
Belgian Journal of Operations Research, Statistics and Computer Science Vol. 36 (2-3) 96

Optimal Location of Undesirable Facilities :

a Selective Overview

Frank Plastria

Research Center for Industrial Location

Vrije Universiteit Brussel

Pleinlaan 2

B-1050 Brussels

Belgium

faplastr@vub.ac.be

Abstract -

Traditionally most models in location theory describe situations where nearness to a

facility is valued. However many types offacilities have, at least partly, an undesirable

effect on the environment, calling for new models with corresponding solution methods,

in particular in public locational decision making. Such models have started to be studied

by researches in the location field since the early eighties. One important feature is that

undesirable effects are usually felt continuously over space, leading to consideration of

continuous type distances.

Wegive here a critical overview of the research in the location of (semi-)undesirable

facility location in a continuous space. This field may be considered to still be in its

infancy and, although rapidly expanding, offers many opportunities for important, often

interdisciplinary research and application.
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1 Introduction

1.1 General

Location theory studies problems of locating one or more facilities in some
optimal way with respect to several given points with which they will interact. These
interactions may represent transports of goods and/or people, physical links like

pipelines or cables, communication, attraction of potential customers, but also an

undesirable influencelike pollution, radiation,etc.

Three broad types of location models are usually distinguished, according to the

basic assumptions about the underlying decision space. When a choice has to be made
amonga (short) finite list of given possible site(s) the location problem is a discrete
one, and its solution relies on integer and combinatorial optimisation, see e.g. [16] for
a recent introduction. In network location any point at a node or along an edge of a
given graph may be used as a site, with possible additional constraints, and
interactions are assumed to be constrained to “movement” along the network; the

study of these problems heavily relies on graph theory and one-dimensional
optimisation, and often they are amenableto discrete problems by reduction to a finite
set of candidate optimal sites, the efficient determination of which often forms the
heart of the matter, see e.g. [53] for a recent survey. When the underlying space is
determined by continuous variables we obtain continuous location problems, the study
and solution of which rely on (mainly convex and/or computational) geometry,
(mainly convex) analysis, non-linear programming and/or global optimisation, see e.g.
[77] for a recent overview.

Traditionally most models describe situations where neamess to a facility is
valued, i.e. the interactions are of an attracting kind, and the bulk ofall research in the
field is concerned with this kind of attracting location problems. \t is perhaps less well
knownthat in morerecent years, in agreement with the current importance and interest
in environmental issues, much effort has been spent towards the location of
undesirable facilities, where nearness to the facility is detrimental; see the important
critical overview of Erkut and Neuman [29]. It seems that continuous location models
have an eminentrole to play in this field, contrary to its more reduced interest in the
location of attracting facilities.

Indeed, at the one hand,(risk of) polluting effects such as airpollution by fumes,
radioactivity, radio interference, noise, heat, odour, etc. are felt continuously over

geographical space, and there is a direct (although not always simple) relationship
between the intensity at one point and its relative spatial position to the generating
facility. At the other hand the community is often ready to accept the economical
disadvantage of badly accessible sites if these alleviate the detrimental impact of the
facility. This implies that, at least in a preliminary study, the set of potential sites may
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be assumed to consist of some feasible regions. These are exactly the two basic
assumptions in any location problem of continuoustype.

In this paper we give an overview ofthestate of the art in optimisation approaches
to the location of (semi) undesirable facilities in a continuous space. Special attention
is paid to a critical assessment of the assumptions made in the models, to the ease and
scope of the proposed solution methods, and to the practical relevance of the offered
results. Some suggestions are made towards open problems and possible future
research directions. Thus this paper may be viewed at the one hand as a partial update
of the excellent seminal survey of Erkut and Neuman [29], here restricted to

continuous location, and at the other hand as a complement to our recent broader
survey [77] of this latter field which we now feel did not enoughjustice to undesirable
facility location.

