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Abstract

The purpose of this paper is to make thefirst step toward the understand-

ing of the structure of left-continuous triangular norms with strong induced

negations. For two-placed functions on [0,1] two properties are introduced:
The rotation invariance property and the self quasi-inverse property. It is

proved that these properties are characteristic for the class left-continuous

triangular norms with strong induced negations. The two properties turn out

to be equivalent on the class of symmetric, non-decreasing two-place functions

on {0,1], that is, such a function admits the rotation invariance property if
and only if it admits the self quasi-inverse property. These properties have

equivalent geometrical counterparts which are investigated, explainedin detail

and examples are given. These geometrical counterparts can be represented

in 3 and 2 dimensions.

Keywords: triangular norm,residual implication, induced negation, involu-

tion, left-continuity, rotation, reflection.

1 Introduction

Triangular norms (t-norms for short) are associative functions that play a basic

role in several disciplines of mathematics. In the theory of probabilistic (statistical)
metric spaces ((9]), they model the “triangle inequality” of a probabilistic metric

space, where the distance of two objects is described by a probability distribution

instead of a real number. In fuzzy set theory, together with their dual operators -

the triangular conorms - they model the intersection and union of fuzzy subsets,

respectively. In fuzzy logic, t-norms and t-conorms model AND’ and ’OR’, the

logical conjunction and disjunction. In thefield of decision analysis, fuzzy preference

modeling((1],[4]) — due to its strong correspondence with fuzzy logic - uses t-norms
and t-conormsas well. T-norms are applied in fuzzy control and so on.

 



The condition of left-continuity is a frequently cited property and plays a central

role in all the fields that use t-norms. Left-continuous t-norms with strong induced

negations are even morerelevant. In spite of their significance, the knowledge about

left-continuous t-normsis rather poor at present; there are no results in the literature

whereleft-continuous t-normsstand as the focus of interest. Moreover, until recently

there were no known examples left-continuous t-norms, except for the standard

class of continuous t-norms. Recently, two basic families of left-continuous (but not
continuous) t-norms with strong induced negations have been discovered.

Thecharacterization of associativity is one of the oldest open problems in math-

ematics. Classification results of solutions of the associativity equation

f(F(2,9), 2) = F(a, f(y, 2))

without assuming further strong conditions are not known yet and we are very far

from reaching this level of understanding. We understand well symmetry (commu-

tativity) of functions (operations) as some invariance of their graphs with respect
to a certain reflection. But up to the author’s knowledge, there exists no similar

result for associativity. Of course, associativity together with commutativity means

some symmetry property in a four-dimensional space, but since our way of looking

at things is limited to three dimensions this four-dimensional interpretation doesn’t

really support our mathematical intuitions and is not very helpful at formulating

mathematical conjectures.

In order to fill in the gap between the particular importanceof left-continuous

t-norms and the pure knowledge about them on the one hand,andin order to un-

derstand associativity better on the other hand, we discuss here the geometrical

properties of left-continuous t-norms with strong induced negations. We associate

two clear and simple geometrical meanings to the associativity of such two-placed

functions: we introduce the rotation invariance property and the self quasi-inverse

property and explain their geometrical content. The first property can be repre-

sented in three dimensions, the second one in two dimensions. Hence both proper-

ties are easy to understand with our ‘maximum three-dimensiona] brain’. Moreover,

these properties turn out to be equivalent on the class of symmetric, non-decreasing

two-place functionson [0,1], thatis, if such a function admits oneof those properties

then it admits the other one too. We prove that each left-continuous t-norm with

strong induced negation has those properties. Up to the author’s knowledge, this

is the first time that associativity (together with other conditions) is represented

somehow in such an understandable way in two or three dimensions.

Moreover, the understanding of the geometrical content of the self quasi-inverse

and the rotation invariance properties will be the basis for understanding the struc-

ture ofleft-continuous t-norms with strong induced negations(see e.g. [6]).
Finally, we remark that results of the present paper have been presented in

international conferences(first in [7]).

