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Abstract

Suppose we are given a mathematical programming problem in which the

functional relationship between the decision variables and the objective func-

tion is not completely known. Our knowledge-base consists of a block of fuzzy

if-then rules, where the antecedent part of the rules contains somelinguistic

values. of the decision variables, and the consequencepartis a linear combina-

tion of the crisp values of the decision variables. We suggest the use of Takagi

and Sugeno fuzzy reasoning method to determine the crisp functional rela-

tionship between the objective function and the decision variables, and solve

the resulting (usually nonlinear) programming problem to find a fair optimal

solution to the original fuzzy problem.
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1 Introduction

Fuzzy optimization problems can bestated and solved in many different. ways [2, 3,

14, 21, 22]. Usually the authors consider optimization problems of the form

max/min f(z); subject to x € X,

where f or/and X are defind by fuzzy terms. Then they are searching for a crisp x*

which(in a certain) sense maximizes f on X. For example, fuzzy linear programming

(FLP) problems can be stated as [9, 13, 15, 17]

max/min f(x) = Gx; subject to Ar <b, (1)

where the fuzzy terms are denoted bytilde. Fullér and Zimmermann[12] interpreted

FLP problems (1) with fuzzy coefficients and fuzzy inequality relations as multiple

fuzzy reasoning schemes, where the antecedents of the scheme correspond to the

constraints of the FLP problem and the fact. of the schemeis the objective of the

FLP problem. Their solution process consists of two steps: first, for every decision

variable x € R", compute the (fuzzy) value of the objective function, MAX(-), via

sup-min convolution of the antecedents/constraints and the fact/objective. Then
an (optimal) solution to the FLP problem is any point which produces a maximal

element. of the set {MAX(z) | « € R®}.
Unlike in (1) the fuzzy value of the objective function f(z) may not be known

for any + € R”. More often than not. we are only able to describe the causal link

between x and f(x) linguistically using fuzzy if-then rules.

In [8] we have considered constrained fuzzy optimization problems of the form

max/min f(x); subject to {Ri(z),... ,Rn(z) |r eX CR}, (2)

with

Ry(r) : if x, is Ay and... and rp,is Am then f(x) is Ci,

where A,; and C; are fuzzy numbers; and we have suggested the use of Tsukamoto’s

fuzzy reasoning method [19] to determine thecrisp values of f.

In this paper we suppose that our knowledge base contains fuzzy if-then rules of

the form

R(x): if a is Ay and... and z, is Aj, then f(r) = aya, +--+ +@intn +; (3)

where A;; is a fuzzy number, and a,; and b; are real numbers. Then we determine

the crisp value of f at u € R” by the Takagi and Sugeno fuzzy reasoning method,

and obtain an optimal solution to (2) by solving the resulting (usually nonlinear)

optimization problem

max/min f(u), subject to u € X.

Weillustrate the proposed method by several examples.
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2 Constrained Optimization under Fuzzy If-then

Rules

A linguistic variable [20] can be regarded either as a variable whose valueis a fuzzy
nuniber or as a variable whose values are defined in linguistic terms. A fuzzy set.

A iu X is called a fuzzy point if there exists a u € X such that A(t) = 1lift=u

and A(t) = Q otherwise. We will use the notation A = a. Fuzzy points are used

to represent. crisp values of linguistic variables. If 7 is a linguistic variable in the

universe of discourse X and u € X then we simple write "7 = u” or "x is 7to

indicate that. u is a crisp value of x.

To find a fair solution to the fuzzy optimization problem

max/min f(x); subject. to {R®i(7),... , Rm(z) |r € Xt, (4)

with fuzzyif-then rules of form (3) we first. determine the crisp value of the objective

function f at u € R®, denoted also by f(u), by the compositional rule of inference

f(u) = (x is 9) ° {Ri(z),- “ »Rm(x)}

using the Takagi and Sugeno fuzzy reasoning method as

flu) = ayzy(u) tee. + mem(tt)

Oy ts + Om

where the firing levels of the rules are computed by

a= II Aij(u;), (5)

j=]

andthe individual rule outputs, denoted by z;, are derived from the relationships

n

zi(u) = s OyjUy + bj.

j=l

To determine the firing level of the rules, we suggest the use of the product.

t-norm(to have a smooth output function). In this manner our constrained opti-

mization problem (4) turns into the following crisp (usually nonlinear) mathematical

programmimg problem

max/min f(u)}; subject to ue X.

If X is a fuzzy set. with membership function jx (e.g. given by soft constraints

as in [21]) then following Bellman and Zadeh [1] we define the fuzzy solution to
problem (4) as

D=px py, (6)
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where jy; is an appropriate transformation of the values (computed by the Takagi

and Sugenoreasoning method)of f to the unit interval [10], and an optimalsolution

to (4) is defined to be as any maximizing element. of D.

Example 1. Consider the optimization problem

max f(x); subject to {Ri(7), Re(r) | x € X = 0, 1}}, (7)

where
R(x): if xis small then f(r) =a

Ro(r): if x is big then f(r) =1—--.

If small(z) = 1-7 and big(x) = z, andu is an input to the rule base then the firing
levels of the rules are computed by

a, =1l-u,ag =u.

Then weget.

f(u) =(Q-u)utu(l—u) = 2(1-u)u.