1.2. Modelling considerations andclassification

Most industrial and other activities have some negative impacts on their
environment. These may range from very mild like local disturbance ofthe electro-
magnetic field (although perhaps not so friendly to e.g. users of mobile phones),
through annoying like noise, up to quite dangerous like toxic fumes. It seems to have
become customary to distinguish between obnoxious, in the sense of threatening
lifestyle through discomfort, and noxious facilities, in the sense of dangerous to the
health, possibly lethal. This impact may be of ongoing nature, or may be risk of
serious accidents with highly noxious effects associated, such as nuclear powerplants
(cf. the Three Mile Island and Chemoby] catastrophes), certain chemical plants (cf.
Bhopal and Seveso) or petrol and liquid gas treatment and storage plants (cf. the
worst-case impact study of a peak-shaving LNG-installation in the Netherlands [90}),
to namea few. Suchsituationsare often rather described by the term hazardous.

Observe that although the physical effects of the facility may be direct and
measurable, indirect effects such as on health are moredifficult to measure, often only

globally by statistical studies, and several effects may be quite immaterial, and rather
subjectively perceived. It is a well documented fact that the undesirability of certain
types offacilities, like garbage treatment plants and dumpingsites, stems not only
from some notorious examples of serious pollution mainly due to bad and illegal
management, but mainly from the general feeling of insecurity their nearness
engenders, leading to important economic depreciation of property. This exemplifies

the rather short term vision most people follow in their personal feelings and reactions
about the environment. At the other hand not many hard facts are really known yet
about the long-term effects of continuing low-level disturbances, and the consequences
on e.g. global health carecosts.

When incorporating these kinds of considerations into a mathematical location
modelthe distinctions above usually disappear and only remains the tendencyto locate
sufficiently far from or as far as possible from the places or regions where the
undesirable effects will or could be felt. This is the so-called NIMBY-principle (Not In
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My BackYard). We therefore prefer the more neutral and quite suggestive term
undesirablefacility, following [29], although the term repulsive (or repelling) we used
in [77], as opposed to attracting or push, used in [26], also adequately describes the
way they are modelled.

Erkut and Neuman [29] argue that any decision process for the location of an
undesirable facility should consist of two main stages: sife-generation and site-
selection. Optimisation seems only suited for the first stage, since the secondis usually
judged too complex for accurate representation using a single objective model. Any
optimisation model is however primarily site-selection oriented, since an (often
unique) optimal site is sought. Therefore it seems,at first glance, that no optimisation
approachis really suited to this context. We consider, however, that continuous type
location models have a strong potential for site-generation purposes through the
possibility of constructing level sets of close-to-optimalsites; the main function of the
actual optimisation is then no more than to determinethe best possible objective value
against which to measure the quality of any othersite. It is our conviction that in order
to be useful in practice, any approach to solving location problems should be able to
yield this kind of near-optimality information. As such the continuous location model
becomesa first stage in a two (or multiple) stage decision process, by first eliminating
all regions for which clearly less detrimental sites may be found. The later stages will
then take more aspects into account, as proposed e.g. in [52] and the references
therein.

Norealistic location model may forget about the myriad constraints imposed upon
the possible sites for a facility by geography, policy, politics and jurisdiction. It should
therefore allow for the definition of regional constraints of widely different types and
adequate solution procedures mustbe able to handle such a variety.

In any location model of continuous type some notion of distance will be
involved. Most undesirable effects are felt continuously over space, so the adequate
distance notion should reflect this, which excludes e.g. network shortest path distances
(excepting perhaps the directed networks of waterways) or approximations of these,

like rectangular or more general ¢,-norms (see [57]). What remains are mainly
euclidean distance, possibly modified through the impact of winds, currents, natural or

artificial barriers and/or nonhomogeneousterrains, and close approximations ofthese,
e.g. by polyhedral norms and gauges with many main directions, yielding problems
which maybeeasier to solve (see [71]). We refer the interested reader to [77] for a
more complete overview ofall these notions of distance, and further references to the
literature.

