
Belgian Journal of Operations Research, Statistics and Computer Science Vol. 40 (1-2) 00

Pentomino exclusion and spanning.

IP-formulation, valid inequalities and facets

Frank Plastria

Department of Management Informatics

Research Group for Location and Distribution

Vrije Universiteit Brussel

Pleinlaan 2, B 1050 Brussels, Belgium

e-mail: Frank.PlastriaQ@vub.ac.be

January 24, 2001

Abstract

Pentomino exclusion asks to delete a minimum numberof cells

from a square grid forbidding placement of any pentomino shape

within the remaining cells, while pentomino spanning asks for find-

ing a minimum numberofdifferent disjoint pentominoes disallowing

placement of any additional pentomino. We discuss here IP formu-

lations for each of these two problems of recreational mathematics.

Several families of symmetry breaking constraints and valid inequali-

ties are derived, many of which are shown to be facet generating.

 



1 Introduction

One way of catching the attention of students and motivating them for the-

oretical developments they otherwise often feel too terse, is to make use of

examples from recreational mathematics without other direct practical ap-
plication. The area of combinatorial puzzles offers a quite rich collection of

such examples particularly suited to the illustration of integer programming,

and manytopics in this field as developed in e.g. [6]. This paper examines

two such problems which were recently posed as brain teasers in Optima, the
newsletter of the Mathematical Programming Society. The aim is to show

how they can illustrate modelling with binary variables, valid inequalities
and facets. Therefore the paper does not include computational results.

A pentomino (hexomino)is a connected union offive (six) square cells out
of a regular planar square grid. Two pentominoes are equivalent when they

have the same shape, i.e. when they can be obtained from each otherafter
applying any plane symmetry. There exist exactly 12 distinct pentomino

shapes (see table 1) and a well known puzzle consists in placing all these
within a 8 x 8 board,leaving 4 specific cells free, e.g. the corner ones, or the
center ones.

In [2] R.A.Bosch poses the following two lesser known problemsas brain
teasers:

Pentomino Exclusion A set of monominoes (cells) of the n x n board

excludes the pentominoes when they leave no room for any pentomino.
Whatis the smallest set excluding all pentominoes ? Devise an Integer

Programming (IP) formulation for this problem.

Pentomino Spanning A subset of the pentominoes spans a boardif its
members can be placed on the board so that they disallow any place-
ment of the remaining pentominoes. Devise an IP formulation for find-

ing the smallest set of pentominoes that spans the n x n board.

Forthe first problem [2] suggests a zero-onelinear programming formula-
tion, further improved by a few additional valid inequalities. In the first part

of this paper we extend the study of this formulation in several ways. On
the one hand weintroduce additional symmetry breaking constraints to limit
the feasible space in order to avoid equivalent solutions due to the symmetry
inherent in the problem. On the other hand we construct several families of

valid inequalities by inspecting subsets of the board which are hexominoes.

Wethen show that many (but notall) of these are facet generating.
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The second part of the paper examines the pentomino spanning problem
in a similar manner. It is first formulated as a zero-one linear programme,

symmetry breaking constraints are then introduced, and valid inequalities
are derived.

The last section suggests several possible extensions of the studied prob-
lems.

2 The pentomino exclusion problem

2.1 Definition and simple model

The following is a reformulation of the model described in [2].
Consider the set J of cells of the board, and with each cell i € I we

associate a binary variable z; € {0,1}, stating whether a monomino has

been placed on cell i (z; = 1) or not (z; = 0) . In thefirst case we say that
cell 7 is used, in the latter that cell i is free.

A placement P of a pentomino on the boardis a subset ofthe cells of the

board with a particular shape : P C J is connected and contains 5 cells. The
set of all possible pentomino placements is therefore a set P of subsets of J.

