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Abstract

A discrete Choquet integral can be used for the aggregation of attribute
values in decision problems in the presence of interaction among attributes.
The main drawback is the non-existence of a clear interpretation of what a
given fuzzy measure means in terms of behavior in decision making. This
paper presents an equivalent representation: the logical representation of the
discrete Choquet integral. This logical representation enables expressing what
a given fuzzy measure means in terms of behavior in decision making and/or
enables a consistent explanation of a decision maker’s preference structure in
the presence of interaction among attributes.
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1 Introduction

Aggregation of attribute (feature, symptom, aspect, ...) values of an object (al-
ternative, action, class, ....) is an important problem in many disciplines: multi-
attributes decision making (MADM), pattern recognition, multivariable statistical
analysis (MVSA), etc. The presence of interactions between attributes is a concep-
tual problem for classical aggregation techniques.

Fuzzy measures and fuzzy integrals offer a great potential as tools for aggregating
attribute values in the presence of interactions between attributes. A discrete Cho-
quet integral is used for pattern classification, feature extraction [5], in multicriteria
decision making [6]. In [7] the author states that:

Although fuzzy measures constitute a flexible tool for modelling the im-
portance of coalitions (interactions among attributes), they are not easy
to handle in a practical problem for the following two reasons:

e ”....too complex to handle if n goes beyond, say 8...

e....if a fuzzy measure is given, nobody can tell exactly what it means in
terms of behavior in decision making... ”.

In this paper an equivalent representation of the discrete Choquet integral, the
logical representation of the discrete Choquet integral, is proposed as the solution to
this problem.

The logical representation of the discrete Choquet integral is based on the fol-
lowing three properties:

(a) linearity of the discrete Choquet integral by measures [13, 3];

(b) The Choquet integral for a logical (0,1) fuzzy measure is equivalent to the
logical expression of attributes [12]; and

(c) any fuzzy measure (vector) can be represented as a convex combination of
logical fuzzy measures (vectors).

The proposed equivalent representation consists of a linear convex combination of
continuous logical expressions of attributes. The logical expression over the relevant
elements of the power set of attributes contains AND and/or OR operators, with
AND defined as min and OR as max.

The equivalent logical representation is much more convenient than a classical
discrete Choquet integral for consistently expressing the preference structure (or
structure of wishes) of a decision maker in MADM. Instead of dealing with a fuzzy
measure, without a clear interpretation in general, by using the equivalent logical
representation, the problem is reduced to the extension of a list of attributes by
appropriate logical expressions on attributes. In a simple example is illustrated the
advantage of the equivalent logical representation of discrete Choquet integral for
resolving MADM problems.

The well known definitions of a discrete fuzzy measure and a discrete Choquet
integral are given in Section 2. The interpretation and understanding of the discrete
Choquet integral based on the logical representation are given in Section 3. The
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application of the logical representation of the discrete Choquet integral to multi-
attribute decision making is illustrated on two examples in Section 4. In Section 5,
a logical Mébius transform and a logical interaction index for a logical measure are
introduced.

2 Fuzzy Measures and the Choquet Integral

In this paper only discrete spaces are considered, and the finite universe 2 of n
elements (attributes, features,...), = {a),...,an}. P () is the power set of ,
while |A| denotes the cardinality of a subset A of 2, and A\ B denotes the set
difference. A, V denote min and max, respectively.

The additivity property for (probability) measures is usually a hard constraint
for real problems. Sugeno [16] introduced fuzzy measures and integrals, as a gen-
eralization of the usual definition of a measure by relaxing the additivity property.
The concept of a fuzzy measure is closely related to the twenty years older con-
cept of a capacity, proposed by Choquet [1]. Fuzzy measures include as particular
cases probability measures, possibility and necessity measures, belief and plausibility
functions, etc. [5].

Definition 1 A fuzzy measure p on Q is a mapping p : P () — [0,1] such that,
for every Aand B in P (Q) :

1. p(@) =0,
2. if B C A, then pu(B) < p(A),

where: Q 15 any set of elements, P (Q) is the set of fuzzy subsets of Q, and
A, B, ... are subsets of Q2.

Definition 2 The discrete Choquet integral of (ay, ...,an) ,a; € R, with respect to p
is defined by

C,u (al, ...,a,,) = i (a(,-) - a(i_l)) u (A(,-))

=
where ~(',-) indicates that the indices have been permuted so that 0 < aq) £ ... < aqn),
and A(,') = {a(i), ...,a(,,)} y and aq0) = 0.

The Choquet integral is a generalization of the Lebesgue integral, and it coincides
with the Lebesgue integral when the measure is additive. A discrete Choquet integral
enables modeling of positive interaction and redundancy between attributes.

