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Abstract

Queueing systems with retrials arise naturally in telecommunications and computer

systems. The increasing interest on this topic is mainly explained by the development of

new facilities in telecommunication technology such as “repeat last number”, “ring back

when free”, etc. In this paper we concentrate our attention in the reliability of the system

when the server is subject to interruptions. We consider a retrial queueing system with

service interruptions arising from facsimile networks. Wefirst investigate the joint distri-

bution of the channel state and the number of customers in the retrial group in the steady

state. We show that the queue length characteristics reduce to closed form expressions for

the case of exponential service times. Using some results from the theory of regenerative

processes, we also obtain some other important performance measures.

Keywords: facsimile transmission, queue length distribution, reliability, regenerative

processes, retrial queues, stable recursive schemes

31

 



1 Introduction

Over recent years it has been a rapid growth in the literature on Retrial Queueing Sys-

tems. This growth is mainly. motivated by the applications to many telecommunication

and computer systems. Interested readers can find a comprehensive survey in Yang and

Templeton [15], Falin [8] and Falin and Templeton [10]. Additional information about
unreliable retrial queues can.be found in Aissani [1], Anisimov and Atadzhanov [4] and

Kulkarni and Choi [12].
In this paper, we study an M/G/1 queue with repeated attempts in which the server

operates under the linear retrial policy analyzed by Artalejo and Gémez-Corral [6]. In

‘ addition, we assume that the server is subject to interruptions. The customer whose

service time is interrupted has to either leave the system or join again the retrialgroup.

Our modelis related to some variants of the main retrial queue of type M/G/1. For

example, the service interruptions can be view as a special type of breakdown of the

server (see Aissani (1,2], Aissani and Artalejo [3], Artalejo [5] and their references) where

the server is restarted instantaneously. Our model falls also into the category of retrial

queues with feedback (see Choi and Kulkarni [7]). Here, we would like to pointed out that

our specific formulation allows us to study the queueing model in more depth.

The major motivation for our model comes from auto-repeat facilities for the trans-

mission of messages in facsimile networks. Consider a communication enterprise which

reserves a specific facsimile machine for sending messages to outside destinations. If the

channel is free when a user arrives and demands to send a message, then the transmission

starts. On the other hand, any message finding the channel busy must be stored in a

buffer, but some time later the demandis reinitiated. In any case, after occupation of

the free channel a message transmission starts. If the transmission is not concluded for

reasons such as a blocking in an external link or a transmission error, then the message

leaves the channel and joins the buffer. It should be pointed out that the facsimile equip-

ment remains operative and the service interruptions must be explained only in terms of

external factors. This is the main difference with queueing systems subject to classical

breakdowns. The aim of this paper is to investigate the implications of service interrup-

tions in the consequent repeat-attempt behaviour. The analysis of more complex models

(where the facsimile machineacts simultaneously as receiver and transmitter, or alternates

‘fax’ and ‘phone’ periods) may be the subject matter of any forthcoming work.

Therest of the paperis organized as follows. In Section 2, we describe the mathemat-

ical model. The study of the system state in steady state is carried out in Section 3. This

analysis includes the recursive computation of the limiting probabilities, z-transforms and

study of the model at Markovian level. Finally, other important performance characteris-

tics are derived in Section 4.
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2 Model description

Weconsider a single server queueing system at which primary customers arrive according

to a Poisson process with rate A. Any arriving customer whofinds the server busy upon

arrival leaves the service area and joins the retrial group. The controldiscipline to access

from the retrial group to the server is governed by an exponential law with linear intensity

a(1—69;) + jp, when the numberof units at the retrial group is 7 € N, where 5,, denotes

Kronecker’s delta. In the case a = 0 and 4 > 0 theretrial intensity becomes the classical

retrial discipline (see Yang and Templeton [15] and Falin (8]). Alternatively, when u = 0

and a > 0 we obtain the constant retrial discipline (see Martin and Artalejo [13] and

its references). The service times are general with probability distribution function B(t)

(B(0) = 0), conditional completion rate n(x) and Laplace-Stieltjes transform §(s). In

addition, we assume that the server is subject to interruptions. The customer whose

service is interrupted has two possibilities: either to return to the retrial group and try

his luck later, or leave the system. We incorporate both choices by introducing two more

exponential Jaws,i.e., the server fails at an exponential rate @, (respectively, @2) and theit

the customer leaves the system (respectively, returns to the retrial group). Alternatively,

we can think only in one exponential law with rate @ and a recovery factor, defined as

the probability that the interrupted customerrejoins the retrial group. Wefinally assume

that the input flow of primary arrivals, intervals between repeated attempts, interruptions

and service times are mutually independent.