Pentominoes are connected shapes consisting of five squares. Barring

symmetry, twelve pentominoes exist, given in Table 1. First a capital letter
is given as a (tentative) name, which resembles the actual shape shown in the
second column. Next the table indicates (and is sorted on) their number of
forms( different symmetric forms the shape can take through some isometry

of the square (rotation and/or mirroring), i.e. 8 divided by the shape’s

number of symmetries), the dimensions of their rectangle-hull (h,w), the
numberof possible placements of each of their forms separately on an x n

board (n —h+1)(n — w +1), and the total number of placements of the
shape (the product of the two previous values). Note that we assume n > 5,
since some shapes do not fit on smaller boards.

A set of monominoes (or a value- setting of the z;) excludes the place-
ment P if at least one of the cells of P is used. The pentomino exclusion
problem now asks for the minimal number of monominoes which excludes all
pentomino placements.

This is directly formulated as an IP as follows:

min >_ 2; (1)
ie!

Soa,;2>1 WPEP (2)
ie¢P

z,€ {0,1} Viel (3)
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Table 1: list of all pentominoes
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name| Shape # forms box #plac/form #placements

R oP 8 |(3,3)| (n-2)? 8n?—32n+32

Y EP 8 (4,2) (n — 3)(n — 1) 8n? — 32n + 24

s FF 8 (4,2) (n — 3)(n — 1) 8n? — 32n + 24

L A, (4,2) (n — 3)(n — 1) 8n? — 32n + 24

B & 8 (3,2) (n—2)(n — 1) 8n? — 24n +16

Z Eh 4 (3,3) (n — 2)? 4n? — 16n + 16

W a 4 (3,3) (n — 2)? 4n? — 16n+ 16

tT 8 4 1|(33)} (n—2)? 4n?-16n416

v Be 4 |(3,3)| (n—2)? 4n?—16n-+16

Cc EB 4 (3,2) (n— 2)(n—1) 4n? - 12n+8

I E 2 (5,1) (n—4)n 2n? — 8n

xX ceh 1 (3,3) (n — 2)? n?—4n+4

Total 63n? — 240n + 196        
which can be viewed as an instance of the general set covering problem.

It follows that this formulation of the pentomino exclusion problem on

a nxn board (n > 5) has n? binary variables and 63n? ~ 240n + 196
constraints. For n = 8 we have 64 binary variables and 2308 constraints.

The LP relaxation of this 8 x 8 board case has an optimal solution given by
z, = 0.2 for all: € J, with objective value 12.8, very far from the integer
solution with value 24, given in [2], who also report that CPLEX ran out of
memory when attempting to solve the IP by standard branch and bound.

The large integrality gap may be seen as one reason forthis failure, the

other one being the fact that the objective value does not differentiate much
between all solutions: only 64 objective values are possible for the 2% ~
107° (unconstrained) solutions. It follows that there are very manysolutions
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yielding a same objective value, a property we will call ‘solution degeneracy’.
This information may also be exploited. The knowledge of integrality of

the optimal value allows the branch and bound process to fathom on the
threshold value of 1 less than the incumbent. Most commercial IP software
seem to allow for this improved fathomingtest, but not all. E.g. the Excel

Solver in its shrink-wrapped version does not, but allows to indicate a relative
‘tolerance’ only. This may also be exploited in a slightly less efficient way

as follows. Evidently a simple checkerboard pattern of alternating used and
free cells is a feasible solution with objective value [=] ( if n is odd we, of
course, prefer to have more free cells than used ones) and is therefore an
upper bound to the optimal value — better bounds may be found, e.g. the

2 x 2 free square pattern given in [2] with (optimal) value 24 for n = 8. Any

optimal value being an integer it is at least better by a factor of 1/ [=], a
value that may therefore be used as relative tolerance.

Therefore two avenues of improvement should be studied aimed at im-
proving on both levels. We first investigate how to reduce the numberof

equivalent solutions by symmetry breaking. Then we study how to reduce

the integrality gap, ie. tighten the description of the feasible set by way of
additional valid inequalities.