 



2 Basic definitions

First, we repeat the essential definitions.

Definition A A triangular norm (t-norm for short) is a function T : [0,1]? 4

[0, 1] such thatfor all x, y, z € [0, 1] the following four axioms (T1)-(T4)are satisfied:

(T1) Symmetry T (z,y) = (y, 2)
(T2) Associativity T (2,T (y,z)) =T (T (z,y), z)
(T3) Monotonicity T (x,y) <T(z,z) whenever y < z
(T4) Boundary condition T(z,1)=2
(T4') Boundary condition T (0,z) =0.

It is immediate to see that (T3) and (T4) imply (T4’). A t-norm is said to be
continuous resp. left-continuous if it is continuous resp. left-continuous as a two-

place function.

Definition B A negation N is a non-increasing function on [0, 1] with boundary

conditions N (0) = 1 and N(1) = 0. Such a negation is called strong if N is an
involution, that is, N (N (x)) = x holdsforall z € [0,1].

A negation is strong if and only if its graph is invariant w.r.t. the reflection at the

line y = z. A strong negation is automatically a strictly decreasing and continuous

function.

Definition C Let T : [0,1]? — [0,1] be a function satisfying (T1) and (T3).
The implication function Jy generated by T is given by

Ir (x,y) = sup{t € [0,1] | T (x,t) < y}-

If T is left-continuous then [7 is called the residual implication generated by T.

Define

Nr (x) = Ip (z, 0) ;

for x € [0,1]. It is easy to see that left-continuity of T implies

T (x,y) =0 = 2 < Nr(y), (1)

and left-continuity of T is equivalent with

T (x,y) <2 @ Ir(z,z)2y

for all x,y, z € [0,1]. Wewill use these facts frequently in the sequel.

If T admits (T4) (e.g., if T is a t-norm) then Nr is a negation and called the
induced negation of T. We say that a t-norm T has a strong induced negationif

Nr is a strong negation. In Fig. 1 we present the three-dimensional plots of the

product t-norm given by T(z,y) = z- y and an ordinal sum (seee.g. [8]) with one

Lukasiewicz summandon (0,0.4].
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Figure 1: How the induced negation can be seen on the graph of the t-norm

One can see easily the induced negation of them on the plane which is spanned

by the axes X and Y.It follows the border between the regions where T is zero and

where T is positive. The border belongs to the zero region becauseofleft continuity.

None of the negations in the figures are strong.

If T is a left-continuous t-norm then the following (portation law)is fulfilled, for

all x,y, z € (0, 1]:

Ir (x, Ip (y, z)) = Ir (T (x, y)s z) ,

In addition, the residual implication ‘defines the order’, that is we have Ir (x,y) = 1

if and only if z < y.

3 The known examples of left-continuous t-norms

with strong induced negations

Only three families of left-continuous t-norms with strong induced negations are

known. (Under a family we understand a t-norm T together with its f-transforma-

tions which are as well t-norms and are defined by T;(z,y) = f~1(T(f(z), f(y))),
where f is any increasing bijection of [0,1]. That is, one family is a set of t-

norms which are order-isomorphic from the semigroup theoretic sense.) Oneis the
(continuous) nilpotent class, with as representative the Lukasiewicz t-norm given by

T(x, y) = max(x + y — 1,0). (2)

An otheris the family of nilpotent minimum [3], with as representative

_ 0 ify<l—-z

T(t,y) = min(z,y) otherwise ~ (3)



The third is the family of nilpotent ordinal sums [5]. This family (in wide sense)
contains the two previous ones. A representative is given by

0 ifg<l—-y
T(z,y)=4 ¢+a+y-1 ifi<szjy<2andr>l—y . (4)

min(z, y) otherwise

4 Rotation invariance andself quasi-inverse prop-

erties

First we introduce two properties.