In [7], the author states that: ”if a fuzzy measure is given, nobody can tell
exactly what it means in terms of behavior in decision making”.

In the next section a meaning of a fuzzy measure related to discrete Choquet
integral is proposed by its logical representation.
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3 Logical Interpretation of the Discrete Choquet
Integral

An equivalent representation, the logical representation of the discrete Choquet
integral, is presented in this section.

The logical representation of the discrete Choquet integral is based on the fol-
lowing three properties:

(a) linearity of the discrete Choquet integral by measures {13, 3}; (If a fuzzy
measure can be represented as a linear convex combination of some other fuzzy
measures then the Choquet integral for this measure is equivalent to the linear
convex combination of the Choquet integrals for those fuzzy measures)

(b) the Choquet integral for a logical (0,1) fuzzy measure is equivalent to a logical
expression of attributes {12], and

(c) any fuzzy measure (vector) can be represented as a convex combination of
logical fuzzy measures (vectors).

3.1 Linearity of the discrete Choquet integral by measures
Linearity of the discrete Choquet integral by measures, can be formalized as follows:

Proposition 1 Let u, py, ..., pug be fuzzy measures and p = ):qQ=l Aqliq, where
Z(?:l A =1and A\j 2 0,q =1,...,Q. Then for the discrete Choquet integrals of
(a1, ...y an) wrt. p, p, ..., o the following holds:

Q
Culay,....ay) = Z/\qC,,q (a1, ..., an) .
q=1

3.2 A logical fuzzy measure

Logical fuzzy measures are very important for the explanation of the discrete Cho-
quet integral, via an equivalent representation - the logical representation of the
Choquet integral. A logical fuzzy measure is defined as:

Definition 3 A logical fuzzy measure is fuzzy measure that takes its values in {0,1}.

3.3 A logical Choquet integral

A discrete Choquet integral for a logical fuzzy measure is a logical expression on the
attributes with and and or operators, defined as min and max respectively.

Definition 4 A logical Choguet integral is the Choguet integral for a logical fuzzy
measure.

A logical Choquet integral takes the following form [12]:

Cut (ay,nan) = ( A ak)

A:ul(A)=1 \ax€A
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Example 1 A. The Choguet integral for the logical fuzzy measure pu; = 1, py = 0
and 2 = 1, of two attributes, is

Culay,a) = a;V(a;Aag)

= o

B. The Chogquet integral for the logical fuzzy measure puy = 1, pp = 0, uz = 1,
pi2 =1, 3 =1, pog = 1 and py93 = 1, of three atiributes, is

C[l. ((11,0.2,(13) = aqVazV ((11 A 0.2) \% (a1 A 0.3) \% (0.2 A 0.3) \% ((11 ANas A 0.3)
a; Vas.

Modeling by the Choquet integral the AND, OR and ONLY functions for two
attributes is useful for an illustrative explanation of the logical representation of the
Choquet integral.

3.3.1 AND and OR modeling by Choquet integral

The "extreme” cases of positive interaction and redundancy between two attributes
are AND and OR functions, respectively.

The values of fuzzy measures, for the case when AND and OR operators are
modeled using the Choquet integral, are given through the following examples.

Example 2 Find a discrete fuzzy measure for the aggregation of the values of at-
tributes ay and aq, using a discrete Choquet integral, as an AN D operator. Necessary
conditions for the Choquet integral to model an AND operator, in the case of two
attributes are:

a; | az | Culay,a2)
111 1
110 0
011 0
010 0

From the necessary conditions for an AND function and from the definition of the
discrete Choquet integral, a logical fuzzy measure is defined as:

Co(L,)=p1p = pp=1
Cu(0,1)=p2 =p2=0
Cu(,0)=p =>pm;=0

The Chogquet integral for arbitrary values of attributes and for a fuzzy measure of
AND function, is:

Cufai,ar) 1)

min(a’l s (12)

a; A as.
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Example 3 Find a discrete fuzzy measure for the aggregation of the values of at-
tributes a; and aa, using a discrete Choguet integral, as an OR operator. Necessary
conditions for the Choguet integral to model an OR operator, in the case of two
attributes are:

a1 | ay | Culay,ap)
111 1
10 1
0|1 1
010 0

From the necessary conditions for an OR relation and from the definition of the
discrete Choquet integral, a logical fuzzy measure is defined as:

Ll)=pp =up=1
Cu(0,l)=py =p=1
1,0)=wm =>wm=1

The Choquet integral for arbitrary values of attributes and for a fuzzy measure of
OR operator is:

Cular,a) ag)

max(a;, az)

a Vas.

