4.13) can be developed for

the multiple knapsack problem.
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5. Conclusions

A series of standard problems involving linear 0-1 inequalities has been

considered. It has been shown howcuts of two particular types may be

added to such problems, taking advantageof the presence ofinterlinked 0-1

variables. The cuts have been demonstrated to have potential usefulnessin

aiding convergence of the branch and bound solution process.
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