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Abstract

The paper presents an overview of methods for solving three classes of fuzzy multi-

objective linear programming problems: flexible programming, multi-objective linear
programming with fuzzy coefficients and flexible multi-objective linear programming
with fuzzy coefficients. They are using fuzzy sets to deal with uncertainty connected

either with preferential information concerning satisfaction of goals and constraints, or

with an incomplete or vague state of information used to build the linear programming

model, or with both these kinds of uncertainty together, respectively. Special attentionis

paid to interpretation of fuzzy goals and fuzzy constraints, to interpretation of fuzzy
relations and to the character of interaction with the decision maker.

Key words: Multi-Objective Linear Programming under Uncertainty. Uncertainty

Modeling, Fuzzy Sets, Multi-Criteria Decision Analysis, Interactive Procedures.
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1. Introduction

Linear programming (LP) is today one of the most frequently applied OR techniques

in real-world problems. This is due to the powerful simplex method able to handle

thousandsofvariables and constraints. Because of this popularity, many efforts have been

devoted to generalizations introducing to the LP models some newrealistic aspects of

decision problems while preserving the applicability of the simplex method. Probably the

most striking example of this generalization is the Fuzzy Multi-Objective Linear
Programming (FMOLP) which extends the LP model in two importantaspects:

multiple objective functions representing multiple points of view used for evaluation

of feasible solutions,

uncertainty inherentto information used in the modeling and solving stage.

A general model of the FMOLPproblem can be presented as the following system:

[e,x,€x,...,€,x]—> min (1)

subject to @,x Sb, i=l,...,.m (2)

x20 (3)

where @ =[@),.-.8i,] (1,4), x=[x,,...%, 7 , &,=|a,.-.4;,] (=l,...,m). The

coefficients with the sign of waveare, in general, fuzzy numbers,i.e. convex continuous

fuzzy subsets of the rea! line. The wave over min andrelation < "fuzzify" their meaning.

Condition (2) and (3) define a set of feasible solutions (decisions) X. An additional
information completing (1) is a set of fuzzy aspiration levels on particular objectives,

thought of as goals, denoted by @}.,..., &,.

There are three important special cases of the above problem that gave birth to the

following classes of problems:

flexible programming,

multi-objective linear programming (MOLP)with fuzzy coefficients,

flexible MOLP with fuzzy coefficients.

In flexible programming, coefficients are crisp but there is a fuzzified relation <

between objective functions and the goals, and between left- and right-hand sides of the

constraints. This means that the goals and constraints are fuzzy ("soft") and the key

question is the degree ofsatisfaction. In MOLP with fuzzy coefficientsall the coefficients

are, in general, fuzzy numbers and the key question is a representation of relation <
between fuzzy left- and right-hand sides of the constraints. Flexible MOLP with fuzzy

coefficients concerns the most general form of (1)-(3) and combines the two key

questionsof the previous problems.

The twofirst classes of FMOLP problemsuse different semantics of fuzzy sets while
the third class combines the two semantics. In flexible programming, fuzzy sets are used

to express preferences concerningsatisfaction of flexible constraints and/or attainment of

 



goals. This semantics is especially important for exploiting information in decision

making. The gradedness introduced by fuzzy sets refines the simple binary distinction

made by ordinary constraints. It also refines the crisp specification of goals and,,all-or-

nothing” decisions. Constraint satisfaction algorithms, optimization techniques and multi-

criteria decision analysis are typically involving flexible requirements which can be

represented by fuzzy relations.

In MOLP with fuzzy coefficients, the semantics of fuzzy sets is related to the
representation of incomplete or vague states of information under the form of possibility

distributions. This view of fuzzy sets enables representation of imprecise or uncertain

information in mathematical models of decision problems considered in operations

research. In models formulated in terms of mathematical programming, the imprecision

and uncertainty of information (data) is taken into account through the use of fuzzy

numbers or fuzzy intervals instead of crisp coefficients. It involves fuzzy arithmetic and

other mathematical operations on fuzzy numbers that are defined with respect to the

famous Zadeh’s extensionprinciple.

In flexible MOLP with fuzzy coefficients, the uncertainty and the preference

semantics are encountered together. This is typical for decision analysis and operations

research where, in order to deal with both uncertain data and flexible requirements, one
can use a fuzzy set representation.

