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Abstract

New boundsfor the diameter of a graph are introduced.

For undirected graphs, two improvements of an old bound arepre-

sented. The first one is formulated in terms of the rank of the adja-

cency matrix, the second onein termsofits eigenvalues.

Further, two known boundsfor undirected graphs are extended to

directed graphs, by using the minimum polynomial, respectively the

rank of the adjacency matrix.
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1 Introduction

Any undefined term or notation in this paper may be found in C. Berge
[2]. All graphs G = (V, E) we consider are finite, without loops or multiple
edges, with vertex set V and edge set E. In the first two sections, all graphs

considered are undirected. In section 3, we generalize previous notions to
directed graphs.

The adjacency matriz or vertex-vertex matrix A(G) = [a,;] of a graph G
with n vertices is the n x n-matrix which has a;; = 1 if the edge (v;, v;) exists,

and a,; = 0 otherwise. The rank r(G) of the adjacency matrix is called the
rank of G. In the sequel, when this rank is calculated over different fields F,,
we also denote this rank bij rr(G).

The distance d(v,,v;) between two vertices v; and v; is the length of a

shortest path joining them; if no joining path exists, then d(v;,v;) = oo. The

diameter 6(G) of a connected graph G is the maximum distance in G.
A path with n vertices is denoted by P,. Numbering the n vertices con-

secutively, the adjacency matrix of P, is of the form
o
r
e
©

o
o

©

o
o

©

o
o

©

A(Pn) = ’

000. 01 0

000. 1 1

000. 1 0

with eigenvalues 2 cosa, 2cos 2%, ..., 2cos2™, cf. L. Lovasz, [11, p. 180].

The determination of the diameter of a graph plays a significant role in
manyproblemsof operations research, see e.g. D. Bratton [4], A. Ghouila-

Houri [9] and M.K. Goldberg [10]. Several bounds on the diameter exist, but
almost all of them deal with special classes of graphs.

The following upper boundsfor general undirected graphs are known.

The nezghborhood I(r) of the vertex z € V is the set of vertices adjacent

to it. A chain is a subset C C V such that for anv two vertices r and y of
C. T(r) cT(y)U fy} or P(y) C P(r) U {x} must hold. The Dilworth number

V(G) of a graph G, see e.g. R.P.Dilworth [7]. is the minimum numberof
chains covering the vertex set of the graph.
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Bound 1 (S. Foldes and P. Hammer, [8})
If G is a connected graph with diameter 6(G) and Dilworth number V(G),
then

6(G) < V(G) +1.

Let d; denote the degree of the vertex v,. The Laplacian of the graph G

is defined as the matrix Q(G) = [qi;| where qi = di, qi; = —a;; fort # j

and [a,;] = A(G). If G is a connected graph with maximum degree k, andif

A is the smallest nonzero eigenvalue of the Laplacian Q(G), then Alon and
Milman[1] deduced

6(G) < 2/2k/A logy n.

This bound was improved by F.R.K. Chung [5] and a generalization is given

by

Bound 2 (F. Chung, V. Faber and T. Manteuffel, [6])
If G is a connected graph with diameter 6(G), then

 

8(G)<| cosh~*(n ~ 1)
< loa(a, by)/On soar?

where 0 < Ag <... < An are the eigenvalues of the Laplacian of the graph

_G and |.| is the floor function.

N. Biggs [3, p. 13] and L. Lovasz [11, p. 73] noted a bound in terms of
eigenvalues.

Bound 3 The number k of distinct eigenvalues of the adjacency matriz of a

connected graph G is greater than its diameter 5(G), or

6(G) <k-1.

In 1976 we stated in [12] the following upper boundin termsof the rank
of the adjacency matrix.

Bound 4 Let G be a connected graph with diameter 6(G). If the rank of G
is calculated over R, then

5(G) <r(G). if 6(G) € 2N,
5(G) <r(G)-1, if 6(G) ¢ 2N.

Moreover 6(G) = r(G) for 6(G) 1s even and 6(G) = r(G) — 1 for 6(G) odd if

and only if for all vertices v;.vj; with the same distance to one of the initial
vertices of a path of length 6(G), we have ['(t,) = T(t,).
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By taking examples, one can see that each of the foregoing boundsis

attained for some special graph, thus they are all of the best possible type.
However, none of them is dominating an other, i.e. none of the bounds is

systematically better than the others.