Definition 1 Let T : [0,1]? — [0,1] be a function satisfying (T1) and (T3),
and let N be a strong negation. We say that T admits the rotation invariance

property (with respect to N) if for all x, y, z € [0,1] we have

T(z,y) <2 @ T(y,N(z)) < N(z).

Definition 2 Let T : {0,1]? — {0,1} be a left-continuous function satisfying
(T1) and (T3), and let N be a strong negation. We say that T admits the self
quasi-inverse property (with respect to N) if for all z, y, z € [0,1] we have

Ip (z,y) = 2 & T(z,N(y)) =N(2).

It is interesting to notice:

Theorem 1 Any rotation invariant monotone binary operation is left-conti-

nuous. That is, any function T : [0,1]* — [0,1] which satisfies (T3) and whichis
rotation invariant w.r.t. a strong negation N is left-continuous.

Proof. First we prove left-continuity of T in its first component. By monotonicity

of T the contrary is equivalent to the following statement: There exist z, y, z € {0, 1]

such that lim,,,.T (t,z) = y and T(z,z) > y. Hence by monotonicity, for all

t < z we have T (t,x) < y. The rotation invariance of T implies now the following

assertion: For all t < z we have T(z,N(y)) < N(t). This together with the
involutory property of N yields T (z, N (y)) < N (z) which is by applying rotation
invariance of T twice is equivalent to T (z,r) < y, a contradiction. The proof for
the second component is analoguos. The only difference is that we have to apply

the rotation invariance property first twice and then once (aboveit is applied first
once then twice). .

The following proposition asserts that the only possible choice for N in the

above two definitions is the induced negation Nr if T is a left-continuous t-norm.

In the light of this proposition it is sufficient to say (without mentioning N) that

a left-continuous t-norm T admits one of the properties defined above. Moreover,

a left-continuous t-norm which admits one of these properties turns out to be a

left-continuous t-norms with strong induced negation. Hence these properties are

characteristic for the class of left-continuous t-norms with strong induced negations.

 



Proposition 1 Let T be a left-continuous t-norm and N be a strong negation.

IfT admits either the rotation invariance property or the self quasi-inverse property
with respect to N then N = Nr.

Proof. If T admits the rotation invariance property with respect to N then let

z = 0. We obtain T(z,y) < 0 & T(y,1) = y < N(z). If T admits theself

quasi-inverse property with respect to N then let z = 1. We obtainz <y ©

Ip (x,y) =1 & T(z,N(y)) =0. In both cases we conclude N = Ny by (1).

The importance of the above properties is due to the fact that, as we will see,

any left-continuous t-norm with strong induced negation has the rotation invariance

property andtheself quasi-inverse property.

Theorem 2 LetT : [0,1]? — [0,1] be a left-continuous function which satisfies
(T1), (T2) and (T3) and suppose that Nr is a strong negation. Then for all z,y,z €
{0,1] the following assertions hold:

1. Iv (2, y) = Nr (T (x, Nr (y))),

a. Ip (x,y) = z & T (2, Nr (y)) = Nr (z), (self quasi-inverse)

ait. Ip (2, y) = Ip (Nr (y), Nr (z)), (contrapositive symmetry of Ir)

iw. T (2,y) <2 T (y, Nr(z)) < Nr(z), (rotation invariance)

In particular, if T is a left-continuous t-norm with strong induced negation Nr then

1. — tu. hold.

Proof. Property i follows using the portation law and the involutive property

of Nr:

Nr (T (x, Nr (y))) = Ir (T (a, Fr (y, 0)), 0)

= Ip (2, Ip Ur (y, 0), 0)) = Ip (z, y) .

