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Summary: When testing the presence of (k + 1) clusters versus the presence of k clusters,
Hardy (1983) considers a stationary Poisson point process in some domain D C IR? whichis
the union of k disjoint convex compact domains D; (i = 1,2,---,k) (k fixed). In order to derive
a stopping rule for determining the ’optimal’ numberof clusters present in a given set of data,
Hardy (1983) [5] proposed the likelihood ratio test for Hy : v = & versus H, : v = k+1. However,
one can see that & (the number of components) is not a parameter of the model. The goal of
this small note is to give a more accurate formulation of this test, which is based on the concept
of finite mixture models (see Redner and Walker (1984) [9], Izenman and Sommer(1988)[3]).
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1 Introduction

Let us consider that the observations X = (X,,X2,--+,Xn) are a realization of a station-

ary Poisson point process in the domain D of IR’.
We assumethat the set D is the union of k disjoint convex compact domains D; (i =
1,2,---,k) (with k fixed).
Let P, = {D,,D2,---,D,} be a partition of the domain D into k clusters: D; #
0,D;N D; =@ for i,7=1,2,---,k;i# 7 and Ur, D; = D.
Then to measure the quality of the partition P,, we will consider the hypervolumecriterion
W(P,) defined as follows:

W:P— R*: BowPED m(D;)
t=1

where m(D,).is the Lebesgue measure of the domain Dj;
P, is the set of all partitions of the domain D in k nonemptyclusters.
Hence,the clustering problem consistsoffinding the partition P* which minimizes W(P,),
i.e.

k

W(P*) = aig m(Dj)

The mapping W is called the hypervolumecriterion. Thus the hypervolumecriterion
minimizes the sum of the Lebesgue measuresof theseclasses.
In practice the domains D,,i = 1,---,k are unknown.
Let’s consider X; as the restriction of the sample X = (X),X2,---, Xn) over the convex
domain D;, 1 <1 < k. The convex hull of the sample X; inside the convex domain
D;, 1<%< k, is denoted by H(X;). The maximum likelihood estimates of these
unknown convex domains D; are their convex hulls H(X;), see Ripley and Rasson (1977)
[10]. We see that taking the homogeneous point process as a modelin cluster analysis,
the hypervolumecriterion is reduced to

WW: RR: VLE PWR) =S m(H(X;))
t=]

and minimizes the sum of the Lebesgue measuresof the convex hulls of the classes. Finally
our clustering problem consists to find the partition P* which minimizes W(P,) (Hardy
(1993) [7]), i.e.

k

W(P*) = gain DU m(H(X;))

Now,considering the likelilood ratio test proposed by Hardy (1983){5], Hardy (1992)(6],
we have the hypotheses Hy : v = k against H):v=k+1.

Then using the hypervolumecriterion, it becomes possible to apply this test in clustering
problemsto characterize genuine clusters present in a given dataset.
However, one cau remark in this test that v, which represents in fact the unknown number
of clusters present in the data, is not a parameter of the statistical model. Then in
the following sections, we waut to propose a more accurate formulation of this test. A
formulation which must take care of the real parameters of the underlying model and use
the well-known general concept of finite mixture model, see Redner and Walker (1984)

[9].
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2 Thefinite mixture model

The finite mixture model is a natural concept for many problems occuring in applied
statistics especially in pattern recognition, discriminant analysis and cluster analysis. In
this section we briefly recall the basic elements of this general concept, see for instance
Redner and Walker (1984) (9], Izenman and Sommer (1988)(3].
Assume that X is a random variable with a probability density function '! f(z; ¢), where
¢@ € ® is the parameter of the model. Then let consider a parametric family of finite
mixture densities, i.e. a family of probability density functions of the form

L

f(z,¢) = 3° 7; g(x,4) (1)
t=

where we have:

L

T={ pp spe: >, pj=1; with pj; > 0,7 =1,2,---,L } (2)
j7=1

The parameters p,,p2,°--,px are called the mixture proportions or the mixing weights
and each g(z,6;);i = 1,2,---,L, parameterized by 6; € O, is the componentdensity of the
mixture. Each g(z,6;);i = 1,2,---,Z is also a probability density function, see IZenman
and Sommer(1988). In such a case, we say that X has a finite mixture distribution and
that that f(z; ¢), defined in (1), is a finite mixture density function.
Then it becomes clear that the parameter spaceis

@’=Txot

and the parameters of the mixture model are

¢ = (71, Pas" °* PL, 6;, G2,° . 91)