Typically the intensity of the negative effect should decrease with distance,
although notable exceptionsto this rule will be described later. This decay function is
often assumed to be linear, mainly in order to simplify the analysis. As observed in
(29] and exemplified in [81], it seems that morerealistic models should use convex (or
other non-linear) decreasing decay functions, possibly levelling off to zero above a
certain “safety” distance. We will argue that discontinuous decay functions may also
be ofinterest.
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In mostsituations the undesirable natureof the facility to be located is only part of

the problem andit is simultaneously desirable, otherwise there would be no incentive
to actually install it. Most of the currently available models do however disregard the
desirable aspects, probably for technical reasons of easy analysis and solution. Wewill

start our survey by taking a look at such “pure” undesirable facility location problems
in section 2. Within this section we have further classified the different models with
respect to the numberoffacilities to be located, i.e. single facility versus multiple
facility models, and with respect to the particular type of objective function used.
Some other approaches attempt to model simultaneously the undesirable and the
attracting aspects. Section 3 is concerned with such “semi”-undesirable facility
locationproblems. In a final section we collected a few models for undesirable facility

location which include other aspects than the mere determination ofa site, e.g. some
routing aspects.

The way the material is presented here expresses only our personal views on the

matter and the amount of detail we give is directly related to our impression of
applicability for actual location of undesirable facilities. We still tried to cover most
currently existing literature up to 1995. No real selection was done other than
(sometimes only forthcoming) availability of the full text. Therefore any noncited
relevant work probably remained unmentioned only because we were not awareofit,
for which we apologise.

2 Pure undesirablefacility location

2.1 Single facility location

2.1.1 Minmax

The most popular way of handling undesirability for a single facility is to attempt
to put it as far as possible from al! sensitive places, by minimising the highest effect on
a series of fixed points, which we will call the affected points. It may be written in
general form as follows:

min max  g,(d(x,a))
xeS aed

where

e x denotesthe site to be determined forthefacility
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e SCR?isthe feasible region within which thefacility is allowed to be located

e A CR’is the finite set of affected points at which the undesirable effects of the

facility is taken into account

® dis distance measure, usually the euclidean distance

© g, is the decay function of the intensity of the undesirable effect with respect to
distance. Minimal assumptions are continuity and decrease (or non-increase), a
typical example being the gravity type decay functions g(d) = k/d?.

The only paper discussing this Anti-Rawls-problem in its full generality is one of
the earliest ones [37], showing that there exists at least one optimal site either in the
convex hull of A or at a point s eS remote from some ae A, i.e. there are no points of
S beyonds along the half-line starting at a and through s. The upper A-level set of the
objective is exactly the union of the balls centred at each ae A, and with respective
radius g,'(A). Therefore as long as these balls do not cover S any uncovered point x in
S improves upon the current value 4. Based on this idea [37] gives an algorithm (there
called Black and White) which makesuseofthe graphical geometric representation of
the problem and currentlevel sets, and the pattern recognition power of human vision
to discover new candidate points.

Whenall decay functions are similar, i.e. g,(d) = h(w,d+k,) + k, (h increasing and
w,,k,,k, constants) the problem simply reduces to the weighted maxmin problem

max min w,d(x,a)
xeS aead

which has been independently addressed by a totally similar interactive graphical

technique in [66], and in [19] when is an intersection of circles, by an automated
version of it using binary search. A different approach, based on complete orpartial
enumeration of Jocal maxima, was used in [63], [61], [64], [65], [67]. A similar
problem, but on the sphere using geodesic distances and without constraints, was
addressed in [21], and shown to be equivalent by antipodal transformation to a
weighted minmax location problem for which an algorithm is presented.