3.3.2 ONLY,, and ONLY,, modeling by Choquet integral

Fuzzy measures for modeling functions
ONLY, (a1,a) '=a;; i=1,2

by aggregation with a fuzzy Choquet integral are given through the following
example.

Example 4 Find a discrete fuzzy measure for the aggregation of the values of at-
tributes a, and az, using a discrete Choquet integral, as an ONLY,, (ONLY,,)
operator. A discrete Choguet integral models an ONLY,, operator in case of two
attributes, if:

C”’ (0.1, 0’2) =a,, Vah Qa2
From the condition for an ONLY,, operator and from the definition of the discrete
Choquet integral, a logical fuzzy measure is defined as:

aipiz+ (@2 —a) pe=ay, foray <ay = ppy =0
axphz + (@ — @)y =ay, foray <a;p =>m=1"

In the same way 1t could be shown that to an operator ONLY,, corresponds a logical
fuzzy measure 1 =0, po =1, g2 =1.




3.4 Fuzzy measure vector and fuzzy measure space

Any fuzzy measure on a finite set of attributes Q can be represented as a vector 77,
with 2" components, where n = [Q].

Definition 5 Fuzzy measure vector components, of a finite set of attributes ), are
measures of the elements of the power set P (Q0).

The first and the last fuzzy measure vector components are fixed values, yu (8) = 0
and p () = 1, respectively.

Example 5 A fuzzy measure vector for a two-attribute case is

7 o= w®=0 p{a}) s({e)) p({eu,e})=1
0 m w 1.

Definition 6 A logical fuzzy measure vector /._142, is a fuzzy measure vector whose
components take only values from {0,1}.

Example 6 From the previous etamples for the two-attribute case, logical fuzzy
measure vectors and logical functions corresponding to the Choquet integrals are
given in the following table:

B {2 | 2 gﬁ (a1,a2)
Bana, | 0| 0] 1 a1 A ap
ple, (11 0] 1 @
wbe, 0] 1] 1 M,
BWoava | 1)1 1 a Va

Definition 7 A space defined by all possible fuzzy measure vectors is a fuzzy mea-
sure space. '

Example 7 A fuzzy measure subspace, in the case of two attributes, of interest for
the analysis is two dimensional, (1, i), fig-1, since it is by definition po = p (0) =
0, and p12 = p({a1,e2}) = 1.

From previous examples: Points A and C, in fig.1 are logical fuzzy measure
vectors for AN D and OR functions, respectively, when the Choquet integral is used
for aggregation of the values of two attributes. Points B and D in fig.1 represent the
logical fuzzy measure vectors of the ONLY,, and ONLY,, operators, respectively,
when the Choquet integral is used for the aggregation of the values of two attributes.

73




Example 8 Logical fuzzy measure vectors for the three-attribute case and logical
functions corresponding to the Choguet integrals are given in the following table:

Hi | M2 [ M3 | H12 | H13 | K23 | H123 6;73 (a1, a2, a3)
£~ a1 Aazhas 0J0J]O0O]O[01]O 1 (a1 Aay A a3)
1E 0 nas olotol1lolo] 1 (a1 A ag)

7 a; Aas o{olo0]| O 1 0 1 {ay Aas)
1Y apnas 0]01(0 0 0 1 1 (a,2 A a,3)
1L o navas) olojol1]l1]o 1] ant@va)
17 ayn(ay Vas) 0/0]0}1 0 1 1 az A (a1 V a3)
1" agn(arVas) 0j]0]10] 0 1 1 1 a3z A (a) V ap)
M (@ nanVieiras)viashes) | 0 1 0 101 1 |1 41 1) Vij=12a(0i Agy)
ula, 1lolol1|1{o0]1 a
iLa ol1]ol1]o]1]1 a
ula, ojof1]o]1|1]1 a3
;t:alv(a,/\aa) 1101011 1 1 1 a1 V (a2 A a3)
M~ a3v(a; nas) ofj1j041 1 1 1 a2 V (a1 A a3)
1 a3v(ey Aaz) 0[{0}1]1 1 1 1 as V (a1 A ag)
;Zalv@ 111/]01|1 1 1 1 (a1 V ag)

1 avas 1ol 1|1 |1]1 (a1 V a)
ljiagvm, 0]1]1 1 1 1 1 (a2 V a3)
1 4y vayvas 111l i {11 ] @vava)

Ho 4
112 c
Lo+, >1
ﬁ"' My =l =1
A B+ H, <l B
0 1 il

Figure 1: Fuzzy measures for two attributes
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3.5 Any fuzzy measure and logical fuzzy measures

Since the Choquet integral for any logical fuzzy measure has a clear logical repre-
sentation, the relations between any fuzzy measure (or a fuzzy measure vector) and
fuzzy logical measures (or logical fuzzy measure vectors) are important.

