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Summary: When testing the presence of (k + 1) clusters versus the presence of k clusters,
Hardy (1983) considers a stationary Poisson point process in some domain D C IR? which is
the union of k disjoint convex compact domains D; (i = 1,2, -+, k) (k fixed). In order to derive
a stopping rule for determining the ’optimal’ number of clusters present in a given set of data,
Hardy (1983) [5] proposed the likelihood ratio test for Hy : v = k versus H, : v = k+1. However,
one can see that k (the number of components) is not a parameter of the model. The goal of
this small note is to give a more accurate formulation of this test, which is based on the concept
of finite mixture models (see Redner and Walker (1984) [9], Izenman and Sommer (1988)[3]).
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1 Introduction

Let us consider that the observations X = (X, X3, -+, Xy) are a realization of a station-
ary Poisson point process in the domain D of IR,

We assume that the set D is the union of k disjoint convex compact domains D; (i =
1,2,--,k) (with k fixed).

Let P. = {D,,D,---,D;} be a partition of the domain D into k clusters: D; #
0,D;nD; =0 for i,57=1,2,--- ,k;i1#j and Uf=1 D;=D.

Then to measure the quality of the partition Py, we will consider the hypervolume criterion
W(Py) defined as follows:

W:P.— R 'Pk——+W(Pk)=i m(D;)

i=1

where m(D;) is the Lebesgue measure of the domain D;;

P is the set of all partitions of the domain D in k nonempty clusters.

Hence, the clustering problem consists of finding the partition P* which minimizes W (P;),
i.e.

k
W(P") = i 5 m(D)

The mapping W is called the hypervolume criterion. Thus the hypervolume criterion
minimizes the sum of the Lebesgue measures of these classes.

In practice the domains D;,i = 1,---,k are unknown.

Let’s consider X; as the restriction of the sample X = (X, X3, -, X,) over the convex
domain D;, 1 <t < k. The convex hull of the sample X; inside the convex domain
D;;, 1 < i <k, is denoted by H(X;). The maximum likelihood estimates of these
unknown convex domains D; are their convex hulls H(X;), see Ripley and Rasson (1977)
[10]. We see that taking the homogeneous point process as a model in cluster analysis,
the hypervolume criterion is reduced to

W:P.— IR*: VPkE'PkZW(Pk)=zk: m(H(X;))

i=1

and minimizes the sum of the Lebesgue measures of the convex hulls of the classes. Finally
our clustering problem consists to find the partition P* which minimizes W(P,) (Hardy
(1993) [7]), i.e.

k
W(P) = g 3 m(H(X,)

Now, considering the likelihood ratio test proposed by Hardy (1983)(5], Hardy (1992)(6],
we have the hypotheses Hy : v = k against H, :v=k+ 1.

Then using the Liypervolume criterion, it becomes possible to apply this test in clustering
problems to characterize genuine clusters present in a given data set.

However, one can remark in this test that v, which represents in fact the unknown number
of clusters present in the data, is not a parameter of the statistical model. Then in
the following sections, we waut to propose a more accurate formulation of this test. A
formulation which must take care of the real parameters of the underlying model and use
the well-known general concept of finite mixture model, see Redner and Walker (1984)

[9]-
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2 The finite mixture model

The finite mixture model is a natural concept for many problems occuring in applied
statistics especially in pattern recognition, discriminant analysis and cluster analysis. In
this section we briefly recall the basic elements of this general concept, see for instance
Redner and Walker (1984) [9], Izenman and Sommer (1988)(3].

Assume that X is a random variable with a probability density function ! f(z;¢), where
¢ € ® is the parameter of the model. Then let consider a parametric family of finite
mixture densities, i.e. a family of probability density functions of the form

L
f(z,8) =3 pi g(z,6:) (1)

=1

where we have:

L
F={P1,P2»"'aPLZE Pj=1; with pj>0aj=1727"'aL} (2)

i=1

The parameters py,p;,- -+, pL are called the mixture proportions or the mixing weights
and each g(z,6;);i = 1,2, -, L, parameterized by §; € O, is the component density of the
mixture. Each g(z,6;);7 =1,2,---, L is also a probability density function, see Izenman
and Sommer (1988). In such a case, we say that X has a finite mixture distribution and
that that f(z;¢), defined in (1), is a finite mixture density function.