Except for mathematical elegance and generality, the practical relevance and
choice of the weights, or more generally of different decay functions considered in the
previous model is not too clear. Therefore one either must take care to check the
sensitivity of the outcome with respect to this choice, or just avoid it by considering
them all equal. This latter case is discussed in the next paragraph. The former study
was prudently undertaken in [30], where the optimal site was traced for weights which
were a power of somefixed chosen values, for different powervalues from 1 to 2.
Remarkably some sudden jumps were perceived, illustrating the instability of the
model with respect to the weights hence the care to be taken when using weights, and
also the possible danger in mere optimisation: in such circumstances level set
information is of particular interest. A much broader sense study in this vein was
started in [9], [10] : the determination ofall possible optimal sites for any choice of
weights. It turns out thatthis is the set of antiefficient points (excepting the points of A
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themselves), i.e. those sites for which all distances up to the points of A cannot
simultaneously be increased, and a geometrical constructionofthis set is given for any
S being a union of convex polygons.

The case of equal decay functions appears when making the quite realistic

assumption that the least possible effect should be felt at any point of A, and that the
intensity is totally homogeneous and solely depends on the distance from the
emanating site. The location problem then reduces further to the (unweighted) maxmin

problem, which is equivalent to finding the largest empty circle centred in S, in the
sense of not containing any point of A in its interior. For euclidean distance d and
finite n-point set A this problem is well solved in almost linear time using techniques
of computational geometry. The Voronoi diagram, defined by partitioning the plane
according to which point of A is closest, is always a planar graph and is constructible

in O(nlogn) time. The optimal maxmin site is easily shown to be either at a Voronoi
diagram-vertex within S, or at a boundary point of S along some edge of this Voronoi
diagram,orstill at some extreme point of S; see [83], [80] for this result, and [80],

[72] for ample details on Voronoi diagrams. It was shown that all these cases may be
constructed and checked in O(nlogn) time when S is the convex hull of A [83], a
convex polygon ([15], corrected by [88]) or the intersection of a finite number of
circles [82]. [12] offers a simpler direct approach of higher complexity with a program
listing in Basic.

Considering only finite sets A of sensitive points is perhaps not very realistic.
Therefore it is of interest to be able to also handle infinite sets A. Perhaps the simplest
situation of this type appears when A equals the complement of S. The maxmin
problem then leads in the general case to design centering problems as discussed in
[38], where the aim is to include a largest homothetic copy of a given shape (in our
case a circle) inside a given region S. For general shapes these are very hard problems
for which only someratherinefficient methodsof global optimisation are known. For
the euclidean distance, and polygonal S, this reduces to the construction of the largest
circle fully inside S, as studied in [48], and shown to berelated to the skeleton or
medial axis concept of computational geometry, mainly stemming from the field of
pattern recognition : the medial axis of S is the set of points at equal distance from at
least two points of S’s boundary. It is always a planar graph, and becomesa tree when

S is simple (i.e. without “holes”). Any minmax point will be a node of this graph.
Polynomial time construction methods for this graph in the simple case are given in
{48],[79] and [54].

An even moreapplicable model arises when both A andS are unions of polygonal
regions, as studied in [41]. The polygons of A are considered to be protected (e.g.
urban regions), and thusthe facility mustlie as far as possible from any point of them.

It may again be shownthat only a finite number of candidate optimal minmax sites
exist, lying on some planar graph closely related to the “area” Voronoi diagram of A
(i.e. the diagram obtained by replacing points by the connected components of A), the
construction of which was considered in [55] and [8] in relation with collision-free
robotic movement.
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Similar models with other theoretical assumptions about the underlying space
and/or distance measure have been studied. Since we consider these to have only
limited application potential in the undesirable facility location field, we mention them
here for the sake of (attempted) completeness, but without too many comments.First
there are some one-dimensional versions of maxmin problems, such as [58]. The
euclidean distance version in three dimensions was studied in [15]. Planar versions but
with rectangular (or Manhattan) distance received the attention of several researchers,
such as [20], [60], [62] and [2] for the location perspective, and [69], [13], [3] and
[73] for the “largest empty rectangle” version of which [34] gives a generalisation to
higher dimensions.