Proposition 2 (A) Every linear convez combination of logical fuzzy measure vec-

tors pig, ¢ =1,...,Q is a fuzzy zz’easure vector, and
(B) Any fuzzy measure vector, ;L_,)can be represented as a linear convez combination

of logical fuzzy measure vectors ﬂé’, g=1,..,Q.
7= EQ: ’\q;ql
g=1
where Zqozl M=land)>0,¢=1,..,Q.
Proof. (A) Since from the definition of a logical fuzzy measure:
ué‘ (@) =0, g=1,..,Q

W@=1  ¢=1..Q

the boundary conditions of any linear convex combination of logical fuzzy measures
are:

Q
p(@ = 3 duf(0)=0
g=1
p@ = Souk@=1
g=1
Q
Z/\q = 1 /\q>0v q= ? 7Q
g=1

and by definition of fuzzy logical measures for A C B

pe(A) <pb(B), ¢=1,..,Q

monotonicity condition for any linear convex combination of logical fuzzy measures
is satisfied:

Q Q

p(A) = 3 Apk(4) <Y Auf (B) = p(B)
q=1 q=1

Q

ZAQ = 1 AqZO, q:l’,_.’Q_

g=1

and it follows that any linear convex combination of logical fuzzy measure is a fuzzy
measure.
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(B) The components of any fuzzy measure vector

? = [,u((b),,,u(Q)]T

[)uly Hat] ﬂ?“]T

can be permuted as follows:
1=pq) 2 ... 2 pen =0,
and after choosing only mutually different values
1=pa>...>me >0,
where () < 2", then ? can be written as:
® o= (uw-me) BT+
(k) — 19) B+

(@ = 0) 25,
where:

1, p(A)y=1

cQ
0, ,u(A)<1’A_ ’
1, u(A

)2 H(2)
ACQ,
0, u(4) B

<’

py (A) =

ug(4) = {0, u(A):o’AQQ;

and ?5 for ¢ = 1,...Q are logical fuzzy measure vectors, since from the definition
it follows that if ' (4) = 1 then VB 2 A'is pug (B) = 1 as a consequence of the
definition of a fuzzy measure
1y (B) 2 pg (A) = g (B) > pg) = pt (B) = 1.
If we introduce
Aq 1= fi(g) — Hg+1) > 0
the above expression for a fuzzy measure vector is:

Q
7 =Y AT

g=1
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where:

YA = by = @) e — ) F e+ g — 0
= py=1

So any fuzzy measure vector can be represented as a linear convex combination of
logical fuzzy measure vectors. l

Example 9 An arbitrary fuzzy measure vector 7 for two attributes can be rep-

resented by logical fuzzy measure vectors py, w € W = {a; A ag,a1,a3,a; V az};
defined in the example 7 as follows:

Z=3 M,

weW

where

Z/\w=la Aw 20,

weW
and for the special cases:

prtpe 21 fpe >+ pe <1 |p <
Agj nay 0 L—py | 1—pn—pp | 1~
)‘al 1- H2 0 H1 H1 — K2
Aay - H2 — 1 Ha 0
Aagvay | 1t e —1 I\ 0 Ha

It is obuvious that the representation is not unique.

3.6 Logical representation of the discrete Choquet integral

From propositions: (a.) about any fuzzy measure and logical fuzzy measures and
(b.) the linearity of discrete Choquet integral by measures, follows the following
proposition.

Proposition 3 The fuzzy Choquet integral for any fuzzy measure can be represented
as a convezr combination of logical Choquet integrals.

Q
Cu(ar,.nn) = > AqCpr (ay,...,an)
q=1

Q
S0 V(A
9=l Apl(A)=1 \ax€A

So, the application of discrete Choquet integral reduces the characteristic inter-
actions between attributes to expressions which contain continuous logical functions
of the elements of the power set of attributes. Continuous logical functions are of
type OR (defined as max) and AND (defined as min) and their combinations as a
reduction to isolated attributes.




Example 10 The discrete Choquet integral for two attributes and an arbitrary fuzzy
measure Cp (a1, az) has the following equivalent ectensive representation:

Culay, a2) = Aajne, (@1 A a2) + A, 01 + Agy00 + Agyva, (a1 V ag)

where Ypew dw = 1, Ay 2 0, W = {a1Aap,a1,02,01 Vay}. For the special
cases:

a) redundance: [y + g2 > py2 = 1. Since, from the previous example for case of
redundance:

— — —
T =Q—p)pl + Q= m)pl, + (a4 pe— 1)k,
and from the property of linearity:
Cu(ar,a2) = (1 = p2) Cpr (a1,82) + (1 — 1) Cpg (a1, 82) + (1 + p2 = 1) Cz (a1, 02)

and since:

| pe | 2 | Cyy (a1, 02)
Wl 1]o] 1 a
pt ol 1] 1 o
.1l 1] 1] avae

it follows that:
Cu(a,a)=(1-mw)ay+(1—w)as+ (1 + 12— 1) (a; Vag).

