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Abstract

In this paper we deal with divergence measures between two actions in

decision-making models when we have the information given by utility values.

A definition of divergence in which we generalize fuzzy measures is proposed

and we show the relation among divergence measures, fuzzy measures and

utility. We also propose a new concept using the information of a probability

distribution. Finally, the results are applied to a practical example.
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1 Introduction

In multicriteria decision making and pattern recognition, fuzzy approaches have

been shown to be superior to traditional methods, particularly when the criteria

and features are not well defined [7]. What makes fuzzy set theory and fuzzy logic
so attractive is the fact that they provide a powerful and flexible framework for

representing vague and ill-defined concepts.

Decision-making theory has developed important models for making a rational

selection among alternative courses of action when information is incomplete and/or
uncertain. However, the classical principles and methods for making the best deci-

sion fail when the two or more alternative courses of action are not clearly defined

or well differenced.
Toillustrate this, consider the next investment decision problem [8]: Tom has

decided to invest $1000 for a year, and a broker has selected four potential invest-

ments she believes would be appropriate for Tom: gold, a junk bond,a growth stock

and a certificate deposit. Let us define the states of the world qualitatively as a

large rise, a small rise, no change, a small fall and a large fall in the stock market
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States of Nature

Large Small No Small Large

Actions Rise Rise Change} Fall Fall

Gold -100 100 200 300 0

Bond 250 200 150 -100 -150

Stock 500 250 100 -200 -600

C-D 10 10 10 10 10

 

 

 

 

         
Table 1: Payoff table

 

States of Nature

Decision Large Small No Small Large Expected

Alternatives Rise Rise Change! Fall Fall Utility

 

 

 

 

 

Gold 0.35 0.65 0.75 0.90 0.5 0.63

Bond 0.85 0.75 0.70 0.35 0.30 0.67

Stock 1.00 0.85 0.65 0.25 0 0.675

C-D 0.50 0.50 0.50 0.50 0.50 0.50
         Probability 0.20 0.30 0.30 0.10 0.10
 

Table 2: Decision utility payoff table

over the next. year. The specific payoffs for the four different investments, based on

the broker’s analysis, are given in Table 1.

Nowsuppose that. Tom’s broker offers the following projections based on past.

stock market performance: P(LargeRise) = 0.2, P(SmallRise) = 0.3, P(NoChange)

= 0.3, P(SmallFall) = 0.1, P(LargeFall) = 0.1. Let us consider utility values as
menibership functions of each action. These values are given in Table 2. In fact,

actions are considered as fuzzy subsets.

The way of determining the utility values corresponding to payoffs has been

based on the indifference probabilities [8]. It consists in assigning a utility 0 to the

lowest value and a utility 1 to the highest one, and for all other possible payoff values

the decision maker is asked as follows: “Suppose you could receive this payoff for

sure, or alternatively, you could receive either the highest payoff with probability

p and the lowest. payoff with probability (1 — p). What value of p would make

you indifferent between these two situations?”. The answers to these questions are

called “indifference probabilities for the payoffs” and are used as the utility values.

Obviously, large payoffs have large utility values, but the relative scale of utility

values can differ vastly from that of the payoff values.

Since the decision with the highest expected utility is the stock investment, it

would be selected using the expected utility criterion. Comparing the expected

utilities of stock investment and gold, we note that thereis little difference between

the two values. In fact, with slightly different utility values, we could have chosen

gold as the best decision.
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In this paper, we propose a method to deal with the problem of decision-making

under conditions of fuzzy actions, where the decision maker does not distinguish

clearly among two or more actions. The basic objective of divergence measuresis to

reduce the indefiniteness concerning acts that. are ill-differenced. Divergence mea-

sures [1] are used in order to quantify the difference between two fuzzy subsets of

a universal set. These measures try to maintain the properties of classical diver-

gence measures between two probability distributions which appear in Information

Theory [6, 12]. From this concept, it is possible to define divergence measures be-

tween fuzzy partitions [9, 3, 4]. We can also use divergence measures to generate
measures of fuzziness following the study of difference between a fuzzy subset. and

its complementary [10].
In this paper, we also deal with divergence measures between two fuzzy sets when

we have the information given by a probability measure. In this situation, it makes

sense to use such information. A definition of a divergence measure in which we

use probabilistic information is proposed for the finite case and f or the countable

one. We start with the properties that this measure must verify; we call these

new ieasures probabilistic divergences and we also study someof their properties.