Note that the state of the system at time t can be described by the process X(t) =

(C(t), N(t), €(t)), where C(t) takes values on {0,1} according as the serveris idle or busy.

N(t) represents the number of customers in the retrial group at time t. If C(t) = 1, then

&(t) denotes the elapsed time of the customer being served. Thetransitions among states

are illustrated in Figure 1.
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Figure 1. Transitions among states

The model described above has applications in the design of the transmission of mes-

sages in facsimile machines. The customer in the retrial group, the distribution of the

 



successive repeated attempts and the service time distribution in the queueing termi-

nology correspond respectively to the blocked/interrupted messages stored in the buffer,

retransmission protocol and transmission time. In practice, different transmission errors

yield either the return of the interrupted message to the buffer or a definitive deletion.

In what follows, we assume that one of the following conditions is fulfilled:

i) Ifa > 0 and p= 0, then pa-!(A+a+02) <1,
tt) Ifa >0 and up > 0, then p <1,

where p = A(1 ~ 8(A1 + 62))(91 + 028(61 + 62))-?.
Byusing classical criteria based on meandrifts, it can be easily proved that the above

conditions determine the ergodicity of the embedded Markov chain at the sequence of

epochs which either a service completion or a service interruption occurs. Thus, in the

rest of the paper we assume these conditions to guarantee that the limiting probabilities

of (C(t), N(t)) exist and are positive.

3 Analysis of the limiting distribution

Now, we study the limit behaviour of the process (C(t), N(t)) as t — oo. Our first goal is

to develop a stable recursive schemefor the limiting probabilities

Py = limP{CH),MO) =I}, G&AIEE=(Q1}xN (B11)
Our derivation is based on a versatile regenerative approach (see Tijms [14]) which

was also the key to compute the steady state distribution in other retrial queues (see de

Kok [11] and Artalejo [5}). Let a regeneration cycle be the time elapsed between two con-

secutive primary arrivals finding the system empty. The process (C(t), N(t)) regenerates

itself at these epochs. We define an extended service time as the up time when the server

begins a service until the next completion or interruption,i.e., it is the minimum among

the service time and the exponential laws governing both types of interruptions. We also

define some random variables:

T: the length of a cycle,

T;;: the amountof time in a cycle during which the system state is (z, 7),

N}: the number of extended service completions in a cycle, concluding with a service

completion, at which j customersare left behind in the retrial group,

NE: the numberof extended service completions in a cycle, concluding with an inter-

ruption of type k € {1,2}, at which j customers are left behind in the retrial group.

By the theory of regenerative processes, we can express the limiting probabilities (3.1)

as

 

P= E(T]
37 E{T| , (i,j) € E. (3.2)

 



We now consider the following balance equations:

(A + a(1 — 503) + Ju)E[To;] = E[N}] + AE[Ti3] + (1 — 40;)@2E(Ti;-1], 7 20, (3.3)

(a+ G+1)p)E[Tojai) = (A+ O2)E[Ty], 7 >= 0. (3.4)

Equations (3.3) and (3.4) can be obtained by equating the flow rate into and the flow

rate out of (0,7) and {(i,m) : 1 € {0,1}, 7 > m > O}, respectively.

Now we divide both sides of (3.4) by E[Z’] and invoke to (3.2). Then, we have

(a+(j + 1)4)Po,j41 =(A\+ 62)Pi;, j2o0. (3.5)

In view of (3.5) our problem is reduced to the computation of the sequence {P,,;

520}.
To find a relation among E[T;;], E{N#] and E{N*], we introduce the auxiliary quantity

A,;: the expected amount of time that during an extended service j customers are in

the retrial group, given that the previous extended service left k customers in the retrial

group.

Now an easy application of Wald’s theorem allows us to get

j+l

E(Tyj] = D> (UNE) + ELINA] + E(NG]) Aaj, 3 20. (36)
k=0

On the other hand,since the interruptions are exponentially distributed, we find that

E(Ni] =£E|Tu), * > 0, (3.7)

E(NZ] = @2E(Tiz-1], & 21. (3.8)

By combining (3.3), (3.4), (3.6)-(3.8), it follows that

 
j+1

E(T1;] = Ao; + (A+ @2) > ( + ) AnsETisth j20. (3.9)
k=1

atkp

Observe that E[Tbo] = 1/\. Thus, we find the useful relation E[T] = 1/(APpo).

Dividing both sides of (3.9) by E[T], we find the recurrencerelation

 
+1

Pyy = APo0Aoj + (A + 62) > ( + ) AgjPike-1, j 20. (3.10)
k=l a+ky

Hence we can compute {P,;; 7 > 0}, in terms of Poo, by a stable recursive scheme once

we have evaluated the quantities A,;. Finally, we can get Poo by using the normalizing

condition 5°,;,ee Pi; = 1. It remains to specify the coefficients A,;. To that end, we



define

By;: the expected amountof time that during an extended service j customers are in

the retrial group, given that is started with k customers.