In fact, from (2), we conclude that the general mixture model has (LZ — 1) independent
mixing weights p;,p2,-+++,pPy-1- Then,

t-1

po=l- > Pj
j=l

In cluster analysis, many situations are modeled by a mixture model. In these problems

it is supposed that the statistical population (or the sample) X = (X,,X2,°++,Xn) is
composed of k homogeneousclasses D,, D2,---,D, with a distribution density f;(r),i =
1,2,-+-,k in each cluster. Hence the mixing density of X has the form

F(x) = mfi(®) + mfale) +--+ + pafe(2)

When determining tle ’optimal’ clusters present in some data, stopping rules based on
the mixture model can be used. A stopping rule that has received the most attention in
clustering problems is the test procedure of Wolfe (1970). Let us give the formulation of
the Wolfe’s test (Izeuman and Sommer(1988)).
Let k > 1 bea given integer andlet the parameter space ® be partioned into two disjoint
 

tor mass functionin the discrete case, however we prefer to use the term probability density function
in both the continuous and discrete cases.
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sets ®* and $4, as follows. Then Wolfe’s test for k components in a mixture distribution
entails specifying a null hypothesis,

HE: ge ok
confirming the existence of k components,
and an alternative hypothesis,

HF: ¢€ OF

corresponding to k + 1 components.
Hencethe following likelihood ratio can be computed:

A, = SuPsces L(zi 4)
«= Supseot L259)

where L£(z; ¢) is the likelihood function for ¢, given the sample X = (X,, X2,---, Xn).
Then —2log A, is compared to an appropriate critical value of the x? distribution with
degrees of freedom equal to twice the difference in the number of parameters estimated
for the two models, not including the mixing proportions. This test is repeated for a
succession of increasing values of k. If Hj (r > 1) is the first null hypothesis not rejected,
then the number of mixture components is r and the testing procedure is terminated.
Unfortunately, the asymptotic null distribution of the Wolfe’s statistic is not x? (see
McLachlan and Basford (1988) [8]), so the test is not statistically valid. Rememberthat
Wolfe’s test is based on the normality assumption. In this paper, this assumption is
relaxed and we consider that the points in the clusters are distributed according to a
homogeneous Poisson point process.

3 Application to the Poisson point model

3.1 The mixture model based on the Poisson point model

The aim of this section is to recall that the Poisson point model can be considered as a
mixture model.
Let us consider X = (X,, X2,---,X,,) a realization of the stationary Poisson point process
N on the domain D C IR*. Then, from this model andits conditional uniformity, we have
that X is a randomvariable uniformly distributed on the domain D, with density:

f(z, D) = abyt®) (3)

where m(D) is the Lebesgue measure of the domain D andIp is the indicator function
definedas:

1 ifee D

tote)={ 4 if ¢ D
As the domain D is formed by £ disjoint convex domains D;,j = 1,2,---, £2, the proba-
bility density function takes the fori:

 

1 L

f(«,D) = EE,(Dy)mi(Dy) a Ip,

Now take

_ m(D;)
Py = m(D) (4)
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as mixing proportions and

Ip,(2) (5)
m(D;)

as the mixture components, 7 = 1,2,---,Z. Then, considering (4) and (5) we see that
(3) has the general formof a finite mixture model. The mixture density function has the
form ,

f(z, D;) =
 

L

f(z, D) = u Pf(z, D;)

With this general formulation given above, one can conclude that the Poisson point model
can be interpreted as a mixture model, an approach which is very popular in clustering
problems. Rememberthat thelikelihood function of the derived mixture model becomes,
see Hardy (1983)[5]:

Ly(X) i i M I we = = & =

  

 

|

(Dy
where H(X) is the convex hull of X. Also note that H(X) is a maximum likelihood
estimator and a minimalsufficient statistic of the domain D.

H(X))

3.2. A likelihood ratio test

In this case, we consideragain the paraineter space ® = [ x ©/ where I’ is defined in (2),

m(D;)

m(D)
 i= =1,2,---,L

and @ is a subset of the Euclidean space IR’. The parameter ¢ (which in fact represents
the mixing weights) of the Poisson point model is the
vector @ = (71,pP2,°++, pe, Di, Dz,:--, Di). With these notations, a likelihoodratio test
will be formulated. We attempt to formulate criteria for the number of components in a
parametric mixture model.