Probabilistic divergences can be considered as a correction of divergence measures.

In fact, when a uniform distribution is considered, the original divergence measure

and the probabilistic divergence will be the same function.

The paper is structured as follows: the first section is devoted to the basic

concepts; then, the relation between fuzzy measures and divergence measures is

studied. After this, the notion of probabilistic divergence is introduced. We finish

with an example and conclusions.

2 Basic concepts

In the following, fuzzy subsets of a universe 2 are denoted by A, B and standard

fuzzy union and intersection are considered, ie. (AU B)(r) = max{A(zx), B(x)} and
(AN B)(z) = min{A(z), B(z)}. P(Q) denotes the set. of all fuzzy subsets of 2.

Definition 1 [9] A divergence measure D (on) is a P(Q)xP(2Q) + R mapping
satisfying the following axioms, for any A, B,C € P(Q):

dl. D(A, B) = D(B, A);

d2. D(A, A) =0;

d3. max{D(AUC, BUC), D(ANC, BNC)} < D(A, B).

The following properties can be shown easily:

1. D(A, B) > 0;

2. ff AC BCCCD,then D(A, B) < D(A,C) and D(B,C) < D(A, D).
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Definition 2 [9] A divergence measure D is called local if there exists a mapping
h: (0,1) x [0,1] + R such that

D(A, B)-— D(A UN, B Un) = h(A(a,), B(a:)), VA, BE PD), Vr,E2

where

otherwise

In fact, for a local divergence measure each coordinate is independent. of the others

and all coordinates are all equally important. The following result holds:

Proposition 1 [9] Let Q = {x,...,tn}. A divergence measure D is local if and
only if there exists a mapping h: [0,1] x [0,1] 4 R such that

D(A, B) = 90 h(A(a:), BOs),
i=1

verifying the following conditions:

e h(z,y) = h(y, x), Vz,y € [0, 1];

e h(r,r) = 0, Vr € [0, 1);

e h(-,y) is a decreasing function on |0,y] and increasing on [y, 1}, Vy € [0, 1].

Definition 3 A divergence measure D is called normal ¢fit satisfies arioms d1-d3 -

and the following axioms:

d4. D(Q,0) = 1;

d5. D(AUB, ANB) > D(A, B), VA, B € P(Q).

Definition 4 [13] A fuzzy measure pz on P(2) ts a P(Q) & (0, 1] mapping satis-
fying the following axioms, for any

1. (0) = 0, #(Q) =1;

2. AC B implies p(A) < p(B).

ut is called additive if u(AU B) = p(A)+ p(B) whenever AN B=.

Well-known examples of additive fuzzy measures are classical probability measures.

Wecaneasily extend the above definition to fuzzy subsets as follows:

Definition 5 [2] A fuzzy measure on P(Q)is a mapping 4: P(Q) & [0,1]

satisfying the following axioms, for any A, B € P(Q):

1. (0) =0, p(Q) =1; -

2. AC B implies u(A) < p(B).

Fromnow on,the latter definition will be considered.

54



3 Relations among fuzzy measures and divergence

measures

Proposition2 Let D be a divergence measure such that D(Q,0) = 1. Then the
mapping j: P(Q) > [0,1] defined by

p(A) = D(A, 0)

is a fuzzy measure.

Proof.

1. (0) = D(O,0) = 0 and p(Q) = D(N,%) = 1.

2. If AC B, thenit follows with property d3 that.

(A) = D(A,0) = D(BNA,ON A) < D(B,0) =1(B). o

Proposition 3 Let 2 = {%,...,%n}. If D is a local divergence measure such that

D(Q,0) = 1, then the mapping pw: P(Q) + [0,1] defined by

u{A) = D(A, 6)

is anadditive fuzzy measure. Moreover, if ANQ'(a;) = BNO(x,) thenit holds that

HAND) = p(BNM!).

Q | A(x) > 0},Proof. Let us assume that AN B = @. Denote 2, = {x €
= 0}. Since D is local,Q, = {r €2| B(x) > 0} and Q, = {1 € | A(z) = B(z)

there exists a mapping / such that

(AU B) = D(AUB,®) = » h(max{A(z), B(a;)}, 0)

= > A(A(x),0+(B(x), 0) + 5~ A(0,0)
TENa TEN.