The aim of this paper is not to make another survey(see, e.g., [14, 16, 18, 25, 28, 30,

34]) - it would need much more place than available. Instead, we wish to makea tutorial
characterization of the three classes of problems and solution methods. This is done in the

three subsequent sections followed by a final section with concluding remarks.

2. Flexible Programming

Flexible programming has been considered for the first time by Tanakaet al. [38] with

respect to single-objective linear programming. It is based on a general principle of
Bellman and Zadeh [1] defining the concept offuzzy decision as an intersection offuzzy

goals and fuzzy constraints. A fuzzy goal corresponding to objective c,x is defined as a

fuzzy set in X; its membership function uz, :X > [o.1] characterizes the decision maker's

aspiration of making c;x "essentially smaller or equal to gj". A fuzzy constraint

corresponding to a,x £5, is also defined as a fuzzy set in X; its membership function

HX [0,1] characterizes the degree ofsatisfaction of the i-th constraint.

In order to define the membership function 4,(x) for the i-th fuzzy constraint, one has

to know the tolerance margin d,; 2 0 for the right-hand side 5, (#=1,...,™):

1 for a,x <b,

H,(X) =< strictly decreasing from1to0 for 6; <a,;x <5; +d; (4)

0 for a;x 25, +d,
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Specifying a membership level @, ae [0,1], Tanaka et al. [38] have restricted the set of
feasible solutions of each fuzzy constraintto the crisp set

XL =f{e| ux )2a},  i=l,um.
: m .

Then,the set of feasible solutions of a flexible programming problem is X_ =()X, -
i=]

The single objective function is replaced by the fuzzy goal g(x )=

To get an optimal solution one has to determine the optimal pair (a@*,.x *) such that

min{ O0*,t( x*)=supmax {utc ( x i) (5)
a xeXy

If the optimal «* was determined a priori, the problem (5) could be reduced to a crisp
mathematical programming problem where the objective was to find x* that maximizes

Hg(x) on the set X,+. In the general case, an iterative algorithm is necessary where,

beginning with any a, € fol], the values a, and max {ig ( x yt converge to the optimum
xeXg,

step by step.

Zimmermann [43] has proposed a more integrative approach to flexible programming
allowing consideration of multiple goals and constraints on a common ground. An/‘aspiration

level g,; and a tolerance margin d,; 20 have to be assumed for the /-th goal (/=1,...,4) when

assessing the membership function p,( x ) as:

1 for ¢;,xSg,

H,(x )=4strictly decreasing from1toO for g, <¢)x<g, +d, (6)

0 for ¢,x 28) +4d,

According to the principle of Bellman and Zadeh, the set of fuzzy decisions is
characterized by an aggregation of the component membership functions. If a conjunctive
minimum operator were used for the aggregation, the membership function would be:

Hol  )= min {bil x ).Hi( I} (7)
ab

Then, the problem of finding the best decision (solution) boils down to the following
optimization problem:

Up( x) > max (8)

subject to x 20

The value of the aggregated function p(x) can be interpreted as the overall degree of

satisfaction of the decision maker with k fuzzy goals and m fuzzy constraints.

 



In case of minimum operator(7), problem (8) becomes:

v > max

subject to v S$ (x) [=1,,...,k (9)

vSy,(x) i=l,...,m

x20

In [43, 44], Zimmermann has applied linear membership functions (4), (6) in problem

(9) thus getting an ordinary LP problem. He also proposed to use the product operator

instead of minimum, however, then (8) becomes nonlinear even if linear membership

functions are used.

A comprehensive review of various propositions for modeling the functions p(x)

can be foundin [36, 45].

Knowing the membership functions 4,(x) (/=1,...,4) for fuzzy goals, one can define a

Pareto optimal solution in the space of membership values, called M-Pareto optimal

solution [30].

Definition (44-Pareto optimal solution) Solution x* is said to be M-Pareto optimalif

and only if there does not exist another xeX such that (x) 2 u,(x*), [=1,...,.4, with

Strict inequality holding for at least one/.