Both auxiliary quantities are connected by the following relationships:

o+G+)h 520, (3.11)Ams TtatGene 7?
_  @(1 — bon) + kp Boa. BY

~ A+a(1 — don) + ku kag t At a(1 — don) + ky

Observe that an infinitesimal interval (t,t+At) contributes to B,; if: i) the service time

has not been completed before time ¢ (with probability 1— B(¢)), i) a service interruption

did not occur before time t (with probability exp{—(01 + 62)t}), and #i) j —k primary

customers arrive to the system in the interval (0,t).

Then, we have

Ak; By, f2k>0. (3.12)

 
Pe (At) ~(01+62)t .By = [me PIABwe rat, F2kZO. (3.13)

0 —K): :

Note that (3.10) can be reexpressed as follows:

j r .

(1-(A+62)a0)Piz = APooaj +(1—S03)(A+62) >> (at +at) Prx-1, 20,
k=1

(3.14)
where - j

a; = | eoOvertonOY(1-B(t))dt, j20. (3.15)
0 .

The integral in (3.15) can be reduced to finite sums for the case of the most usual

service time distributions.

For the sake of completeness, we next study the partial generating functions P;(z) =

Yj=0 P27, tE {0, 1}.

Theorem 3.1. The partial generating functions P;({z) are given by:

A(1 — B(A — Az + 61 + 62)
(A + @2)B(A — Az t+ A; +02) +0; — Az
 P\(z) = Po{z). (3.16)

Ifa>0 and p> 0, then

_ a 1 \(A+6:)(1— BIA— +01 +62)
Po(z) = 270 (-p)ew {[ FESENOSERAT
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1 taol e/p-1 (A + 69)(1 — B(A — Au + 61 + 92)) \ )
apy Poo | tole exp[ piku —6, — (A+ O5)B(A — hu + 6; + 85) dt}, (3.17)

 

 

where

1 Xd. —B(A-At+6

(1 p) exp {Jeresdt} for a =0,
Po =

1 _ 4 MA+62)(1—B(A—Au+01460 71(1p) (2 (peel temp { ftportdul dt)”, fora >0.
(3.18)

Ifa>0 and p=0, then

Az(A + 62)(1 — B(A— Az+01+62)) \7?
Pi = Po (1 .u(2) Po (14eTTeretep) * 9)

where
Po = ay + (A+ a@)(A + 62)(81 + 82) = A(A+ @ + 82) (3.20)

a(0 + 628(0 + 82))

Proof. From (3.5) and (3.14) we get an alternative recurrence relation involving the

probabilities {Po;; j > 0}:

(1 — (A + 62)a9)(A + 92)(a + (7 + 1)4)Poj41 = APO0a;

i

+(1- 603) So(aj-e +(a+ ky)aj—n41)Por, 320. (3.21)

k=1

Then, taking transforms over (3.21) we find after some rearrangements that

Po(2)m2(1 — (A + 62)a(z)) + Po(2)(a(1 — (A + 62)a(z)) — A(A + 62)2za(z))

= aPoo(1 — (A + 62)a(z)), (3.22)

where
So, 1-B(A—Az+ 014+ 6

ate) = aye= (3:23)
j=0

Putting » = 0 in (3.22) we obtain readily (3.19). The discussion of the case p > 0

leads to the differential equation

@ ——-MA-+6,)(1— B(A— Az + 8+ 64) _a@
Po(z) + (< + Tz6 - AF)BAe +O, +a) Po(2) = 7 Poo. (3.24)

Taking transforms in (3.5), we find that

 

az—)(Po(z) — Poo) + uP6(z) = (A + 62)Pi(z). (3.25)

We now combine (3.24) and (3.25) to get the expression (3.16). The solution of the

equation (3.24) is standard and thus omitted. O
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In Theorem 3.1, we have omitted the derivation of the factorial moments defined by
-

My = 3 (j)A!Pij, ¢ € {0,1}, & > 0. They can be obtained uponsuitable differentiation
j=0

over the corresponding transforms after tedious algebraic calculations.