In the same way, for: b) pe > py ¢

Cu(ar,a2) = (1~ p2) (a1 Aaz) + (p2 — 1) a2 + 1 (a1 V a2)
¢) positive interaction: py + pp < py =1

Cu(ay,a2) = mar + paz + (1 — 1 — p2) (a1 A az)

and d) pa < py :

Cu(ar,a2) = (1 = ) (a1 Aaz) + (1 — po) oy + pa(ay V az) .

It is obvious that the representation is not unique.

4 MADM and the Logical Representation of the
Discrete Choquet Integral

The logical representation of the Choquet integral in multi-attribute decision making
(MADM) is illustrated in this section. A general MADM problem can be reduced
to two steps: (a) preprocessing of the initial values of attributes - normalizations,
and (b) aggregation of normalized attributes values. Sometimes, a fuzzy measure
and a fuzzy integral can be used for aggregation in the presence of interactions
between attributes [6]. In the following simple example are given the application of
the Choquet integral and its logical representation to MADM.
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Example 11 Alternatives A, B and C are described by two attributes. The values
of attributes are given in the following table:

a; ao
All1]01
Blo6)06
cglo1|1.1

Alternatives should be arranged (ordered) based on the following two partial require-
ments: (1.) attribute a, is more important than az, and (2.) attributes a, and a,
are important simultaneously.

(a) In the fuzzy measure approach, these two requirements reduce to the following

two conditions:
1. requirement = ) > o

2. requirement = py+pe < pp=1"
For ezample, the following fuzzy measure: py = 1/3; py = 1/6; and 19 = 1;

satisfies the requirements, and after application of the Choquet integral, we obtain
the following ranking of alternatives:

rang | alternative | Cu (a1, ag)
1. B 0.600
2. A 0.433
3. C 0.266

(b) In the approach based on the logical representation of the Choquet integral, we
have the following aggregation function:

Cu(ar,as) = Aar+ Aax + Az (a; Aag)
A2 0,i=1,2,3;

Al > A A+t A=1,

so the problem is reduced to a classical problem of determination of weighted coeffi-
cients but the list of attributes is extended by a new partial requirement - (”gener-
alized attribute”) - the logical expression a; A ay. If we choose Ay = 1/3, ), = 1/6,
and A3 = 1/2 for weighted coefficients, then we have the same result.

a ap a; Aay | Cular,az)
A 1.1 0.1 0.1 0.458
B 0.6 0.6 0.6 0.6
C 0.1 1.1 0.1 0.266

Definition 8 Partial requirements (”generalized attributes”) are all or some at-
tributes (chosen attributes) (ay,as, ...) and/or logical expressions on attributes (cor-
responding logical ezpressions on attributes) (a; A ay, ...).
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As a consequence, to every partial requirement (”generalized attribute”) corre-
sponds a logical fuzzy measure.

Definition 9 A logical fuzzy measure requirement vector is a logical fuzzy mea-
sure vector which corresponds to the analyzed partial requirement (”generalized at-
tribute”).

Example 12 From the previous ezample: partial requirements (”generalized at-
tributes”) and corresponding logical fuzzy measure vector requirements are given in
the following table:

Cu (a1, 02) Ay
a; 7,11 1 0 1
as 7412 0 1 1
a; Aay Tl?al naa | 01 0 1

The fuzzy measure vector of the resulting requirements, T, is:

? = ’\1?61 + ’\27(12 + )‘37(11/\412
3

z’\i = 17 /\_7207 .7=1,273; ’\l>/\21

i=1

7 1 0 0
H2 =M 0]+X]1[+A]0
2 1 1 1

and for weighted coefficients Ay = 1/3; Ay = 1/6; and A3 = 1/2, the fuzzy measure
of resulting requirements is p, = 1/3; pp = 1/6; and pyp = 1.

Aggregation in MADM by the logical representation of the Choquet integral is
reduced to a linear convex combination of partial requirements (”generalized at-
tributes”) and/or determination of weight coefficients of partial requirements.

A fuzzy measure (vector) of resulting requirements is a linear convex combination
of logical fuzzy measure requirement vectors.

Definition 10 The space of consistent fuzzy measure requirement vectors is a fuzzy
measure subspace, generated by linear convezr combinations of logical fuzzy measure
requirement vectors (vectors of generalized attributes).