= D(A,0) + D(B, 0)=AA) + p(B)

Therefore, j: is additive. Furthermore, if A(#,;) = B(x,), then

1(ANN) = D(ANN!, 0) = h(A(24), 0) = h(B(x;), 0) = D(BNN!, 0) = n(BNO). 5

Proposition 4 Let be an additive fuzzy measure, then the mapping D : P(2) x

P(Q) + R defined by

D,{A, B) = 1(AU B) - w(AN B)

is a normal divergence measure.
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Proof. D, must satisfy axioms d1-d5. Obviously, D,(A, B) = p(AUB)—p(ANB) =

D,(.B, A) and D,(A, A) = u(AU A) — (AN A) = p(A) - (A) = 0.
Next, let us prove that D,(A UC, BUC) < D,(A, B) (a similar proof holds for

D,(ANC,BOC) < D,(A, B)). Let us decompose 2 in three disjoint subsets:

Oy = {7 € | max{A(z), B(x)} < O(2)}
Q = {x € 2 | min{A(z), B(a)} < Ole) < max{A(x), B(n)}}
03 = {x € Q| C(x) < min{A(z), B(x)}}.

Wenow introduce the notation H; = HMQ,. It then holds that.

(AUC) U(BUC)),=C;

(AUCN(BUC) =H)

((AUC)U(BUC))2= (AU B),

(AUC)N(BUC))2=Cy

(AUC) U(BUC))3= (AU B)3

((AUC)N(BUC))3= (AN B)s.

The additivity of j: then implies that

D,(AUC, BUC)

= (AUC) U(BUC)) - p((AUC) N(BUC))
= "((AUC)U(BUC))) + u((AUC)U(BUC))2) + w(AUC)U (BUC))s)

~HK{((AUC) A(BUC))i) — W((AUC) 1 (BUC))2) — K((AUC) (BU C))s)

= 1((AU B)2) + n((AU B)s) — #(C2) — w((A 0 B)s).

The monotonicity of j: implies that u((A U B),) > ((AN B);) and p(C2) > u((AN B),).
We tlien continue

D,(AUC,BUC) < H((AU B)1) + H(AU B)o) + w((AU B)3)

—u((AN B):) — w((AN B))2 — n((AN B)s)

= p(AU B) — #(ANB) = D(A, B).

Therefore, D, is a divergence measure. Axioms d4 and d5 can be proveneasily:

D,(Q,9) = n(QUB) — p(QNB) = w(Q) — nO) = 1

and

D,(AUB,ANB) = p(AU B)— p(ANB)=D,(A,B). o
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4

Proposition 5 Let 0 = {14, t2,..., tn} and let p be an additive fuzzy measure
such that AN Q)(2;) = BNO? (x;) implies that

HAND) = p(BNO!).

ThenD,, is a local divergence measure.

Proof. Since jz is additive and 0'N QJ = @ for i # j, it holds that

D,(A, B)— Dy(AU 9, BUM)

= (AU B) — (AN B) — n((AU B) UM) + p((AN B) UM)

= 37 n((AUB) A)SuANBA)

j=1 j=l

_ So a((A UBUNDY)NN) + Sh a((A NB)uay) na’).
j=l j=1

Ifi # j, then (AUBUD)NM = (AUB)NMand ((ANB)UN)ND = ANBNA.
Ifi =j, then (AUBUDY) NO = 0and ((AN B) UN) NO = 1. Applying the
above, it. follows that.

D,(A, B) — D,(AU MQ, BUO) = n((AU B)N.')) — p(AN BN).

Let. g(A(ti)) = w(ANM!). If A(x;) = B(z;), then

g(A(as)) = n(ANM) = w(BNM) = 9(B(x,))
and g is well defined. Let. /, be defined by

h(A(2:), B(a:)) = g(max{A(z), B(a:)}) — gmin{A(x), B(.)}).
Thusit holds that

D,(A, B) — D,(AUQ', BU) = h(A(2;), B(2:))

aud D, is local. g

Theorem 1 Let p: be a fuzzy measure. Then there exists a divergence measure D

such, that

H(A) = D(A,®).