2.1.2 Minsum

The minmax objective tries to offer the highest possible protection to all
destinations, and may thus be considered to aim at full protection against the
undesirable effects of the facility. Another approach consists of minimising the global
effect on all destinations. Although quite popular in discrete and networksetting, the
interest in this kind of objective has been much more reduced in continuous
environment. The seminal and often ignored work [37] seems to be the first to
formulate and study this type of model under the name Anti-Weber-problem :

min >) g,(d(x,a))
xES ged

with the same assumptions as in previous section. The same localisation result on
optimal solutions as in the minmax case holds, for any decreasing decay functions g,;
when the g, are linear functions only extreme points of the convex hull of S are
candidates. Such linear functions (or any concave decreasing decay function) must
howeverbe used with care: it may happen that the optimalsolution falls exactly at one
of the destinations that should be protected. As pointed out in [10] this happens for
example in any three point problem and feasible region the triangle formed by them.If
however a destination a is feasible and not an isolated point of S, and the
corresponding decay function g,has sufficiently negative slope at 0, then it is shown in
[37] that a is not a local minimum.Note that any optimalsite will be anti-efficient, and
hencethe construction of the anti-efficientset in [10] is of direct interest here too.

In order to solve the minsum problem inits full generality a global optimisation
technique is necessary, since the objective function is neither quasiconvex nor

quasiconcave and usually presents several local minima. Such a method of branch and
bound type, called Big-square-small-square (BSSS), is described in [37], and is able

to handle any S consisting of a union of polygons. It is based on subdividing a
rectangular region into four equal subrectangles for branching, and fathoming is done
either by nonfeasibility (rectangle fully outside S) or by the calculation of a lower
bound.In [76] it was shown how this method may be extended by a second phase in

order to generate an approximate near-optimality region.
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To our knowledgethe only instance of this model which was furtherstudiedis the
maximisation form with logarithmic decay function. This objective, introduced in [40]
without practical motivation as “a prototype version of obnoxious location problem”,
is shown to be a harmonic function, and as such, may only have optima on the
boundary of the feasible region.

Of particular interest in practice, due to the abundance of airbome pollution
sources, is modelling the dispersion of pollution carried by the gases expelled from
chimneys. This leads to models of a new kind, different from the Anti-Weber

problem. Indeed at the one hand this type ofpolluting effects calls for taking wind into
consideration, which is not done when simple distance measures are used, and at the

other hand there is no simple decreasing decay function of the polluting effect - very
close to the chimney almost no pollution is felt. For a wind of fixed direction and
speed, a standard modelfor pollutants dispersion is the Gaussian plume model, which
does not involve distance but rather relative position of facility and point of
measurement, as compared to the wind’s direction. A first attempt to use this Gaussian

plume in a location model is found in [49], [50], where it is shown how the BSSS
strategy may be adapted to cope with the complicated structure of the objective. The
main modelling difficulty is that in practice the wind direction and speed changes with
time. The above mentioned papers considered only the four main wind directions. This
approach was extended later [42], [6], [43], [47] to more wind directions. In all this
work the versatile BSSS technique was shown to be applicable as general solution

strategy, thus allowing for the calculation of near-optimality information.

2.1.3 Other

More general objectives than the minmax and minsum discussed above may be
studied. In the context of purely undesirable location problems any decreasing
function of the distances might in principle be used. As far as this function remains
wellbehaved (e.g. Lipschitz continuous), the BSSS method may be applied with the

additional advantage of allowing the generation of near-optimality information [76].
For a slightly more restricted class of functions - decreasing quasiconvex Lipschitz
functions of squared euclidean distances (which encompass many of the models
discussed so far) - a more direct optimisation technique was developed in [11], based
on a generalised version of Kelly’s well known cutting plane method, judiciously
combined with methods from computational geometry,in particular power diagrams.