Then it becomes clear that the parameter space is

d=Ix0*
and the parameters of the mixture model are

¢ = (php?v' **yPLy 0170%' M 70L)

In fact, from (2), we conclude that the general mixture model has (L — 1) independent
mixing weights py,p2, -+, pr-1. Then,

L-1

1)L=1-E Pi

i=1

In cluster analysis, many situations are modeled by a mixture model. In these problems
it is supposed that the statistical populatiou (or the sample) X = (X, X2,---,X5) is
composed of k£ homogeneous classes D, D,,---, Dy with a distribution density fi(z),i =
1,2,- -,k in each cluster. Hence the mixing density of X has the form

F(@) = phi(z) + pofale) + - + pufi(z)

When determining the ’optimal’ clusters present in some data, stopping rules based on
the mixture model can be used. A stopping rule that has received the most attention in
clustering problems is the test procedure of Wolfe (1970). Let us give the formulation of
the Wolfe’s test (Izemman and Somuner (1983)).

Let k > 1 be a given integer and let the parameter space ¢ be partioned into two disjoint

'or mass function in the discrete case, however we prefer to use the term probability density function

in both the continnous and discrete cases.
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sets &% and ®%, as follows. Then Wolfe’s test for k components in a mixture distribution
entails specifying a null hypothesis,

HE: ¢ e ot

confirming the existence of k components,
and an alternative hypothesis,
Hf: ¢ e ot
corresponding to k 4+ 1 components.
Hence the following likelihood ratio can be computed:

SUPyeak L(z;0)
supgesr L£(7;9)

where L(z; ¢) is the likelihood function for ¢, given the sample X = (X, X2, -+, Xy).
Then —2log Ax is compared to an appropriate critical value of the x? distribution with
degrees of freedom equal to twice the difference in the number of parameters estimated
for the two models, not including the mixing proportions. This test is repeated for a
succession of increasing values of k. If H] (r > 1) is the first null hypothesis not rejected,
then the number of mixture components is r and the testing procedure is terminated.
Unfortunately, the asymptotic null distribution of the Wolfe’s statistic is not x? (see
McLachlan and Basford (1988) {8]), so the test is not statistically valid. Remember that
Wolfe’s test is based on the normality assumption. In this paper, this assumption is
relaxed and we consider that the points in the clusters are distributed according to a
homogeneous Poisson point process.

3 Application to the Poisson point model

3.1 The mixture model based on the Poisson point model

The aim of this section is to recall that the Poisson point model can be considered as a
mixture model.

Let us consider X = (X, X3,---, X,.) a realization of the stationary Poisson point process
N on the domain D C IR?. Then, from this model and its conditional uniformity, we have
that X is a random variable uniformly distributed on the domain D, with density:

f(e, D) = ;L(IT)ID(z) 3)

where m(D) is the Lebesgue measure of the domain D and Ip is the indicator function
defined as:

1 ifzeD
ID(Z)‘{ 0 ifzgD
As the domain D is formed by L disjoint convex domains D;,j = 1,2,---, L, the proba-
bility density function takes the form:
1 L
fle,D) = =—4———— Ip,
( ) }:]L=l 171(Dj)_,»z=';
Now take
_ m(D;)
Pi = ﬂl(D) (4)
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as mixing proportions and
I

_ D,(f) 5)
m(D;)

as the mixture components, j = 1,2,---, L. Then, considering (4) and (5) we see that

(3) has the general form of a finite mixture model. The mixture density function has the
form )

f(Is DJ)

L
f(z,D) =Y p;if(z,D;)
i=1

With this general formulation given above, one can conclude that the Poisson point model
can be interpreted as a mixture model, an approach which is very popular in clustering
problems. Remember that the likelihood function of the derived mixture model becomes,
see Hardy (1983)[5]):

Lp(X) = I pif(z:, D)}

where H(X) is the convex hull of X. Also note that H(X) is a maximum likelihood
estimator and a minimal sufficient statistic of the domain D.

3.2 A likelihood ratio test
In this case, we consider again the parameter space & = I' x ©F where ' is defined in (2),

o m(D;)
P= D)

and © is a subset of the Euclidean space [R?. The parameter ¢ (which in fact represents
the mixing weights) of the Poisson point model is the

vector ¢ = (p1,p2,--,pL, D1y Day -+, D). With these notations, a likelihood ratio test
will be formulated. We attempt to formulate criteria for the number of components in a
parametric mixture model.