One of the main advantages of the logical representation of the discrete Choquet
integral in MADM is the possibility of consistent explanation of a DM’s preference
structure. This will be illustrated by the example of the evaluation of students
according to marks in mathematics, physics and literature (7).




Example 13 [7] The director of a high school has to evaluate his students according
to their level in mathematics (M), physics (P) and literature (L), and he considers
the following three students (marks are given on a scale from 0 to 20).

Student | M | P | L
aypy lap | ap
A 18 1 16 | 10
B 10| 12 18
C 14115)15

The director thinks that: (1.) Scientific subjects (M, P) are more important. (2.)
M and P are more or less similar, and students good at M are in general also good
at P, so that students good at both must not be favored. (3.) Students good at
M (or P) and literature are rather uncommon and must be favored. A consistent
resulting fuzzy measure vector _;? must be in the fuzzy subspace - requirement space,
defined as a linear convezr combination of fuzzy vectors which correspond to partial
requirements. The first requirement is actually the subspace defined by the following

My B + X BE+ A RE M=o >0, My+Ap+ M, =1,
v > 0,2 >0,A; >0.

where:
pnm | e | pr | ump | pmr | wer | pmpr | Cup (A, ap,aL)
w1 jojo] 1 1 0 1 ay
ZL o010 1 | 0| 1| 1 a,
FITol o7 0 | 1] 1 1 ar

The second and third requirement are defined by the following fuzzy logical vectors:

pnm | e | pr | e | mr | e | e | Cup (an, ap,ar)
e 1 1]o] 1 1 1 1 ay Vap
Hhoene | 0 1010 01 1 | 1] 1 |(@uVap)Aar

So, the consistent requirement fuzzy subspace is defined by the following linear convez
combination:

s A B+ A BE+AMTEL+ Mve B hve + Marve)s B aveyae
S =1, A0, W ={M,P,LLMVP(MVP)AL}.

weW

It follows that the fuzzy measure requirement can be ezxpressed as a function of
weighted coefficients of partial requirements:

[ pne ] 10010
Hp 01010 /\M
KL 00100 /\p
pMp |=]11 101 0%} A ,
EML 10111 Amvp
HpL 01111 A(MVP)AL
| “MPL | 111111 ]
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where:

S Aw=1  A2>0, weW={MPLMVP(MVP)AL}.

weWw

These requirements are by [16] directly ezpressed as the following fuzzy measure:
iy = pp =045, pup = 0.30, upp = 0.5, pyr = 0.9, upr = 0.9, pppr = 1. But, this
fuzzy measure is outside of the fuzzy measure subspace of the consistent requirements!

The logical representation of the discrete Choguet integral for the consistent fuzzy
measure requirement is

Cu (aM, ap, aL) = Ayaym + Apap + Apap + /\Mvp(aM \Y ap)
+Amveiac({am Vap) Aar)
Ywew Aw =1, Ay 20, W={M,P,L,MVP,(MVP)/\L}.

Objects of further decisions could be only the values of weights for subjects M, P and
L A, Ap, and Ay, redundancy of simultaneous success in M - P Apyp, interaction of
simultaneous success tn M or P and L Aavpyar- It is obvious that it is not possible
to find such values for weights that give as a result the fuzzy measure proposed in [7].
If the proposed relation §:8:2 is kept for M, P and L and if these interactions are
of the same importance, and all interactions and all subjects are also of the same
importance, then the following values could be accepted for weights: Ay = Ap =
3/16, AL = 1/8, duve) = Amveiar = 1/4. The corresponding fuzzy measure is:
par = 7/16; pp = 7/16; pp = 2/16; ppyp = 17/16; ppr = 13/16; ppr = 13/16;
uarpr = 1, implying the following results:

Student | M P L MorP (MorP)andL
a; am | ap ar |amVeap | (amwVap)Aay | ¥;wia;
A 18 16 10 18 10 13.5000
B 10 12 18 12 12 12.1875
C 14 15 15 15 15 14.8125
w; | 3/16 | 3/16 | 2/16 | /16 7/16

5 Logical Fuzzy Measures and Two Other Mea-
sure Representations

There are two other representations of a measure: (a) the Mdbius and (b) the
interaction representation. Here are introduced a logical Mébius transform for a
logical fuzzy measure and a logical interaction index.

5.1 The logical Mdébius transform

Definition 11 The Mébius transform of a fuzzy measure p, is a set function on
defined by

m(A):= Y (-1)"V¥ 4 (B), vAcC Q.
BCA
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The transformation is invertible, and x can be recovered from m by

p(4)= Y m(B), VACQ
BcA

The Mobius transform of a fuzzy measure on a finite set can be represented as a

Mébius vector 72, with 2* components, where n = ||, (or 2" — 1 since component
m (D) = 0 is trivial).