2 Bounds for the diameter of an undirected

graph

In the sequel, we give two improvements of Bound 4. Thefirst one is formu-

lated in terms of the rank of the adjacency matrix, the second one in terms
of its eigenvalues.

Theorem 2.1 Let G be a connected graph of diameter 6(G). If the rank of

G is calculated over Z,, (the ring of integers modulo p), with p prime, then

5(G) < r(G), if 5(G) € 2N,
5(G) <r(G)-1, af 6(G) ¢ 2N.

Proof: Let P, be a path in G of length ! — 1 = 6(G). To calculate
the rank of the adjacency matrix A(P;), we perform some elementary row
operations on this adjacency matrix. Let E,,,, denote the replacement of

row 7 by ‘row 7 + A row 7’. First move all columns of A(P,) one position to
the left (such that the original first column now becomesthe last column).

After the elementary row operations £31.p-1), E4,2,(p-1), -- +» E1z—2,(p-1), the

upper triangular matrix

1
01

001

0001

0000... 1

000 0 0 1
000 0 00 a

is obtained.

If 6(G) = 1-1 € 2N, then a, = 0 andthe rank of A(P;) is /- 1. Hence

6(G) =l-1l=r(P).

If 6(G) = 1-1 ¢ 2N. then ay = (p—1)'. with » = 1/2 - 1 and the rank of
A(P,) equals J. In this case. 6(G) = 1-1 =7r(P;) - 1.
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As the longest path P, is an induced subgraphof the graph G, the adjacency
matrix A(P;) is a submatrix of A(G). Hence r(P;) < r(G) which proves the
theorem. oO

Remark 2.2 Linear dependence over R implies linear dependence over Zp,

hence rz,(G) < rr(G) holdsfor all graphs G, and the bound of Theorem 2.1

improves Bound 4.
Theorem 2.1 can in particular be useful if the rank is calculated over Zz. In

this case the difference between ry(G) and rz,(G) can bearbitrarily large,
as the following example shows.

Consider the graph G with n vertices (n € 3N) and adjacency matrix

K BB... B

BK 0... 0

AG)=]| BOK... 0 |,

B 0 0 K

where K is the adjacency matrix of the complete graph K3 and the matrix
B is defined as

101

B={0 0 0
101

A short calculation shows that 6(G) = n/3+1, while rp(G) = n and rz,(G) =
n—n/3.

We use the notation Ng(A > 0) for the numberof positive eigenvalues

of the adjacency matrix A(G), and respectively Ng(A < 0), Ng(A > 0) and
Ne(A < 0) for the number of negative, nonnegative, and finally nonpositive

eigenvalues of A(G).

Lemma2.3 If H is an induced subgraph of G, then Ny(A > 0) < Ng(A >

0),
Ny(A < 0) < Ne(A < 0),Nx(A > 0) < Nel(A = 0) and Ny(A < 0) <
Ned < 0).

Proof: Assume that H has n vertices. We start with the case that H is

obtained from G bydeleting the vertex 1, from G. In this case, A(H)is a

principal submatrix of A(G). obtained bv deleting the first row and column
from A(G). Let a, > ay >... > ay be the eigenvalues of A(A), and
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fy > Bo >... > Bn > B+ the eigenvalues of A(G). The separation theorem
for real symmetric matrices (see e.g. Wilkinson [13]), implies that

By > a, > fy > OQ >... > On-1 > By > On > Bn4iy

which explains why, for example Ny(\ > 0) < Ne(A > 0) if H is obtained
by deleting one vertex from G.

For a general subgraph H ofG,the above separation theorem can be repeated

on the sequence of subgraphs H C HU{u} C HU{u,m} C...cCG=
H U {v,..., Un}. The same arguments show that Ny(A < 0) < Ne(A <

0), Ny(A > 0) < No(A > 0) and Ny(A <0) < No(A <0). o
_ Theorem 2.4 If 6(G) is the diameter of a connected graph G, then

b(G) < 2 Min[Nc(A > 0), Ne(A < 0)] if 6(G) € 2N

6(G) < 2 Min[Nc(A > 0), Ne(A <0)]}-1 if 5(G) ¢ QN.