The concept of M-Pareto optimal solutions was at the origin of several interactive

methods proposed for flexible programming(see [28, 30]). In these methods, the decision
maker determines membership functions for fuzzy goals and then specifies reference

levels for the membership functions, denoted by 7; (/=1,...,4). Assuming some minimum

levels for membership functions of fuzzy constraints, denoted by ¢; (1,...,m), one gets

the following optimization problem:

max {Ey ~ 4(*)} > min

subject to uj(x)2t; =1,....m

x20

whichis equivalentto:

v—> min

subject to v 2 My — M(x) =1,...,k (10)

HX) 2 t; i=1,....m

x>0

Again, problem (10) becomes an ordinary LP problem when all membership functions

are linear.

This approachis interactive in the sense that the reference levels can be changed from

one iteration to another, as well as the membership functions of fuzzy goals.
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3. MOLPwith Fuzzy Coefficients

All fuzzy coefficients of the FMOLP problem are given in a convenient form of L-R

fuzzy numbers [11]. An Z£-R (flat) fuzzy number @ = (a a®,a4,a®),, is defined by the

membership function:

L((a" -r)/a") for r<até
Hy(r)= 1 for at R

R(r-a®)/a®) for r>a®
<r<a

where L and R are symmetric bell-shaped reference functions which are strictly

decreasing in [0,1] and such that L(0)=R(0)=1, L(L)=R(1) =0; {at ,a®] is an

interval of the most possible values, and a’ anda® are nonnegative left and right

"spreads" of @ , respectively.

Experience indicates that an expert can describe the precise form of a fuzzy number

only rarely. Therefore, as a practical way of getting suitable membership functions of

fuzzy coefficients, Rommelfanger [24] has proposed that the expert begins: with the

specification of some prominent membership levels @ and associates them with special

meanings. After that the expert is expected to specify values which belong to the selected

membershiplevels.

a=1: j3(r)=1 meansthat value r certainly belongs to the set of possible values,

=A; pz(r) 2 A means that the expert estimates that value r with wz(r) >A has a good

chanceofbelongingto theset of possible values,

a= wUz(r)<e means that value r with us(r)<e has only a very little chance of

belonging to the set of possible values, i.e. the expert is willing to neglect the

corresponding values of r with ws(r)<eé.

For example,it is reasonable to assume that A=0.6, e=0.1.

For the sake of clarity, let us assume that the reference functions of all fuzzy

coefficients are of two kinds only: ZL and R. It should be specified, moreover, that all
arithmetic operations on fuzzy numberstaking placein (1), (2) are extended operationsin

the sense of Zadeh's extension principle [42]:

Sg.g(7) = Sup T(fg(y)f(z), reR (11)
r=y*2

where * is a real operation * : Rx® > R and T- [0,1)x[0,1]->[0,1] is any given ¢-norm.
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For any x 20, the left-hand side of the i-th constraint and the value of the /-th

objective function can be summarized to the following fuzzy numbers:

ajx=(a!x,aRx,atx,a%x),, i=l,...,m,

ex=l(ctxcFx.ytx.yPx),p l=1,...,k.

In the literature, the min t-norm is generally applied. Then,

L ~ OL L a AL :
a,x=2 Gjx;, Cfx= > CyXj (121)

a) j=l

n nA

akx= Lafx,;, cfx= Lepx; (12i1)
jel j=l

L yb L wb vsa, x= Lagx;, yp x= LVix; (12iii)
jel j=l

R oR R oR :apx= Lagx;, yp x= Lry x; (12iv)
j= j=l

Obviously, the spreads of these fuzzy numbers extend when numberandsize ofvariables

increase. The simple addition of the spreads of fuzzy coefficients corresponds to the

assumption that their uncertainty comes from independent sources. This is not realistic in

many practical situations. For getting a more realistic extended addition of the left-hand

sides of fuzzy constraints and of fuzzy objectives, Rommelfanger and Keresztfalvi [27]

recommendthe use of Yager's parameterized t-norm:

: l/p

Ty (ty uts) = max 1 -(201) |

tot, €[01} p>0

(13)

Then, aly, a®x,clx, efx are calculated according to (12i) and (12ii), however, the

spreads at xaPkx.ybxyPx are calculated according to a new, less cumulative

formula:

\/q
\/qsie[hts), ateSb)5 jalj=

h \/q n

reelEbb) ’ rta-( $bits)

it um

where q=—- 21.
p-\

\/q
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Coming back to the MOLP problem with fuzzy coefficients, we have to answer the

question how to interpret the relation between fuzzy left- and right-hand side of the

constraints. If constraints (2) were transformed to equality constraints (by addition of

slack variables on the left) then the equality relation could be interpreted in terms of a

weak inclusion of fuzzy sets [10, 19]:

a@xcb i=l,...m (14)

It says that the region of possible values of the left-hand side should be contained in the

tolerance region of the right-hand side. The LP problem with constraints (14)is called

robust programming problem.