Definition 12 The components of the Mébius vector, of a finite set of attributes,
are the Mdbius coefficients of the elements of the power set P (£2).

Definition 13 A space defined by all possible Mdbius vectors is a Mobius vector
(measure) space.

Definition 14 Logical Mébius coefficients mt (A), VA C Q, are obtained from the
Mébius transform of logical fuzzy measures p*.

Example 14 The values of logical Mébius coefficients - components of Mdbius vec-
tors, for logical fuzzy measures, in the case of two attributes, are given in the fol-
lowing table:

my | mg | miz | Cp(ay, az)
7_717:‘,1/\,12 0 0 a; Aap
mly, | 1] 0] 0 a)
mby, | 0] 1 az
;Z,“Vaz 1 1 -1 a; Vap

or, in the Mobius vector space (Fig.2).

Figure 2: Mgbius vector space
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Example 15 Mgbius coefficients for logical fuzzy measures, in the case of three
attributes, are given in the following table:

my | Mg | M3 | M2 | Ty | Ma3 | 23 Cp (a1, a,a3)
M gnahes | 0101010 0 0 1 (a1 A ay A a3)
M oAz 00|01 0 0 0 (a1 A ag)
mlyna, | 01000 [ 1 ]0] 0 (a1 A as)
mloraa 10| O[O 0] 0] 1] 0 (as A a3)
m"an@avay) | 0 1 0 | O 1 1 0 -1 a1 A (a2 V a3)
M~ gyn(a1ves) | 0 0 0 1 0 1 -1 as A (a1 V a3)
M a3n(a3vay) | 0 0 0 0 1 1 -1 az A (a; V ap)
7n7V(a,*/\aJ) 0 0 0 1 1 1 =2 | Vij=123 (a; A a;)
ml,, 1lofolojo]o] o @
ml,, ol1lolololo] o az
ml,, ojlofl1]o]o]o] o a3
M g vineyy | 1 101010 0 1| -1 a, V (ag A ay)
M~ 4yv(asnas) | 0 110 0 1 0 -1 az V (a; Aaj)
M g vianey) | 0 | 0 1 1 1 0 0 -1 az V(a1 A ag)
M4, va, 1 1|0]|-1]0 0 0 (a1 V az)
M" 0, Vas 11011 0 |-1]0 0 (a1 V a3)
M ayvay 01111 0 | -1 0 (az V a3)
M 41vasvas 1 1 1 {-1]-11{-1 1 (a1 Vay Vay)

Proposition 4 Mébius coefficients for an arbitrary measure y can be ezpressed as
a convex combination of corresponding logical Mdbius coefficients mg (4), VA CQ,
q=1,..,Q. _
2 L
m(A) = Z Agmy (A).
g=1 .
or, in the vector form

Proof. Follows from the linearity of m.

Example 16 An arbitrary Mébius vector T for two attributes can be represented

by logical Mabius vectors my, w € {a1 A as,a1,02,01 V a2} ; defined in Ezample 18
as follows:
'ﬁf= Z /\w'ﬁfﬁ,, W={a1/\a2,a1,a2,a1Va2}

wew




where

Z /\w= 1, /\wZO, W={a1/\a2,a1,a2,a1Va2}
weW

and for the special cases:

mtme>2lilmaomim+m<l|m<m
/\al/\az 0 1‘—777.2 l—ml—mg 1-—m1
/\a1 1- ma 0 my my —my |
Aay 1-m my — My My 0
Aayvay | M1 +mg =1 my 0 me

5.2 Logical index of importance and interaction index

The interaction index defines the interactions between subsets of attributes.

Definition 15 [7] Let p be a fuzzy measure on Q. The interaction indez for subset
A C Q s defined by

n—|{A|
Iy =3 & 3 5 (D"
k=0 KCO\A,|K|=k PCA

with & = (n—k —p)lk!/ (n—p+ 1)L

In (7] it is shown that special cases of this interaction index are:
(a) For A = {i}, the Shapley index v;

n-1
vie=3 w Y (wik ~ bk)
k=0 KCO\i|K|=k
with v, := (n — k — 1)!k!/n!, and
(b) For A = {4, j}, the interaction index of two attributes /;;

n-2
Lij = Z Cr Z (Bijk — Hik — Wik + pK)
k=0 KCO\{ij)
IK|=k
with ¢ :=.(n — k — 2)!k!/ (n — 1)!
Any interaction index of a finite set of attributes (players), can be represented
as an interaction vector 7, with 2” components, where n = |].