Proof: Let P; bea path in G of length | —1 = 6(G). A closer look at the
eigenvalues of A(P;), mentioned in the introduction, learns that

Np(A>0)=Np(A<0)=4  ifle 2N

Np(A > 0) = Np (A <0)= 4! if lg 2N,
2

hence

6(G) =1—1=2Np(A>0)-1=2Np(A<0)—-1 if 6(G) ¢ 2N
6(G) =1—1=2Np(d > 0) = 2Np(A < 0) if 6(G) € 2N.

Finally, apply Lemma 2.3 to the subgraph FP, of G to obtain the result as

stated. oO

Remark 2.5 If one counts additionally the eigenvalues \ = 0 of A(G), a

similar argument showsthat.

5(G) < 2Min[Ng(A > 0), Ne(A < 0)]—2 if 6(G) € 2N
5(G) < 2Min[Ng(A > 0), No(A < 0)]—1. if 6(G) ¢ QN.

This bound only improves the bound of Theorem 2.4 in case A = 0 is not an

eigenvalue of A(G). However, this improvement is at most 2 if 6(G) € 2N.

Remark 2.6 As the adjacency matrix of an undirected graph G is svmmet-

ric, its rank, calculated over R. is equal to the numberof nonzero eigenvalues.

re(G) = Nef{A > 0) + Ne(A < 0).

which implies that

2 Min[.VG(A > 0).NG(A < 0)] < ra(G).]
J

This shows that Theorem 2.4 improves Bound4.
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Example 2.7 To end, weillustrate that the two new bounds, Theorem 2.1
and Theorem 2.4, are not dominated by each other. We assume that the

parity of 6(G) is not known, and thus consider the weakest bound in each
theorem. Take for example the graph G with adjacency matrix:

010011
10100 0

0101041

A(G) = 001011
1003101

101141 0

By Theorem 2.1 with p = 2, one obtains that 6(G) < rz,(G) = 4, while

by Theorem 2.4, 6(G) < 2 Min[Ng(A > 0), Ne(A < 0)] = 2 Min{[3, 3] = 6,
(whereas 6(G) = 2).

On the other hand, the bound of Theorem 2.4 is in particular strong when the

difference between Ng(A > 0) and Ng(A < 0)is large. Consider for example
G = K,, the complete graph with n vertices, then 6(G) < 2 Min[Nc(A >

0), Ng(A < 0)] = 2 Min{1,n — 1] = 2, while rz,(G) =n-1ifn—1=p and
rz,(G) =n ifn —1#p, (whereas 6(G) = 1).

3 Boundsfor the diameterof a directed graph

The purpose of this section is to extend the upper bounds for undirected

graphs to directed graphs. Note that the diameter of a graph is defined for

a connected undirected graph. If we use directed graphs, then the diameter
is only defined for a strongly connected graph.

First of all, the definition of the Dilworth number V(G) can be extended

to directed graphs. Unfortunately, a bound similar to Bound 1 does not hold,

since there exist directed graphs G with n vertices for which 6(G) = 1-1

and V(G) = 1.
Secondly, in (6, p. 450]. Bound 2 is extended to strongly connected di-

rected graphs. However. this is onlv possible in case the in-degree of each

vertex equals the out-degree.

Before we extend Bound 3 to strongly connected directed graphs, we recall
the definition of the minimum polynomial of a matrix 4.

For an n-square matrix 4. the determinant det(4— AJ) is a polynomial @(A)

of degree 7 in A. which is knownas the characteristic polynomial of the matrix

A. By the Cavlev-Hamilton theorem. every n-square matrix 1 satisfies its

characteristic equation o(.4) = 0. The (unique) monique polynomial m(A) of

153

 



minimum degree s < n such that m(A) = 0is called the minimum polynomial
of A.

Theorem 3.1 Let G be a strongly connected directed graph with diameter
6(G). If s is the degree of the minimal polynomial of A(G) over R, then

6(G) <s-1.

Proof: Let m(A) = AS + as_1A"! +... + ap € RIA] be the minimum
polynomial of A(G), then A(G)satisfies the following matrix identity:

[A(G)]° + as,,[A(G)]* 1 +... +a92=0. («)

Observe that the entry in position (k,1) of A(G)™ is the numberof(vg, %)-
walks of length m between the vertices u,v, of G. Assuming 6(G) > s,

there exist two vertices v;,v; at distance d(v,;,v;) = s. The matrix A(G)*

has therefore a non-zero entry in position (2,7), whereas the corresponding

(i,j) entries of A(G)*-!, A(G)*-?,..., A(G), J are all zero. This contradicts
the matrix identity (*), hence 6(G) < s. Oo

The equality in the above boundis reached for each n > 3; for example if G

is the directed cycle C, with vertices v,,...,v, to which one additional arc

(v3, v1) is added, then 6(G) = 5-1.