Hk: ¢ € B§; corresponding to & components in the mixture distribution
versus

Ht: ¢ € MF; corresponding to k +1 components in the mixture distribution
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Let define some useful notations:

© Pray = {C1,C2,--+,Ce,Ce41}= optimal partition of the domain D into (k + 1)
clusters;

e P, = {D,, D2,---,D,}= optimal partition of the domain D into k clusters.

Then, we can computethe following likelihoodratio:

supgege £(2; 0)
Qi (z) =—

suPgeat L(z; )

Using the notations above, the likelihood ratio becomes

sup Lp(z;v = k)

On) = SopLolav
By the hypervolumecriterion, we obtain that

1

Lier ™H(Di)
Q(t) Sy

Doth ™(H(C;))

(= me

Dir ™(H(D;))

fl

Thelast expression takes the form:

Qe) =rey
where we have

0< Q(x) <1

and the critical region becomes

RC {z|Qk(z) > K}
W(Pati) —
Cray>
{S > K}

where 0 < S <1 and K is a constant.
As we do not knowthe distribution of the test statistic, it becomes difficult to study the
properties of tle test. However, in practice, one can use a naive approach whichrejects
the null hypothesis Hy whenthe value of the statistic

»_ W( Peat)
~ W(Px)

is near 1.
The test is then repeated for a succession of increasing values of k. If Hj (r > 1) is the
first null hypothesis not to be rejected, then the number of mixture components is r and
the testing procedure is terminated.
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3.3. Remark

The reader can easily verify that this test and the gap test are closely related since

W(Pr) = W(Poo) + meets

where

Me = m(H(Dz U Digi) — m(H(Dg)) — m(A(Desi)

In fact, mz,441 is the gap space between the clusters D,,, and D,. If we consider again
the statistic of the proposed test, we have:

( W( Presi) )
W(Pros) + Mees

1 n

Jakktl

(; + HEE)

Q(z)

Finally, we have that:

W(Pit)
W(P)

1
Jkktl
1+ WED

and we concludeeasily that 0 < S <1.
The elbow technique measures the gap space between the clusters D,4, and D,. The
presenceof a significant knee means that we have a big variation of the quantity witty

between the disjoint clusters D, and Dy4,. But again we need a threshold to decide
whether the quantity wey is large or small enough to be unusual. This question can

be answered if the distribution of the statistic

1
tkkt)
V+ When

S=

is known. Unfortunately, we are now unable to determine the exact or the asymptotic
distribution of this statistic.

4 Example: Govaert data

The test has been applied on many examples, see Hardy [6]. In this paper we will apply
the test on the Govaert data, a data set which is very difficult to classify.

4.1 Description of the data

The Govaert data are a set of 106 points of JR? distributed in 7 classes. They werefirst
used in clustering problems by Govaert [2]. Nowadays, this data set, portrayed in figure
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1, is also considered as data-test for new clustering methods.
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Figure 1: Govaert data.

4.2 Applications

Let’s first give the value of the hypervolume associated with the optimal partitions of the
Govaert data into & clusters.

 
k W(P,)

1 [463.50
2 |308
3} 217
4 160.50
5 114
G 35
7 68.50
Sj} 61.50
) 53.50

10 42    
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Whenweapply the elbow technique ?to tle data above, we obtain the following graphic:
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Figure 2: Results obtained when the elbowcriterion is applied on the Govaert data.

Then, calculating the ratio

 

 

=WP) ploV(k) = WIP.) k=1,2,---,9

yields the following table:

k V(k)

1 0.66

2 0.70

34 0.74

4] 0.71

5} 0.75

G |0.81

77 0.90

8 0.87

9 0.97    
 

2the elbow criterion recommends the value & which yields a marked decrease of the hypervolume
criterion W(P,)
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The reader who analyses carefully the table above can see for himself that it is not easy

to decide whether the ratio aa k = 1,2,---,Z is close to 1 or not, in other words

when k + 1 rather & classes are present in the data. In this example, the situation is
very gloomy. However, based on the a priori knowledge of the Govaert data, we can state
arbitrary that V(k) = 0.81 is near 1 andsay that the data contain 6 optimal clusters. A
conclusion which does not reveal the reality!!!

5 Conclusions

The test of the number of components in finite mixture models considered in this paper
provides us with a very useful tool in classification problems. It seemsto beoriginal since
it is based on the homogeneous Poisson point process model. However, the test can only
be performed in practice if we can obtain the distribution of the test statistic; which is a
problem for further research.
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