Each constraint (14) is then reduced to four deterministic constraints:

alx > bE, aky < bk

atx —a}x > bi - pt (15)

Ra; xt+arx < bF +B, for i=l,...,m

where 5 = (4.6%, 64, A), or 5 = (64.6%, BY, BR gs i=1,...m.
In order to transform fuzzy objectives into deterministic equivalents, one can consider a

"middle" value of ¢)x at somelevel & € fo.1} 1 =1,...,k. The "middle" can be understood

[7] as a combination of the most possible values c/x and c’x, and ofthe smallest and

the greatest (extreme) valuesat possibility level € Thus, the objectives (1) become:

[24x), 29X),...,24(%)]—> min (16)

where z;(x) = weft ~ woyPx L'(E)+ wyef.x + wax RMVE) 1=1.k Wy, W2, W3, Wy

are non-negative weights, e.g. w, = w; = 0.3, w. = w, = 0.2. The deterministic objectives

(16) are linear even if reference functions Z and R are nonlinear.

There exist approaches proposing a substitution of each objective by several

deterministic objectives corresponding to extreme values of several &levelsets [8, 26].

Finally, let us mention a comparison technique of fuzzy numbers, which is based on

the compensation of area determined by the membership functions of two fuzzy numbers

being compared. This technique, which has been characterized by Kolodziejezyk [15] and

Chanas [4], and then by Roubens [29] and Fortemps and Roubens [13], can be used
directly to transform the comparison of fuzzy left- and right-hand side of the constraints,

and ofthe fuzzy objectives and fuzzy goals into non-parametric deterministic equivalents.

Although this technique seemsintuitive, it has a convincing theoretical foundation.

Indeed, the semantics of fuzzy numbers considered in the MOLPproblem with fuzzy

coefficients is related to the representation of incomplete or vague states of information

underthe form ofpossibility distributions. This view of fuzzy numbers is concordant with
the Dempster interpretation of fuzzy numbers as imprecise probability distributions [9]. In

this perspective, the comparison of two fuzzy numbers can be substituted by the
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comparison of their mean values defined consistently with the well-known definition of

expectation in probability theory. The idea exploited by Dubois and Prade [12] rely on the

mathematical fact that, with respect to a fuzzy number, the possibility measure

corresponds to an upperprobability distribution, while the necessity measure, to a lower

probability distribution of the corresponding random variable. Then it is reasonable to

define the mean value of a fuzzy number as a closed interval whose bounds are

expectations of upper and lower probability distributions. The comparison of two fuzzy

numbers boils then down to the comparison of arithmetic means of these bounds, whichis
computationally equivalent to the above mentioned technique based on area

compensation, as shown in [13].

In consequenceofapplication of all these comparison techniques, the MOLP problem

with fuzzy coefficients is transformed to an associate deterministic MOLP problem, as

(16), (15), (3) above, which should, preferably, be solved by one of existing interactive
procedures(see, e.g., [39]).

4. Flexible MOLP with Fuzzy Coefficients

This problem combines the two semantics of fuzzy sets considered separately in

flexible programming and in MOLPwith fuzzy coefficients. This means that in addition

to fuzzy coefficients in the objective functions and on the both sides of the constraints, the

degree of satisfaction of fuzzy constraints and fuzzy goals is considered in fuzzy set
terms.

A crucial question which has to be answered while solving a flexible MOLP problem
with fuzzy coefficients is how to express the minimal conditions on the satisfaction of

fuzzy constraints in deterministic terms.

In most of existing approaches, the minimal conditions on the satisfaction of fuzzy

constraints (2) are expressed by one or two deterministic linear constraints which

substitute the original fuzzy constraints. To give an idea of these crisp surrogates, let us

present them in common terms from the most pessimistic to the most optimistic attitude.