The involutive property of Ny and i concludes ii. By i, commutativity of T and the

involutive property of Nr we have

Tp (x,y) = Nr (T (2, Nr (y))) = Nr (T (Nr (y), 2)

= Np (T (Nr (y), Nr (Nr (z)))) = Ir (Nr (y), Nz (z))

which thus verifies ii. Finally, T(z, y) < z is equivalent with I; (z,z) > y by left-

continuity and it is equivalent with Ip (Np (z), Nr(x)) > y by iii. It holds if and
only if T (Nr (z), y) < Np (z) by left-continuity again and thatis finally, equivalent

with T (y, Nr (z)) < Np (xz) by commutativity. This ends the proof ofiv. =

Corollary 1 A left-continuous t-norm T has strong induced negation if and only

if it admits one (and whence both) of the rotation invariance property and the self

quasi-inverse property.

Proof. See Proposition 1 and Theorem 2. =
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5 Equivalence of the rotation invariance and the

self quasi-inverse properties

Corollary 1 establishes the equivalence of the self quasi-inverse property and the

rotation invariance property on theclass of left-continuous t-norms. Indeed, the self

quasi-inverse property is equivalent with strongness of the induced negation andit is

equivalent with the rotation invariance property. Now weinvestigate the connection

between the self quasi-inverse property and the rotation invariance property in a

more general setting. These properties are equivalent in the following sense:

Theorem 3 Let T : [0,1]? — [0,1] be a left-continuous function satisfying
(T1) and (T3), and let N be a strong negation. Then the following assertions are
equivalent. For all x,y,z € [0,1] we have

i. Ip (x,y) =z @ T (2, N(y)) = N(z) (self quasi-inverse property of T),

“u. T(z,y)<z & T(y,N(z)) < N(z) (rotation invariance of T).

Proof. a.) Suppose that T admits the rotation invariance property. Consider

arbitrary z, y, z € [0, 1).

First we prove that T(x, N (y)) = N(z) implies I7(z,y) = z. T(z,N(y)) =
N (z) implies T (x, N (y)) < N (z) which, by applying the rotation invariance prop-
erty twice and the symmetry of T, implies T (x, z) < y. By left-continuity we have

Ir (z,y) > z. On the other hand Ir (z,y) > Ir (z,y) and left-continuity implies
T (x, I (z,y)) < y. By applying the rotation invariance property twice and the

symmetry of T we get T(x, N(y)) < N(Ir(az,y)). That is, N(z) < N Ur (z,y)).

Since Nis strong, this implies Iy (x, y) < z. Therefore, Ip (x,y) = z as it is stated.

Now we prove that I7(z,y) = z implies T (z, N (y)) = N(z). Indeed, we have
T (2, N (y)) = T(z, N (y)) and by applying the above proved argument we obtain

Ir (x,y) = N(T (z,N (y))). That is, z = N (T(z, N (y))) which, by applying that
N is strong, implies T (x,N (y)) = N (z), which is the other direction.

Summarizing, we have T (z, N (y)) = N(z) if and only if I7(z,y) = z which
shows that the self pseudo-inverse property holds.

b.) Suppose now that T admits the self pseudo-inverse property. Consider

arbitrary x,y,z € [0, 1].
Wewill prove that T (z, y) < z implies T (y, N (z)) < N (x). Indeed, T (z, y) < z

implies

N (T (z,y)) 2 N (2) (5)
by the order reversing property of N. On the other hand, T (y, x) = T (z,y) with

the self quasi-inverse property yields I7(y,N(r)) = N(T(z,y)). This ensures

Ir (y,N (z)) > N(T(z,y)) which by left-continuity implies T (y, N (T (z,y))) <
N (xz). The monotonicity of T and (5) ensures T (y, N (z)) < N (z)as it is stated.