When oneallows discontinuous decay functions g, new types of models arise,
many of which remain virtually untouched. One typical case arises when some
threshold value exists below which the undesirable effects are fully ignored, a feature
frequently used by law to obtain simple rulings. Translated into the decay function we
obtain a jump to constant zero value for distances above some fixed R. This means
ignoring anything beyond distance R from the facility, in other words, to take only

into account those affected points lying within distance R fromit.
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The only such model we are aware of having been studied is obtained when the

decay function g, remains constant at some weight w,(e.g. the population at a), and
cuts off to 0 above distance R. Effectively this means finding the circle of given radius
R covering the least total or maximum weightof destinations yielding minsum (resp.
minmax) covering models. Such mincovering problems are studied in [25] with a
given circle as feasible region S (the same paper also considers the rectangular balls
case, of less interest to us here). The minsum approach is to draw all circles with
radius R centred at the destinations. Their intersections with S partition S into regions
of constant objective value, which may be scanned and evaluated in O(nlogn)steps.
The minmax case is solved in O(nlog’n) steps by a binary search over the weights,
checking feasibility by a largest empty circle routine applied to those points with
weight within the currently checked one. Without binary search, butrepetition for each
of the n possible weights, the same technique yields the largest possible R for each
maximal covered weight, thus solving the minmax case simultaneously for all r in
O(n?logn) time.

In [78] it is shown how the minsum problem may also be solved simultaneously
and for all values of R in a total of O(n*logn) steps. In fact the method generates all
Pareto optimal solutions for the bicriterion problem of maximising R while

minimising the covered weight, for which only O(n*) candidates are shown to exist.
The interest is to be able to measure the trade-off between technology (choice of R)
and impact on environment (covered weight). This allows for a rational choice of
technology, thus of R, and, once made, it is easy to draw geometrically the

corresponding level sets, yielding a complete description of the shape of the
mincovering objective. The approach also applies to the realistic case where the
feasible region S is a network, e.g. a road-network.

A mincovering modelfor fixed distance R restricted to a planar network was also
considered in [84] but now the affected set A is the full network, ie. the affected
weightis due to both (pieces of) edges and nodes.

2.2. Multiple facility location

As usual in the continuous location field one finds much less work on multiple
facility location models, very probably due to the fact that these are usually rather
untractable, certainly as compared to their single facility versions. In view of the fact
that single undesirable facility models are already quite hard to handle, this is even
more the case for multiple undesirable facility location. The earlier survey [29]
mentions only one, which weclassify as semi-undesirable (see next section), and we
were able to find only a few new references.

The p-dispersion problem asks for locating p facilities within some region and as
far as possible from each other, in the sense of maximising the minimal distance
between any two of them. This may be seen to be equivalent to the p-circle packing
problem whichasks to pack, without overlaps, p circles of maximal equal radius into a
given region (see [17]). A nice introduction to this long-standing and popular problem
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in recreational mathematics will be found in [33], focusing on circular and square
regions. Some additional results are given in [17]. For the equilateral triangle region
case [35] contains a wealth of recent results and gives further references. For our

purposes the most important information is probably found in [17], where a
formulation is given as a non-linear programming problem together with the message
that the direct and repetitive use of standard non-linear-programming codes may be
considered as a good heuristic, while [35] reports on a special purpose “billiards”
simulation algorithm. A polynomial time heuristic, yielding a solution with radii
guaranteed to be within half of the best possible radius and applying to any metric
space is discussed in [86]. Although probably less relevant here we wish to mention
also the well known three-dimensional sphere packing problem, for which a conjecture
of Kepler dating from 1611 still seems to hold, although allegedly solved by [39],
where one will find ample further references. The rectangular distance version of this
problem is studied in [89] but remains of rather theoretical interest.

There seems to be only one paper, [7] which looks at the problem of locating
several facilities in a continuous space so as to maximise both their interdistances and

the distances up to a given set of affected points. It concerns however rectangular
distances, on which we decided not too spend too much attention.

2.3 Suggestions

Manysingle undesirable facility location problems remain unstudied and offer
numerous opportunities for research in view oftheir high practical interest. We might
suggest following features as worthy offurther study.

Most models only consider affected points, although this assumption is certainly
not valid in practice. Continuously distributed affected points, e.g. urban settlements,
should be incorporated. The one-dimensional study [74] using a negative exponential
decay function may beseen as a vaguefirst step in this direction.