2.2 Symmetry breaking

A square board possesses a symmetry group of 8 elements, e.g. generated

by the horizontal, vertical and diagonal flips. Therefore to any configuration
there possibly are up to 8 symmetrical configurations which are essentially

equivalent. An evident step in reducing the solution degeneracy is to intro-
duce symmetry breaking constraints which allow for at least one representant
configuration, but rule out as unfeasible all its symmetrical ones.

In [2] the following symmetry breaking constraints are suggested: there
should beat least as many chosencells in the upper(left) halfsquare than in

the lower (right) half. Indeed, if this were not the case one (or two) corre-

sponding flip constructs an equivalent solution satisfying these constraints.
These constraints are easily written as follows, using momentarily the for

standard boards more common (but often cumbersome) row-column nota-
tion J = {(r,c) |1<r,c<n}, and 2) is written shortly as zy¢.

{ w
i
t lon

do tre 2
lc=l r=

n

S> Lre (4)
jc=l

M
s
:

r " = w
a



LJ on

Site > Oo Vare (5)
clr=1 c=[$] r=1

In fact these constraints do not carry out the full symmetry breaking job,
and this for two reasons :

e Constraints (4) and (5) only break symmetry for the horizontal and
vertical reflexion, which generate only half of the square’s symmetry

group. To break the full symmetry group, one should add a constraint
to break one more (and last) generator of the group, which leaves the

upper andleft halfboards invariant: the reflexion w.r.t. the second

diagonal (NW-SE). So we propose addition of the following constraint
which calls for at least as many used cells in the NE triangle than in
the SW triangle.

n c-l n-l on

>> Ire 2 > > Tre (6)
e=2r=1 c1 r=c+1

e These constraints do not eliminate one of both symmetric forms for

those nonsymmetric configurations containing as many chosencells in
the upper (left) halfsquare as in the lower (right) half, or in the NE
triangle as in the SW triangle. Admittedly there shouldn’t be too many

of them ...

It should be possible to construct more complicated constraints to dis-

criminate even these cases, but we feel their contribution will be so
marginal that they will probably be of no use.

2.3. Valid inequalities

We now move to the determination of valid inequalities. Several families

of such can be obtained by considering hexomino subsets of the board as
described below.

2.3.1 2.x 3 subrectangle

In [2] a family of valid inequalities is suggested, stating that in every 2 x

3 subrectangle of the square at least 2 cells are used. Inclusion of these
inequalities — together with the two symmetry breaking constraints (4) and

(5) — resulted in an IP model, solvable by CPLEX after enumeration of 5605
nodes. That these constraints are quite effective may already be seen from
the LP relaxation, which has optimal value 21 when n = 8, a quite important
improvement over the value 12.8 found without them.

b
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The reason behind the validity of these constraints may be seen in two
ways. Consider any 2 x 3 subrectangle H.

e Deleting (using) any single cell of H still leaves room for a (B shaped)
pentomino, which is unfeasible. Therefore in any case a second cell of
H should be used (at least).

e Consider all pentomino placements included in H. There are 6 of them,

all B shaped (see table 1), each one being obtained by deleting onecell

from H. To each corresponds an exclusion constraint (2), which may
be written as the family

Vred: > z,>1
ieH\{r}

Which yields by summation over all r € H

> 5z, > 6
ren

and after division by 5 and rounding up theright hand side 6/5 to the

nearest integer 2 one obtains the sought valid inequality

>. 2, >2 (7)
ren

This second derivation clearly shows that constraint (7) is stronger than

the combined effect of the 6 exclusion constraints. In fact it is even strictly

stronger than each of them separately : using z, < 1 for each choice ofr € H,

(7) implies immediately each of the 6 corresponding exclusion constraints.

Since any shape B or C pentominois evidently included in a 2 x 3 sub-
rectangle, it follows that when constraints (7) are added to the formulation
there is no need anymoreto also include those constraints (2) excluding any

of the FA or EE pentomino placements.