Proof. Let. us define

_ fil if A(z) =0
Na(z) = 4 if A(z) > 0

0 ifAC Band BCA

D(A, B) WBON,s) if AC Band BZA

w(ANNg) if AZ Band BCA *
1 if AZ Band BZA
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D wustsatisfy axioms d1—d3 to be a divergence measure. Obviously, D(A, B) =

D(B, A) and D(A, A) = 0. Next, let. us prove that D(AUC, BUC) < D(A, B) and
D(ANC,BNC) < D(A, B). By definition, we have that

0 ifAUCC BUC and BUCC AUC
_ wM(BUC)NNauc) if AUCC BUC and BUCZ AUC

DAUC,BUC)=9 AUC) ANguc) if AUC Z BUC and BUC C AUC
1 ifAUCZ BUC and BUC Z AUC

and

0 if ANCC BNC and BNCCANC
D(ANC, BNC) = W(BAC)ANanc) if ANCE BNC and BNCZ ANC

ul(ANC)NNgnc) if ANC Z BNC and BNCC ANC
1 if ANCZ BNC and BNCZ ANC.

If BUC C AUC and AUC C BUC, or, BNC € ANC and ANC C BNC,thenit

is obvious that D(AUC, BUC) =0 < D(A, B) or D(ANC, BNC) =0 < D(A, B),

respectively.

If BUC GZ AUC and AUC Z BUC, or, BNC ZANC and ANC Z BNC,
thenit is obvious that A Z Band B Z A. Then D(AUC, BUC) =1 = D(A,B)
or D(ANC,BNC) =1= D(A, B), respectively.
IfBUCZAUCor BNC ZANC,then BZ A. In this case, if A ¢ B, then

D(A, B) = 1. Therefore, D/AUC,BUC) <1= D(A, B) or DDANC,BNC) <
1 = D(A, B), respectively. If B Z A and A C B, then D(A, B) = p(B M Nag) and
D(AUC, BUC) = n((BUC)N Nauc) or D(ANC, BNC) = pw(BNC)NNanc);
respectively.

Since

B(x) if A(z) =0 and C(x) =0
(BUC)NNauc(t) = 0 if A(z) = 0 and C(x) > 0

0 if A(x) > 0

(BNC)NNanc(t) = { min{Br), Co} i4 . D

B(x) if A(x) =0BONg(x) = {4 if Aln) >0

it follows that (BU C)M Nauc © BON Ng and (BN C)NNanc C BN Ng. Hence

H((BUC)N Nauc) < u(BO Na) and p((BNC)N Nanc) < (BO Ny). Therefore,

axiom d3 holds.
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4 Probabilistic divergence measure for the finite

case

Now,let us turn to another problem: let D be a divergence measure and suppose that.

P is a probability distribution over 0 = {7,...,0,}. We want to define Dp such

that. Dp remains a divergence measure, but it also uses the information given by P.

Note that, intuitively, if P is the uniform distribution, it. makes sense that Dp = D,

i.e. the divergence measure remains the same when we have no information. Thus,

we have added the following axiom:

d6. Dp(A, B) = D(A, B) if P represents the uniform distribution.

In fact, the idea is to correct the initial divergence measure into the new one, in

which we use the probability distribution and that is a better one in the sense that.

more information is used. Thus, we propose the following definition:

Definition 6 Let D be a divergence measure and P be a probability distribution over

Q. We define the probabilistic divergence measure(or probabilistic divergence)

associated to D and P as:

n

1
Dp(A, B) = E(P) So(Pw — pes)D(Aw Be),

i=1

where parentheses for probabilities mean a permutation such that pay = pi) >. =

P(nsi) = 0 and Aqy(r;) = min{A(r;), Oi(7;)} with

1 if p(t) > PE
2; rj)= : as ) 1

(73) { 0 if (tj) < Pw (1)

(and similarly for Bi;,). E(P) .is the information. energy [11], which is defined as

E(P) = So pi.
i=1

Subset, Aq) means that. we are only interested in the coordinates that have at.

least. a probability of pq) and thus we try to take out the importance of the other

coordinates. This idea is easier to see for local measures as we prove further on.

Finally, €(P) is necessary in order to verify axiom d6 as is proved below. We

could consider other values: for example, for the finite case we could multiply by n

or divide by pay). However, the first option is no longer valid in the countable case

and with the second one we obtain

D(A, B) s D(A, B),

causing the idea of correcting the values of D(A, B) to be little bit. hidden.

Proposition 6 Dp satisfies atioms d1, d2, d3 and d6.

59

 



Proof.

1. Axiomd1 follows easily:

1 n

Dp(A, B) = a>

D_

(Pw —Pury)P(A@, Ba)E(P) i=l
1 nm

= FP)YW — pist))D(Ba, Am) = Dp(B, A).
i=1

2. Similarly for axiom d2:

1 n

D = tp ) — PG+1))D(Aw, AGP(A, A) EP) 2(0 Pas1))D(A@, Aw)
1 n

= za) 4) ~ DG 0 = 0.