There is a great opportunity for interdisciplinary work in the specification of good
objectives, reflecting not only the way the direct physical effects spread, but also the
waythe indirect effects are felt, and thus how they should be treated analytically.

Apart from the Gaussian plume model for airbomepollution, no other attempts
seem to have been madeto incorporate the spatial heterogeneity inherent in pollution
dispersion. At the one hand the asymmetry due to windsstill calls for more study,
while no good way seemsas yet to have been devised to integrate the changes over
time as expressed by the windrose. At the other hand waterbomepollution spreads in
very different, typically unidirectional ways, and at several speeds according to the
type of surrounding (river, groundwater, seepage, etc.). It seems to us that the recently
studied distance notions in heterogeneousterrains (see e.g. [68]) hold promise to be
useful! in this context.

All models we have mentioned seem to assumethat locating undesirable facilities
is started from scratch. This is of course untrue in mostsituations. One might say that
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undesirable facilities already abound, and their presence should be taken into account
by the model, otherwise the samesites will crop up as best over and over again with as
a direct consequence the ensuring tendency to become garbage “mountains”. Here
some notion of equity (see also section 3) must be used in the sense that it is unfair to
go on locating undesirable facilities close to places that already carry a heavy burden
from their environment.

Clearly many opportunities exist in the study of multiple undesirable facility
location models. The main difficulty is that it is not very useful to define models
without corresponding solution procedure. Exact optimisation methods seem totally
out of question due to the highly non-standard objective function shapes one obtains -
although no one as yet seemsto havetried out existing global optimisation techniques
in this setting. One may wonder whether the BSSS method - which is so powerful in
the single facility case - could not be applied to multifacility problems of low order.
As for heuristics, many of the now popular metaheuristics - neural networks, simulated
annealing, Tabu search, genetic algorithms - could perhaps favourably be put into
practice here, possibly combined with someofthe existing single-facility techniques
as local search subroutine.

3 Semi undesirable facility location

Wewill call a location model of the semi-undesirable type if in some way it
includes both undesirability and attracting aspects. This may be expressed in different

ways, either in terms of constraints or within the objective. Thus three single objective
cases are distinguished, treated in the three following sections. Another, probably
more adequate approach would consist in considering undesirability and attraction as
two separate criteria. This area of bi-objective (or multi-objective) seems, however,
still unexplored.

3.1. Undesirability as a constraint

As first case we considerclassical location problemsofthe attracting type where
undesirability is included in terms of a constraint. Such a constraint should take the
form of either a forbidden region, or a minimum distance up to some protected points.
These situations were adequately called restricted location problems, and are quite
fully described, analysed and solved in [36], where one will find more references.
Someextensionsto the location of two facilities are found in [70].

Other interesting papers in this context, [51], [4] and [1], include also barriers to
travel, i.e. regions through whichtransportation of (in our case hazardous) goodsis not

allowed, and as such mayalso be viewedas location-routing.
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3.2 Attraction as a constraint

In this category fall the papers mentioned in section 2 with a feasible region S
defined as an intersection of balls. Indeed, the objective is one of undesirability, and

the constraints may be viewed as “maximum distance constraints” in the sense of not
letting the facility be too far away. The two most notable papers in this connection are
[19] and [82] and were discussed before.

As announced higher, one multiple facility study should be mentioned here. In
(22] the problem is tackled of locating p facilities so as to maximise the weighted
distance of any destination to the closest facility, while keeping these distances within
given maximal ranges. An algorithm O(n’) is provided in one-dimension. This was
strongly improved in [85] where an O(nlogn) method is described. An extension to the
more applicable two-dimensionalcase is lacking.