Remark 3.2 It is known that a square matrix A is diagonalizable, if and only

if its minimal polynomial is m(A) = IT#_,(A — A;), where 1,...,Ax are the

distinct eigenvalues of A. Hence, for a diagonalizable matrix A, (in particular

for the symmetric adjacency matrix of any undirected graph), the number of
distinct eigenvalues is equal to the degree of its minimum polynomial. Thus,

for graphs with diagonalizable adjacency matrix, Bound 3 and Theorem 3.1
give the same result. However, Bound 3 is no longer correct in case G is

a directed graph with non diagonalizable adjacency matrix. The following
exampleillustrates this fact. Consider the graph G with adjacency matrix

_{ Cy Bs@=(% 2)
where C, is the adjacency matrix of the directed cycle Cy and B has all entries

0 except the (4,1)-th entry. The diameter of G is 6(G) = 7, while A(G) has
only & = 5 distinct eigenvalues, but the degree of the minimum polynomial

of A(G) is s = 8. Thus, Theorem 3.1 is an extension of Bound3.

Finally. we extend the results of Bound 4 and Theorem 2.1 to directed

graphs. Note that the bound of Theorem 2.4 cannot be extended to directed
graphs. as the eigenvalues of a non svmmetric adjacency matrix are not
necessarily real numbers.
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Theorem 3.3 Let G be a strongly connected directed graph with diameter

6(G). If the rank of G is calculated over R or Z, with p prime, then

5(G) < r(G).

Proof: Let P; be a shortest directed path in G with maximum length

!—1=6(G). The submatrix A(P,) of A(G)is of the form

010... 00 0

* 1... 0 0 0

* *« 0... 0 0 0

A(P,) = re .
* *« * 1... 0 1:0

* 1

* x 0

and has rank at least | — 1 (over R and Z,). Hence 6(G) =1-—1<r(P) <
r(G). oO

The above upper bound can beattained for all n > 3. For example, for n

odd, take G = P,, the undirected path with n vertices, then 6(P,) =n-1=

rr(P,) = 7z,(Pn). For n even, say n = 2m, consider the graph G with

adjacency matrix

Cr, %B

A(@) = ( B Cn )
where C),, is the adjacency matrix of the directed cycle C,, and the m x m

submatrix B has all entries 0 except the (m,1)-th entry. The graph G is

strongly connected and 6(G) = 2m — 1 =rp(G) = 1z,(G).

Remark 3.4 As in the case of undirected graphs (cf. remark 2.2), calcu-

lation of the rank r(G) over Z, is to be preferred over calculation of r(G)
over R. The following example illustrates that the difference between rp(G)

and rz,(G) can be arbitrarily large. Consider the directed graph G with n
vertices (n € 3N) and adjacency matrix

ABB... B

Bk 0... 0

A(G)=| B OR... 0 |],

B 0 0 Ah
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where K is the adjacency matrix of the complete graph K3 and the matrix
Bis

100

B=|,000].

100

The diameter of G is 6(G) = n/3 +1, the rank rg(G) = n but rz,(G) =
n—n/3.

Example 3.5 Finally, we illustrate that the bound 6(G) < s — is not
dominated by the bound 6(G) < r(G) andvice versa.

Consider the graph G with adjacency matrix

011100

00031041
110110

A(@) = 011001 7’

06001041
110110

which has minimum polynomial m(\) = A5 — 6A? — 8)? — 2A.
Theorem 3.1 states that 6(G) < s-—1= 5-1 = 4, while Theorem 3.3
improves this result to 6(G) < rz,(G) = 3, (whereas 6(G) = 2).
On the other hand, consider G with adjacency matrix

010 0

001 0

A(G) = 10041 |’

1000

which has minimum polynomial m(A) = A* — A- 1.
Theorem 3.3 implies 6(G) < rz,(G) = 4, and by Theorem 3.1 one obtains
6(G) <s—1=4-1=3, (whereas 6(G) = 3).
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