Because of the complexity of the formulas for generating functions given in Theorem

3.1, it would be interesting to obtain closed form expressions for the pure Markovian

model,i.e., B(t) = 1 —e~, t > 0. We summarize in the following theorem someexplicit

results for this case. ,

Theorem 3.2. If a > 0 and up > 0, then the stationary distribution of the process

(C(t), N(t)) is given by:

A+ 4 (1+ Ataxee
Poj = IPo, j21, (3.26)

b (1+ 2),

1piPo, §21, (3.27)

d 6 1Po =p™"Pro,  Po=p (F (. 1+—1+:)) , (3.28)

where p = \(v+0,)—', (z)n is the Pochhammer symbol and F denotes the hypergeometric

series defined as follows

1,
for n = 0,

(Z)n = 2(2+1)..(e+n—1), forn>1, (3.29)

= (a)n(5)n z
F(a,b;c;z)= 7.(a, ¢; 2) dX (on

The k-th partial factorial moments are given by:

Ato+de
xMo = Podtppteg 14ktet!tk), D1,
A+at@ Q + 2) be Ib

B

(3.30)
1 + Ateth

Mi= pontttt)(+heeeeeSeay ke) k>1, (3.31)
(a + 2) bb u

Bk

M8=1-p, Mg=pe. (3.32)
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Ifa >0 and pp =0, then the stationary distribution of the process (C(t), N(t)) is given

 

by:
At+@. ; ; .

Po; = = 2 3-19Pop, Pay = 7"Pro, j21, (3.33)

Maly + O,) — AA + at 6
Poo = pPro, Pio =xe (3.34)

and its corresponding k-th partial factorial moments are given by:

Meant! (1) ypenp(L), ext (3.35)
RX+0402. \1-7) ’ k ? 1-7)?’ =" °

M3 =1- p, M2 = p, (3.36)

where y = a7}(A + a+ 02)p.

Proof. First we consider the Kolmogorov equations for the probabilities {P,;; (i, 7) € E}:

Ata(l— 603) + J#)Po3 = 62(1 — 603)Pig—a + (v+4)Pij, 720, (3.37)

(A+ uv + 6) + 62)Pay = APO + (a+ GF +1)u)Pog41 +A— bos)Pigs, 9 20. (3.38)

In fact, the system (3.37)-(3.38) can be simplified by substituting (3.38) by (3.5).

Equations (3.26)-(3.28) and (3.33)-(3.34) follow after some algebraic manipulations.

The partial generating functions can be obtained from the stationary probabilities P;,;.

Of course, a suitable substitution on the results given in Theorem 3.1 also leads to the

same quantities. In any case, it is easy to get the following expressions for the case yz > 0.

_ a- A+ 6, A+at 6a. ao
Po(z) = Poo (sesca ttter (h n 1+ Sipe)), (3.39) 

6
P,(2) = ProF (1 1+ eer’1+ <p) . (3.40)

Since (1 + 2)" = "Reo (f)2*, we find that

oo . zk

P,(1 +2)=MiG i € {0,1}. (3.41)
k=0 .

Thus, the expressions (3.30)-(3.32) for Mj can be obtained by a direct identification

for the coefficients of the series P,(1+ z).

Putting y = 0 over (3.30) and (3.31) we finally get the expressions (3.35) for the case

p=Oanda>d. O
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4 Other performance characteristics

In previous section we gave a detailed study of the limiting distribution of the system

state. The queue length process is the most extensively studied characteristic of any

retrial queue. The analysis of other performance measures such as the busy period or the

waiting time process leads to extremely cumbersome formulas. Another area of work is

the case offinite input stream (see Falin and Artalejo [9]). In the context of the facsimile

network, this situation occurs if the population having access to the facsimilie machine

has a moderate size. Then the input can be described in terms of the so-called “quasi

random input” rather than in terms of a Poisson process.

To conclude we obtain some other measures ofeffectiveness in the following.

Theorem 4.1. Let us assume the ergodicity condition given in Section 2. Then, we

have

t) The mean length of a regeneration cycle is

EIT| = me (4.1)

tt) The mean number of extended service completions in a regeneration cycle is

9, + 02

EN] = Poo(61 + 828(@1 + 42))°
(4.2)

uit) The mean number of customers served and the mean number of service interrup-

tions of type k, k € {1,2}, are respectively given by:

(1 + 02)8(A1 + 62)

EIN"] = F561 + 055(6; + 62)’ (4.3)

_ 94(1 — B(6, + 92))
EIN*] = Poo(61 + 828(@1 + 02))’ we {1,2}. (4.4)

Proof. Expression (4.1) follows directly from (3.2). A new appeal to (3.2) allows us to

express the expected amountof time in a cycle during which the server is busy as

oo

=o
E =s = pElT) = Poo" (4.5)

Nowexpression (4.2) follows from Wald’s theorem and (4.5).

Finally, we observe that the conditional! distribution of N*, given that {N = i}, follows

a Bernoulli law ofi trials with probability 6;.(01 +2)~!(1—(6@1+92)) of success. Thus, we

can easily prove the validity of (4.4). E[N*] = E[N] — E{N'] — E[N?], so we get (4.3).
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