By applying the just proved argument twice with the involutive property of N

we get that T (y, N (z)) < N (z) ensures T(z, y) < z, the other direction.
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Summarizing, we have T (y, N (z)) < N(x) + (z, y) < z which shows that the
rotation invariance property holds. a

Two properties very similar to the ones defined here have already been investi-

gated in [2]:

Tr (z,y) = N (T(z, N (y))) (6)
instead of the self quasi-inverse property and

T(z,y) Sz @ T(z,N(z2)) < N(y) (7)

instead of the rotation invariance property. The right-handside of(6) is well known

in the literature and called the S-implication generated by T and N. Thus (6)

expresses the equality of the S-implication and the residual implication (which is

sometimesreferred as R-implication). It is clear that (6) is equivalent with the self
quasi-inverse property if and only if N is strong. In addition, (7) is equivalent with

the rotation invariance property if and only if T is commutative. Hence, Theorem

3 can be deduced from Theorem 3.1 in [2]. Similarly, the if part of Corollary 1
can be deduced from Theorem in {3] and Corollary 1 in [3]. Equivalenceof i, iti
in Theorem 2 (with a t-norm T and an arbitrary strong negation N) and (7) has
already been shown in Theorem 1 in [3] but it was not recognised that properies

2 —iv in Theorem 2 hold in fact when N is the induced negation Nr.

Our main aim in this paperis to present a geometric approach for the description

of the class of left-continuous t-norms with strong induced negations, and in this

framework the here defined properties are quite different from (6) and (7). As we
will see, the rotation invariance property represents an order 3 transformation (a

rotation), while — in the same sense — (7) represents an order 2 transformation (a
reflection). The geometric meaning of the self quasi-inverse property (which will be

described in the next section) can only beseen from its formulation in Definition 2,

property (6) has a quite different geometric meaning. Namely, it says that the

implication can be derived from the t-norm by tworeflections of its graph, when the

negation equals 1 — xz. (Each reflection belongs to a negation in formula (6)).

6 Geometrical interpretation of the rotationin-

variance and the self quasi-inverse property

The given namesand the geometrical interpretation of the rotation invariance prop-

erty and self quasi-inverse property are explained now.

Rotation invariance property. Let N be a strong negation. First observe that

the transformation

o : [0,1] x [0,1] x [0,1] — [0, 1] x (0, 1] x [0,1] given by

(x,y,z) (y, N (z),N(z))

12

 



is of order 3. Therefore it can be considered as a rotation. In order to make this

observation more visual, let N (x) = 1— x (the standard negation). Then an easy
calculation verifies that o is indeed a rotation of{0, 1]? with angle on aroundthe axis

which is based on the points (0,0, 1) and (1,1,0). By virtue of the above, formula

T (z,y) <z @& T(y, N(z)) < N(x) meansexactly that the part of the space (0, 1]
which is above the graph of T remains invariant under o. Or equivalently, we have

T(z,y)>2z & Ty, N(z)) > N (a)for all x,y, z € [0,1], and it means exactly that
the part of the space [0,1]* which is strictly below the graph of T remains invariant

under o.

In Fig. 2 the first row presents the three-dimensional plots of the t-norms given

by (2), (3) and (4), respectively. Since their induced negations equal 1 — z one can
recognize easily the geometrical meaning of the rotation invariance property.

Self quasi-inverse property. Now we recall the definition of quasi-inverses of

decreasing real functions ((9]) in the form which is restricted to functions of type

(0, 1] — (0, 1]: Let f : [0,1] - [0,1] be a decreasing function. Let f* : [0,1] > {0,1}
be a function fulfilling the following conditions:

i. If y is in the range of f, then f*(y) is in f-'({y}).

ui. If y in not in the range of f, then (by declaring sup{@} = 0)

f*(y) = sup{t € [0,1] | f(t) 2 y}.

Call f* a quasi-inverse of f. Generally, such an f* is not unique. Clearly, if f is a

bijection of {0, 1] then f* is unique and coincides with f~', the usual inverseof f.

Weare going to prove that for any left-continuous t-norm T the negation of any

partial mapping T (z, -) is the quasi-inverse ofitself if and only if T admits theself

quasi-inverse property. This fact motivates the nameof this property in Definition 2.

Proposition 2 Let T' be left-continuous t-norm. Then the (induced) negation
of the x-partial mapping defined by

fr: (0, 1) 7 [0, 1), yt Nr (T (x, y))

is the quasi-inverse of itself for all x € [0,1] if and only if T admits the self quasi-
wnverse property.