3.3 Allin one objectives

In this final category we take a look at several kinds of objective functions which
may be viewed as including both undesirability and attractiveness. Mathematically
speaking this means that the objective to be minimised, viewed as a function which
transformstheset ofall distances up to the destinations into one globalvalue, is partly
increasing (attracting part) and partly decreasing (undesirable part) or, to use the terms
introduced in [26], includes both pull and push effects. Although easily stated, it is not
always very clear how to apply such models in practice. Since both the attraction

(usually some kind of global transport cost) and the undesirability (not always well
measurable) are mixed in the objective, this means in practice that these two aspects

are considered to be at least comparable, if not substitutable. Before applying the
model this assumption should first clearly be validated.

Probably the simplest and best known problem ofthis type is the Weber problem
with attraction and repulsion, including both positive and negative weights, i.e. a
minsum problem with linear cost and decay functions. The first generally available
paper is [87] in which the three destination point case is solved and statistical
analysis is given of cases with more points, emphasising when such a pointis optimal.
In [24] this problem is studied without locational constraints, and it is shown that the
behaviour of the model strongly depends on the sum ofall weights. If it is positive,
then the optimal solution remains within finite bounds, but movesoff to infinity when
negative, when zero, both behaviours may occur. Exact solution methods are derived
for rectangular and for squared euclidean distances (for which previous results do not
hold : there is always a simple optimal solution). For the, in our context, most
interesting euclidean case the authors derive exact conditions for a destination point to
be the optimal site - for more generally valid sufficient conditions of “majority” type
see [75] - and construct a circular region containing the optimal site when total weight

is positive. A Weiszfeld-like iterative method is given, supposedly convergent to a

local minimum.Thefirst efficient exact solution method, valid also for constrained
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problems where is any finite union of convex polygons, is described in [14]. It is
based on special techniques of d.-c. programming, i.e. the minimisation of a
difference of two convex functions.

Several other problems may be classified in this part, but it is sometimes unclear
whether they really apply to undesirable facility location, apart from a tendency to

often yield optimality at infinity when no constraints are present. We just mention
them here for sake of completeness. In [18] the objective is to minimise the range of
distances, in other words the difference between maximum and minimum euclidean

distance. A similar objective but with weights on both parts is studied in [59] for
rectangular distances. These types of objective functions may be viewed as inequality
measures, as adequately explained in [28], where other proposals may be found.
Unfortunately, for our purposes however, this paper looks at inequality in the
framework ofattracting facilities, and it would be worthwhile to take a closer look at
the particularities of inequality with respect to undesirable facilities, since it is in this
context that the word “equity” appears quite often, be it usually in a very loose way.

4  Location-routing and route location

Perhaps one of the most important remarks in [29] is that “the location of an
undesirable facility is almost always connected with the establishment of an
undesirable network (high voltage power grids, LNG pipelines,... )”, or the use of an
existing network for the transport of hazardous material. Therefore the choice ofa site
should often also take these routing aspects into account. One maysaythat this field is
still widely open. Several surveys of material relevant to these questions of hazardous
materials logistics have recently appeared ([56], [5], [31], [91]), and we refer the
interested readerto these.

Wealso want to mention here the interesting study [45] of how to locate an air
polluting plant along a network so as to have minimal global polluting impact on a
number of points. What is remarkable here is the fact that airborne pollution is
modelled according to the Gaussian plume model, so the objective is of complicated
continuous type, while the feasible region consists of the edges of an existing network.
A slightly connected and somewhat complementary study [27] is concerned with

locating a facility outside a network(in a discrete setting), but taking into account both
transport costs and construction cost of a new link connecting the facility site to the

network.

The design of a route between two points which avoids as much as possible some
given sensitive points has been studied in [23] with a maximin objective, and in [44]
with a minisum objective. It should be mentioned that this type of problem is quite
popular in robotics for automatic obstacle avoidance, and has been intensively studied
by way of computational geometry, see e.g. [72]. The choice of routes on a network so
as to minimize the possible pollution by air on several population centres due to an
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accident along the route is studied in [46]. Finally [32] propose a general framework to
assess the risk involved when transporting hazardous material, which remains as yet
unexplored both for route design and location modelling.
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