3. For axiom d3, we prove for instance D(AUC,BUC) < D(A, B):

1 n

D(AUC,BUC)= AP)Sw — pa+)D(AU C)a), (BU C)q)
i=1

1 n

cam i) 7 PG i), Bay) = D(A, B).< EP) >(4 Pit)D(Aj, Ba) (A, B)

4, Finally, we show that axiom d6 holds. If p(x,;) = 1, then all summands vanish

except the last one. Hence,

Dp(A, B) = FPPB) = D(A, B)

since AP) =n in the uniform case. g

Let. us now see someproperties of this measure:

Proposition 7 Let D be a local divergence measure. Then Dp can be written as

follows:

Dp(A, B) = iw Y=p(2:)h(A(z), B(ts)).
i=]

Proof. For a local divergence measure it holds that.

D(A, B) = S> (A(z), B(:)).
i=]

 



Let. us consider 7; and suppose that p(+;) = pj). Then, if we apply this expression

in the definition of Dp we obtain that h(A(z;), B(x,)) is multiplied by:

le 1 1
E(P) dln — Pit) = ECP)Po — P(nsi)) = Epyr)

which concludes the proof. g

Proposition 8 In general, for a local measure D, Dp is not a local measure, except

for the uniformcase.

Proof. Suppose Dp is a local measure. Then there exists a mapping g such that

Dp(A, B) = > 9(A(ai), B(a4)).
i=1

Using the previous proposition we obtain that

1
g(A(2i), B(wi)) = (pyPmhlAla), B(x).

Now,we canfind a probability distribution P and two fuzzy subsets A and B such

that A(r;) = A(z;), B(ti) = B(x;) and p(z;) 4 p(r;). Then, g(A(x,), B(t:)) #

g(A(2;), B(x;)) contradicting our hypothesis.

Remark 1 In fact, the only case where this holds, is the uniform case. This is

true because the function h for Dp is different for each coordinate. However, each

coordinate is independent of the others and the only difference is that the coordinates

don’t have the same weight. Note that this was expected as divergence measures are

special cases of probabilistic divergence measures whenall coordinates are equally

important, i.e., when we have the uniformdistribution.

Remark 2 For the local case, the values that the coordinates considered take are

not important. It is only necessary that both subsets take the same value. Just take

the expression for local measures and remark that h(x,r) = 0, Vr € [0,1]. This

result is not true for general divergence measures.

Example 1 Let us consider the local divergence measure D defined by

D(A, B) = > JA(a:) — B(x,))-
t=]

Considering a probability distribution P, we obtain with Proposition 7 that
1 n

Dp(A,B = WT p(r:)|AQ; — B(s,)|,(A, B) Bp) Ly MemsiAlea) (1)|

which seems an intuitive way to extend D whenwe have a probability distribution.

Note that. Dp can be greater than D, that it. can be smaller than D or even they

can take the same value. This is due to the fact that. the probability measureis used

to correct. the value of D with the new information.

Remark 3 Note that we can change p(x;) by a general weight u(z;). Then, all the

results remain true and the probabilistic case is just a special case.
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5 Probabilistic divergence measure for a discrete

distribution

In the countable case, we can always assure that. the maximum of the probabilities

exists and we can order the probabilities decreasingly. This leads us to propose the

following definition:

Definition 7 Let D be a divergence measure and P be a discrete probability distri-

bution over Q. We define the probabilistic divergence measure associated to D

and P as:
1 oo

Dp(A, B) = E(P) Y-(Pe — Pas»)D(A@, Ba)
t=]

where parentheses for probabilities mean a permutation such that py) > pia) > «..

and Aq)(r;) = min{A(x;),24(a;)} with

(nya lil # wlr;) 2 rwQ4(2;) = { 0 if p(t;) < pay @)

(and similarly for Byy).

This definition is very similar to the one for the finite case. Note also that, the

information energy is always a finite value.

Proposition 9 Dp(A, B) < EPA, B).

Proof. As Ag) = ANQ, and B, = BOQ, it follows with axiom d3 that.