Weassumethe following form of the fuzzy left- and right-hand side of the i-th constraint:

ajx=(a!x,a?x.a/x,a%x),, and b, = (b;,0. B;),p-

(a) a®&x+a%xR'(p)<b,, pe[0,1] (2, 37]

Rech
b) 34 FSi 20, 23, 41
Eeeeen og Re), e€(01| ! * 41]

(c) arx+akx R'(a0) <b, + B,R'(a), oe(01] [3]

R (7, 32, 33](a) alx-b; salx L\(r) + B, R7'\(t), ré(0,1], optimistic

a; x+arx R"(n) <b, + B; R-'(n), ne (0), pessimistic
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Figure 1: Results of conditions(a) to (f) applied on a commonfuzzy constraint
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R®) [erstbe S+e€[0l], 520, 20 oy
akx+(l-e-d)akx sb, +(1-e)£;

(f) atx-atxL"(a)<b, +8, R'(a), ae[0,] (17, 31]

In all these approaches, the parameters a,6,€,7,17, p,a can be used by the decision

makerto control the degreeof satisfaction of fuzzy constraints in an interactive way.

Figure 1 showsresults of conditions (a) to (f) applied on a commonfuzzy constraint.

Although it is the case in Figure 1, the reference functions L and R need notbelinear in

the above conditions.

Another interpretation of fuzzy constraints has been given in [22]. The i-th fuzzy

constraint is replaced by the pessimistic condition proposed in [32] and by a new

objective:

arx+ak*x<b, + BF (17)

H;(x) > max (18)

where membership function 4;,(x) is defined according to (4). More detailed discussion

ofthe interpretation of fuzzy constraints can be foundin [28].

If fuzzy goals are specified as L-R fuzzy numbers 2; =(g,,0,v; );, (/=1,...,4), then the

satisfying conditions

Bx ZB, laluok (19)
can be treated as additional fuzzy constraints. In accordance to the choseninterpretation

of the fuzzy inequality relation, (19) can be substituted by one or two crisp inequalities

listed above or by (17) and (18). Another proposal has been madein [32, 33]; the degree

of satisfaction of fuzzy goals is represented there by the levels of intersection of left

reference functions of ¢)x with right reference functions of g, (/=1,...,k):

Uctx-g,Wytx+v,))> max 1=1,..k (20)

These crisp objectives substitute the fuzzy ones. In the case of linear reference functions
L, functions (20) becomelinear fractional:

(hx - 2g, Mytx+v))—> min 1=1,...,k (21)

The crisp objectives (21) and the optimistic and pessimistic conditions (d) on the

satisfaction of fuzzy constraints have been used in the FLIP methodpresented in [7, 32,

33, 35]. They constitute an associate deterministic multi-objective linear-fractional

programming (MOLFP) problem. In FLIP, the MOLFP problem is solved using an

interactive sampling procedure. In each calculation step of this procedure, a sample of

non-dominated points (Pareto-optimal solutions) of the MOLFPproblem is generated and
then shown to the decision maker whois asked to select the one that fits best his/her

preferences. If the selected point is not the final compromise, it becomesa central point of

 



a non-dominated region that is sampled in the next calculation step. In this way, the

sampled part of the non-dominated set is successively reduced (focusing phenomenon)

until the most satisfactory efficient point (compromise solution) is reached. An important

advantage of the method presented above is that the only optimization procedure to be

used is a linear programming one. Moreover, it has a simple scheme and allows

retractions to the points abandonedin previous iterations.

The interaction with the decision makertakes place at twolevels: first when fixing the

safety parameters and then in the course of the guided generation and evaluation of the

non-dominated points of the MOLFPproblem.

Let us precise that the fuzzy goals g, (/=1,...,4) do not influence the set of non-

dominated points of the MOLFP problem;they rather play the role of a visual reference

than that of a preferential information influencing the set of generated proposals for the

compromisesolution.

An important feature of any software implementing a fuzzy multiobjective pro-

gramming methodis the presentation of candidate solutions in the interactive process. In

the FLIP software, the Pareto-optimal solutions of the MOLFP problem are shown not

only numerically but also graphically, in terms of mutual positions of fuzzy numbers
correspondingto original objectives and aspiration levels on the one hand, andto left- and

right-hand side of original constraints on the other hand [5]. In this way, the decision

makergets quite a complete idea of the quality of each proposed solution.