Thus ouroriginal fuzzy problem turns into the following crisp nonlinear mathemat-

ical programming problem

max 2u(1—u); subject to u € [0, 1].

which has the optimal solution u* = 1/2.
If the membership functions in the rules are defined by

1
small(z) = T+ ea/2-2)

1 ;
1+ e-(1/2-2)’ big(7) =

and u is an input to the rule base then the firing levels of the rules are computed by

1 1
a1 = 1+ e7(1/2-u)? a2 = 1+ e(1/2—n)°

Then weget.
l-wu

fu) =~ 4 + e—(1/2-2) + 1 + elt/2-)°

Thusouroriginal fuzzy problem turns into the following crisp nonlinear mathemat-

ical programming problem

u l-u .
max (has+a=): subject. to u € (0,1).

which has the optimal solution u* = 1/2.
If we use nonsymmetric membership functions in the rules, for example

1 ; 1small(r) =

T
a

enl0/amay’ big(r) = 1 + e0.1(1/3-2)

20

 



and u is an input to the rule base then the firing levels of the rules are computed by

 

 

1 1
AF + e-10(8/4—n)" =F + 0.10/34)"

Theuwe get.

u l-u

1 + e710(3/4-u) + 1 + e9-1(1/3-u)
f(u) = 7 ;
 

14+ e710(3/4—u) + 14+ e0.1(1/3—u)

Thusouroriginal fuzzy problem turnsinto the following crisp nonlinear mathemat-

ical programming problem

 

 

u + l-u

-10(3/4-u 0.101/3—u
max L+¢ - ite ; subject to u € [0,1].
 

1+ e—10(3/4—u) + 1+ e9-1(1/3—u)

which has the optimal solution u* = 0.65 and f(u*) = 0.52.

Even though Example 1 is probably the simplest one, it clearly shows the com-

plexity of the problem of optimization under fuzzy if-then rules. Namely, the only

way to increase f(u) is to decrease the feasibility of u.

Example 2. Consider the optimization problem

min f(x); subject to {7; +72 = 1/2, 0< 14,72 < 1}, (8)

where

Ri(r): if, is small and x2 is small then f(x) =2,+ 22,

Ro(x): if 2 is small and x» is big then f(x) = -2, + 2.

Let. u = (wu, ug) be an input to the fuzzy system. Then thefiring levels of the rules

are

a, =(1—u)(1—u2), a2 =(1—u;)up,

It. is clear that if u; = 1 then no rule applies because a, = a2 = 0. So we can exclude

the value u, = 1 from theset. of feasible solutions. The individual rule outputs are

computed by

ZSHutug, 2% = —uy,t+ ug.

and, therefore, the overall system output, interpreted as the crisp value of f at. u is

(1 — uy )(1 — ue) (ui + ua) + (1 — uy )uia(—ta + U2)
flu) = (1 — u,)(1 — ug) + (1 — u)ug ~

 

Uy, + Ug — 2u1 U2.
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Thus ouroriginal fuzzy problem turns into the following crisp nonlinear mathemat-

ical programming problem

“min (u; + ug — 2u;uz); subject to {u) + ug = 1/2, O< uy <1, O< uw < 1}.

which has the optimal solution uj = us = 1/4 and its optimal value is f(u*) = 3/8.
Even though the individual rule outputs are linear functions of u,; and uz, the

computed input/output function f(u) =u, + ug — 2u;uz2 is a nonlinear one.

Example 3. Consider the problem

max f (9)

where X is a fuzzy susbset of the unit interval with membership function

px(u) =1—-(1/2—-4u)

for u € [0,1] and the fuzzy rules are

Ril): ifmis small then f(r) =1—z2,

Ro(r): if x is big then f(ir)=n.

Let. u € [0, 1] be an input to the fuzzy system {Ri(7), Ro(7)}. Then thefiring levels
of the rules are a, = 1—u, a2 = u. Theindividualrule outputs are z, = (1-u)(1—w),

z2 =u’ and, therefore, the overall system output. is

f(u) = (1—-u)? + u? = Qu? + Qu 1.

Then according to (6) our original fuzzy problem (9) turns into the following
crisp biobjective mathematical programming problem

max min{2u? + 2u + 1,1 (1/2 — u)?}; subject to u € (0, 1],

which has the optimal value of 0.8333 and two optimal solutions {0.09, 0.91}.

The rules represent our knowledge-base for the fuzzy optimization problem. The

fuzzy partitions for lingusitic variables will not. ususally satisfy ¢-completeness, nor-

mality and convexity. In many cases we have only a few (and contradictory) rules.

Therefore, we can not. make any preselection procedure to remove the rules which do

not play any role in the optimization problem. All rules should be considered when

we derive the crisp values of the objective function. We have chosen the Takagi

and Sugeno fuzzy reasoning scheme, because the individual rule outputs are crisp

functions, and therefore, the functional relationship between the input vector u and

the system output f(u) can be easily identified.

3 Summary

We have addressed mathematical programming problems in which the functional

relationship between the decision variables and the objective function is knownlin-

guistically. We suggested the use of the Takagi and Sugeno fuzzy reasoning method

 



to determinethe crisp functional relationship between the objective function and the

decision variables, and solve the resulting (usually nonlinear) programming problem

to find a fair optimal solution to the original fuzzy problem. We can refine the fuzzy

rule base by introducing new lingusitic variables modeling the linguistic dependen-

cies between the variables and the objectives [4, 5, 6, 11]. These will be the subjects

of our future research.
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