Definition 16 Interaction vector components of a finite set of attributes are inter-
action indices of the elements of the power set P ().

Definition 17 A space defined by all possible interaction vectors is an interaction
vector (measure) space.
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Definition 18 The logical interaction index I* (A) for subset A C Q is the inter-
action indezx defined by logical fuzzy measure uy,.

Example 17 Values of the logical interaction indezes - components of logical inter-
action vectors, and corresponding logical interpretation of Choquet integral, in case
of two attributes, are given in the following table:

I I [ IE [ Cu(ay, a)
one | 21211 a; Aag
I, l1lolo @

X, lolz1]o az
I_[m\/a, lL % -1 a Vap

or, 1n the interaction vector space (Figure 3.)

Example 18 Interaction logical vectors - interaction indices for logical fuzzy mea-
sures, in the case of three attributes, are given in the following table:

Ify [ Iy [ Iy [ Thay [ s | 1o [ Tfios | Crl(ar,a2,05)
77(1,/\@/\:;3 3 é % % % % 1 (a1 A az A aj)
a1has s | 2] 0 1 0 0 0 (a1 A az)
I 4y nas ;101310 1 0 0 (a1 A ag)
azhas 0| %+ | 2 0 0 1 0 (a2 A a3)
7“1/\(02\/‘13) % & 5 2 % -1 -1 a1 A (a2 V a3)
_I’ﬂz/\(alv‘la) i % é Jl _il‘ Jl -1 az A (a1 V a3)
L isnavan) | § i 3 -3 2 3 -1 a3 A (a1V ap)
T\ngmaj) il 3 l3 0 0 0 =2 | Vij=123(ai Aay)

1 1{oflo] o 0 0 0 a

1., ol1]o0] o 0 0 0 a;

T, olofl1] o0 0 0 0 as
7’lllV(az/\ﬂS) % & H -3 | -3 3 -1 ai Vv (a2 A ag)
7’an(ux/\ﬂt:a) é % J% _% Jl _'21' -1 az V (a1 A a3)
7'(laV(ul/\az) % % % Jl —% —% -1 a3 V (a1 A ag)

Tove | 2120 =10 [0 0 (@ Va)

a1vas 1703 0 | -1} 0 0 (a1 V a3)

Tuve, | 0] 2] 2] 0] 0] -1] o (a2 V a3)
aVasvas | 3 b)) -2 -4 1 (a1 Vay Vaj)

Proposition 5 The interaction indez I(A) VA C Q, for an arbitrary measure u can
be represented as a conver combination of corresponding logical interaction indices

I5A), g =1,.., Q.
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Proof. Follows from the linearity of p.

Figure 3: Interaction vector space

Example 19 An arbitrary interaction vector 7’ for two attributes (players) can be

represented by logical interaction where interaction vectors, I,
w € {a) Aag,a1,a2,a1 V ay}; defined in the ezample 13 as follows:

?2 Z /\wE, W = {all\ag,al,ag,mVag}

weWw

where

=1 X220, W={aAaa,aaVa}
weW

and for the special cases:

redundance: I <0 | I, > I, positive interaction: I1o >0 | I <1,
AL 0 11+%Ilz 12 12+%112
A2 Il+%.[12 0 ‘Il—%llg IL -1
A3 12+%112 I, -1 I, — %112 0
Ay =1y I — 21 0 I, — 211

6 Conclusion

In this paper an equivalent representation, the logical representation, of the discrete
Choquet integral is given. The logical representation of the discrete Choquet integral
is based on: (a) linearity of the discrete Choquet integral by measures; (b) the logical
fuzzy measures with clear interpretation by Choquet integral, and (c) the property
that any fuzzy measure can be represented as a convex combination of logical fuzzy
measures.
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The logical representation consists of a convex combination of logical expres-
sions over the relevant elements of the power set of partial similarities. The logical
expressions contain the AND and OR logical operators (defined as min and maxz,
respectively), and their combinations.

The logical representation of the discrete Choquet integral offers an easy formal-
ization of a desired preference structure in case of MADM. Till now, in practice, it
has been very hard to achieve desired characteristics directly by a fuzzy measure [7].

Actually, desired interactions among attributes are defined as the logical ex-
pressions and the relative importance of interactions by weighting factors of convex
combination. AND logical operator is used for modeling the positive interaction
among attributes, and OR for redundance. It is shown that this result is also ap-
plicable to the two remaining ways of representing discrete measures: (a) Mobius
transformation, and (b) interaction among the subsets of attributes.

Application of the logical representation of discrete Choquet integral to a classi-
fication problem in the presence of interaction between attributes will be the subject
of a forthcoming paper.

In future work these results will be extended to cases with negative interactions
among attributes, based on [15].
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