The quality is evaluated taking into accountthe following characteristics:

e scores of fuzzy objectives in relation to the goals,
e dispersion of valuesof the fuzzy objectives due to uncertainty,

e safety of the solution or, using a complementary term, the risk of violation of the

constraints.

So, the definition of the best compromise involves not only the scores on particular

objectives but also the safety of the corresponding solution. It is possible due to visual
interaction that needs graphical display of objectives and constraints for any analyzed

solution. The comparison of fuzzy left- and right-hand side of the constraints, as well as

evaluation of dispersion ofthe values of objectives,is practically infeasible on the basis of

numerals only. The graphical presentation of proposed solutions is not only a “user’s
friendly” interface but the best way for a complete characterization of these solutions.

There exists an implementation of FLIP in Visual Basic in the MS-Excel environment;

it allows a user to defineall safety parameters and the parameter p of the Yager’s formula

(13) for the aggregation of fuzzy objectives and of fuzzy left-hand sides of fuzzy

constraints. The candidates for the best compromise solution are displayed there both

numerically and graphically.



5. Conclusions

Fuzzy multi-objective linear programming methods have often been proposed in view

of specific applications (see, e.g., [5, 16, 28, 32, 36, 40}). This means that the many

proposals described in this paper are based on different assumptions that are verified in

different practical situations. The choice of a procedure for an actual decision problem

should take into account these assumptions. In any case, the interactive process should
enable the best use of the decision maker's knowledgeof the problem.

Fuzzy multi-objective linear programming can also be seen as a tool for an interactive

robustness analysis of MOLP problems. It gives an insight into sensitivity of proposed

solutions on changesofparticular coefficients within some intervals and on changes of
preferences as to degrees ofsatisfaction of the constraints.
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Wasit really necessary to write another book on such a classical subject as Linear Programming?

A simple look at the present work readily showsthat the answeris clearly "Yes!" since there is no

other book of that kind. The new book by Jacques Teghem offers an up-to-date presentation of ”

Linear Programming in Frenchandisideal as a basis for teaching this material at variouslevels.

In view of a first course in LP, the author introduces the classical simplex algorithm, duality and

the dual simplex algorithm as well as the basics of branch and bound methods for integer

programming. Moreoriginal, the opportunity is offered to the reader to obtain at very moderate

price a student version of the LP-MIP commercial package of OM Partners; extensive

instructions for using the packageare provided as well as a numberofillustrative examples which

can either be computed by handorsolved by using the software.

The secondlevel topics include

- the primal-dual algorithm and its application to solving the assignment problem and the

transportation problem;

- the handling of boundary constraints on the variables;

- the resolution oflinear parametric programs.

Again, an original part consists in two chapters dealing respectively with stochastic and fuzzy

linear programming and with multicriteria linear programming both subjects in which the author
has been andis very active. Note in particular that the presentation of fuzzy linear programming

is self-contained since the relevant concepts of fuzzy sets theory are introduced in a very readable

manner. For multicriteria linear programming, a numberofinteractive methodsare outlined; the

chapter closes with a description of two methods which encompassboth the multiobjective and

stochastic or fuzzy aspects; the so-called STRANGE method, due to the author and his

collaborators, and the FLIP method due to R. Slowinski have both been developed for solving

practical planning problemsrespectively in the domains of energy production and in agriculture.

Uncertainty and imprecision of the data on one hand andthe coexistence of several irreconcilable

objectives on the other hand are indeed basic features of those important planning problems.

 



Finally, at an advanced level, the revised simplex algorithm and the Dantzig-Wolfe

decomposition are presented both based on a column generation technique and well-suited for

large scale problems. In chapter XII, the basics of problem complexity theory are provided which

allows to understand the interest of the Kachyan algorithm (ellipsoid algorithm) and of the

Karmarkar algorithm; while the former only has had theoretical interest in showing that linear

programswere solvable in polynomialtime,thelatter is also powerfulin practice.

This panorama of linear programming certainly contains all the material usually covered in

courses at undergraduate and graduate levels. Since it is written with great paedagogical sense

and fully illustrated with numerical examples and applications, there is no doubt that this book

can be used with great profit by students (engineers, economists, mathematicians, ...) as well as

by their instructors; those who received an elementary course on LP during their university

studies can also find in this book a convenient and pleasant way for improving and updating their

knowledge ofthe field.

Marc Pirlot.
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