D(Awy, Buy) < D(A, B). Hence,

1 oo

Dp(A, B) = Zp|Pw) — Pe+1))D(A, Bay)

1
i=1

smD(A, Bre — pi+1)) < D(A,B). 0
t=1~EP)

Corollary 1 If D(A, B) < 00, then Dp(A, B) < co

Example 2 Consider again the local divergence measure D defined by

D(A, B) = }|A(ai) - B(a.)]-
t=1

Then, considering a probability distribution P an easy calculation leads to the fol-

lowing expression:

Dp(A, B) = FP)Sona.)x;)|A(x;) — B(x,)}.
t=1
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Gold Bond Stock C-D @
 

 

 

Gold 0 2,62

Bond 0,91 - 0 2,79

Stock 1,39 0,47 0 2,81
 

C-D 0,62 1,10 0,75 0 2,08        
Table 3: Probabilistic Divergence I

6 Application

Let. us suppose, in order to establish a relation with the utility approach and the

expected utility criterion, that we choose the divergence measure given by

D(A, B) =} |A(ai) — B(as)|-
i=l

Thus,

Dp(A, B) = <—— plas) |A(mi) - Bln).
do pln)? =I

Of course, we could have considered another divergence measure. We consider this

one because we obtain the expected utility divided by the information energy.

Weconsider again the example from the introduction. Note that the worst action

is the one with utility values 0 for all possible states of the world (the empty set).

Thus, the best. one will be the one with the highest divergence value with the empty

set. The values obtained are 2,62 2,79 2,81 and 2,08 respectively. Note also that.

we would have obtained the sameresult if we would have taken the universe as the

best option and thus the best action would be the one with the smallest divergence

value with the universe. We can see that bond and stock take almost. the same value

(2,79 and 2,81).

Now, let us compute the divergence table between pairs of actions using the

probability values given in the introduction. The results are given in Table 3. From

this table, we can see that the divergence measure between bond and stock is very

sinall. That means that if we change slightly the probability values or the utility

values (usually these values are approximations based on experimental results or

even subjective values), the divergence value between bond and stock would remain

very sinall, and thus there is not. a big difference between these two possibilities in

order to take a decision.

However, let. us suppose that we had another probability distribution. Let us

suppose that we have replaced Table 1 by Table 4.

In this case, gold and bond have very similar expected utility values. However,

if we compute the divergence table (Table 5), we see that the divergence between

gold and bond is rather big. That. means that. a small change in the probability

values can lead to a big difference between the expected values. In fact, note that.
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States of Nature

Large Small No Small Large

Rise Rise Change; Fall Fall

Probability 0.30 0.05 0.05 0.10 0.50

 

         
Table 4: Probability II

 

Gold Bond Stock C-D 0
 

 

 

Gold 0 0,515

Bond 0,3125 0 0,9125

Stock 0,525 0,2125 0 0,4
        C-D 0,145 0,2225 0,43 0 0,5
 

Table 5: Probabilistic Divergence II

the utility values of these two actions are rather different. The difference with the

other case is that there is not a really important change by choosing bond instead

of gold as they are very similar; however, in this new case, if our values are not right

we can fail in our decision. Thus, it could be useful to make another study of our

utility values and the probability distribution in order to assure that. our decision is

really the best.

7 Conclusions

Divergence measures are able to give a degree of evidence or belief of an action A

being (not) similar to B. The expected utility criterion we have interpreted is a

projection of a divergence measure. Ourinterpretation says that. for the expected

utility criterion, the degree of evidence or belief for each possible payoff, is the

divergence measure between A and 9, the least. preferred outcome.

As we have exposed another viewpoint on fuzzy measures based on divergence

measures, we should develop a theory of divergence measures on the basis of this

generalization. We have given some properties of divergence measures establishing

a relationship between divergence measures and fuzzy measures, in particular when

the divergence measures are local and the fuzzy measuresare additive.

Wehavealso introduced the concept of a probabilistic divergence. It allows us to

correct. the original divergence measures when probabilistic information is available.

In the exainple, we have seen that the probability measure is rather important in

order to choose the best action and also to study the differences between a pair

of actions. This study can be interesting in order to decide if the best actions are

rather similar and hence it does not care which one must be chosen or, on the other

hand,if they are very different. and thus a more deep study is needed in order to fix

the values.

 



An interesting problem is the extension of this concept to the continuous case.

A possible definition could be

D;(A, B) = sp | D(Aqa); Bway)da,

where 1 if f(a)>
i tT) >a

A(e)() = { 0 if f(r)<a’

However, in this case we can not assure that E(f) is a finite value or that the integral

value is finite. In order to study the properties and advantages and disadvantages

of this definition much work remains undone.
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