Proof. Note that by Proposition 1 and Theorem 2, if T admits the self quasi-

inverse property with respect to N then N = Nr andT is left-continuous t-norm

with strong induced negation Nr. Clearly, f, is decreasing. If y is in the range of

f, then we need to verify f,(f2(y)) = y. Since y is in the range of f,, there exists

z € [0,1] such that y = Nr(T(z,z)). Hence, we have Nr (y) = T(z,z) by the
involutive property of Nr. Nr (T (z,y)) = Ip (x, Nr (y)) for all x,y € [0,1] if and
only if the self quasi-inverse property holds. The definition of residuation ensures:
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T (t, Jp (t,u)) = u for all t,u € [0,1] if and only if u is in the range of the partial

mapping T (t,-). The above arguments with the definition of f, yield that we have

fe(fely)) = Nr (T (x, Nr (T (z, y))))

= Np (T (z, Ir (2, Nr (y)))) = Nr (Nr (y)) =y

if and only if the self quasi-inverse property holds.

If y is not in the range of f, then we have

fa(y) = Nr (T (x, y)) = Ip (x, Nr (y)) = sup{t € [0,1] | T(z, t) < Nr(y)}

= sup{t € [0,1] | Nr (T (z,t)) > y} = sup{t € (0, 1] | fe(t) > y}

again if and only if the self quasi-inverse property holds. This ends the proof. .

In the frame of real functions the quasi-inverse has a geometrical interpretation.

There is a simple geometrical way to construct the graph of the quasi-inverse f*

form the graph off.

i. Draw vertical line segments at the discontinuities of f.

it. Reflect the obtained graph at the first median, i-e., the graph of the identity

function.

iti. Removeall vertical line segments from the reflected graph except for one point

(this has to be done in such a way that f*(y) € f—'({y})) is satisfied).

Now, let N(x) = 1-2. Then the geometrical interpretation of the negation is

the reflection of the graph at the line given by y = h. In this case, the graph of

any partial mapping T (z,-) has the following geometrical property. First extend

the discontinuities of T(z, -) with vertical line segments. Then the obtained graph

is invariant under thereflection at the second median (given by y = 1 — 2).

In Fig. 2 the second row presents plots of the partial mappings T(z, 5) of the

t-normsgiven by (2), (3) and (4), respectively. Again, since their induced negations
equal 1 — x one can recognise easily the geometrical meaningof the self quasi-inverse

property.

Remark 1 For any t-norm T and strong negation N we can define the N-dual

of T by S{z,y) = N(T(N (x), N (y))). Then S is a t-conorm and clearly, left-
continuity of T is equivalent with right-continuity of S. We remark that all the

results proved in this paper have their equivalent counterparts for t-conorms.
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Figure 2: Geometrical interpretation of the rotation invariance property andtheself

quasi-inverse property

7 Conclusion

In this paper we have proved that a left-continuous t-norm has a strong induced

negation if and only if it admits the self quasi-inverse property, or equivalently, if

and only if it admits therotation invariance property. Further, fulfilling the self

quasi-inverse property w.r.t. 1 — x means exactly that the graph of any partial

mappingofthe t-norm has the following geometrical property: its graph is invariant

under thereflection at the second median (given by y = 1 — z)if wefirst extend

the discontinuities of the partial mapping with vertical line segments. In addition,

fulfilling the rotation invariance property of a t-norm meansexactly that the part of

the space [0, 1] x [0, 1] x [0, 1] which is strictly below the graph of it remains invariant
under an order 3 transformation. This transformation is a rotation of (0, 1]° (with
angle on around the axis which is based on thepoints (0,0, 1) and (1,1,0)) when the

induced negation of the t-norm is 1 — z. It turned out that the two properties are

equivalent on the class of symmetric, non-decreasing two-place functions on [0,1],

that is, such a function admits the rotation invariance property if and only if it

admits the self quasi-inverse property.
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