HE: ¢ € Of; corvesponding to k components in the mixture distribution
versus
Hf 1 ¢ € O%; corresponding to k + | componeuts in the mixture distribution
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Let define some useful notations:

e Py = {C,Cs,-++,Ck,Cry1 }= optimal partition of the domain D into (k + 1)
clusters;

e P, ={Dy, D,,---,D;}= optimal partition of the domain D into k clusters.
Then, we can compute the following likelihood ratio:
supgeqr L£(T;9)
Qu(z) = ———=
supgeqr L(7;9)
Using the notations above, the likelihood ratio becomes

sup Lp(z;v = k)

Qulz) = sup Lp(z;v =k +1)

By the hypervolume criterion, we obtain that

1

i m(H(DY)
Qulz) = ————

T mHC)
():f;‘ m(H(Cj)))"
f:l m(H(D'))

The last expression takes the form:

Q=) = (preay

where we have
0< Q(x) L1
and the critical region becomes

RC

{zlQu(z) > K}
W(Piy1) _ .
Yy > 5

{S>K}

where 0 < S <1 and K is a constant.

As we do not know the distribution of the test statistic, it becomes difficult to study the
properties of the test. However, in practice, one can use a naive approach which rejects
the null hypothesis Hy when the value of the statistic

o W(Puw)
- W (P:)
is near 1.
The test is then repeated for a succession of increasing values of k. If Hj (r > 1) is the

first null hypotlhesis not to be rejected, then the number of mixture components is r and
the testing procedure is terminated.
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3.3 Remark

The reader can easily verify that this test and the gap test are closely related since

W(P:) = W(Piy1) + missr
where
miks1 = m (H(Dg U Diys)) — m(H(Di)) — m(H(Diy1))

In fact, mi k41 is the gap space between the clusters Dyy; and Di. If we consider again
the statistic of the proposed test, we have:

) = (i)

Pit1) + miisr

1 n
= 7 L Pkkgr
(1 + W(Pk+ll) )
Finally, we have that:

W(Pk+1)
W(F)
1

T 1 Tkkel
L+ wiei

and we conclude easily that 0 < S < 1.
The elbow technique measures the gap space between the clusters D4y and Di. The
presence of a significant knee means that we have a big variation of the quantity WL(“;,%“-;

between the disjoint clusters Dy and Di,,. But again we need a threshold to decide
whether the quantity -W';'(—"}Jfﬁ is large or small enough to be unusual. This question can

be answered if the distribution of the statistic

1
P
1+ W(Piy1)

is known. Unfortunately, we are now unable to determine the exact or the asymptotic
distribution of this statistic.

4 Example: Govaert data

The test has been applied on many examples, see Hardy [6]. In this paper we will apply
the test on the Govaert data, a data set whicli is very difficult to classify.

4.1 Description of the data

The Govaert data are a set of 106 points of /R? distributed in 7 classes. They were first
used in clustering problems by Govaert [2]. Nowadays, this data set, portrayed in figure
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1, is also considered as data-test for new clustering methods.
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Figure 1: Govaert data.

4,2 Applications

Let's first give the value of the hypervolume associated with the optimal partitions of the
Govaert data into k clusters.

k [W(B)
I 46350
2| 308
31 a7
4 | 160.50
5] 14
6| 83

7 68.50
8 | 61.50
b 1 53.50
0] 52
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When we apply the elbow technique %to the data above, we obtain the following graphic:
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Figure 2: Results obtained when the elbow criterion is applied on the Govaert data.

Then, calculating the ratio
_ W(Puw)

)= Ak vt
Vik) = WP k=1,2,---,9
yields the following table:

k| V(k)

1] 0.66

21070

31074

4| 0.71

531075

G| 031

0.90

81 0.87

91097

2the elbow criterion recommends the value k which yields a marked decrease of the hypervolume
criterion W{Px)
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The reader who analyses carefully the table above can see for himself that it is not easy
to decide whether the ratio WM(,P;,.)‘ k=1,2,---,L is close to 1 or not, in other words
when k + 1 rather k classes are present in the data. In this example, the situation is
very gloomy. However, based on the a priori knowledge of the Govaert data, we can state
arbitrary that V(k) = 0.81 is near 1 and say that the data contain 6 optimal clusters. A
conclusion which does not reveal the reality!!!

5 Conclusions

The test of the number of components in finite mixture models considered in this paper
provides us with a very useful tool in classification problems. It seems to be original since
it is based on the homogeneous Poisson point process model. However, the test can only
be performed in practice if we can obtain the distribution of the test statistic; which is a
problem for further research.
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