In other words, the 12n? — 36n + 24 FA and EE placements excluding con-

straints are advantageously replaced by 2n? — 6n + 4 (2 x 3)-subrectangle
constraints. The resulting IP formulation will not only be combinatorially
equivalent to the original formulation, but even have a strictly stronger con-
tinuous relaxation.

2.3.2 The &-hexomino

Consider now the hexominoof shape Eb which we will call the &-hexomino,
a placement of which we denote by H.
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Figure 1: Deriving the &-hexomino constraint

e Deleting any of the 5 border cells (all except the ain Fa) from H yields

a pentomino of either shape chp fh or FA while H’s kernel cell k
(indicated as =) disconnects H when deleted. Therefore in any feasible

configuration, when this kernel cell is free, then at least two of the
border cells must be used.

In algebraic terms, for each border cell of H we have an exclusion
constraint (2),

VRE H\{k}: > aj2>1
i€H\{h}

which yields by summation overall h € H \ {k}

>, 421+ 5a > 5.
heH\{k}

In case z, = 0 this yields Vaeme} 42a 2 5 and after division by 4

and rounding up the right hand side 5/4 to the nearest integer 2 one
obtains

> Zp, > 2. (8)
he H\{k}

The inequality (8) may, however only be invoked under condition that

zx, = 0, and should be inoperative when z, = 1. This is obtained by way of
the following constraint

do th + 22% > 2 (9)
Ac H\{k}



which is most easily derived from the graph in figure 1 in which the combi-
nations of values which are to remain feasible are shown as e’s.

This yields a valid inequality for each of the 4(n — 2)? possible placements
of a &-hexomino on the board. The derivation above, and the fact that a

strict upper rounding was performed suggests that we have derived genuine
cutting planes. This is strongly emphasized in Section 2.4 whereit is shown
that all the derived valid inequalities are in fact facet generating.

We may therefore expect that adding these constraints will improve the
LP approximation bounds, and should decrease the size of the branch and

bound tree. It turns out that the LP-relaxation optimal value for n = 8

remains equal to 21, so no further gain is observed at the highest tree-level
over what was achieved by the (2 x 3)-rectangle constraints.

These &-hexomino constraints also do not seem to render some of the

pentomino-exclusion constraints redundant.

2.3.3 4- and 3-border hexominoes

The valid inequality derived in previous section may now easily be generalised

to other hexomino shapes.

A border cell of some polyominois any of its cells which can be deleted
without disconnecting. In other words, deleting a border cell from a poly-
ominostill yields a polyomino. Non-bordercells will be called center cells.

Let us call a p-border heromino one which has exactly p border cells.

Such a hexomino mayalso be defined as being the union of exactly p distinct
placements of pentominoes.

Observe that the (2 x 3) rectangle is the only 6-border hexomino, while

the &-hexomino is the only 5-border one. Of the 35 hexominoes 8 are 4
border hexominoes (see table 2) and 12 are 3-border hexominoes(see table
3). In these tables the kernel cells are indicated by (the dots are for later
use). All of the 13 other remaining hexominoes are 2-border.

Consider any p-border hexomino placement H (p = 4,3), with set of

border cells B and set of kernel cells K = H\ B. Note that #H = 6,
#B=p, #1\H =n?—-6and #K =6-p.

Similar to previous section we may now say that whenall cells of K are
free then at least two of all border cells must be used. Indeed in case all of
K remains free, and using only one border cell of H leaves a full pentomino

free, which is not feasible. In other words, if Vicn ze = O then Yyep ry > 2,

which, as in previous section, is expressed by the constraint

So my+2 > 22 (10)
beB kek

 



Table 2: list of all 4-border hexominoes

 

 

 

 

 

 

 

 

 

 

 

 

Facet generating

Shape # forms box #plac/form #placements

BB 8 (3,3) (n — 2)? 8n? — 32n + 32

ER 8 (4,2) (n—3)(n—1)| 8n? —32n+ 24

cas 4 (3,3) (n — 2)? 4n? — 16n + 16

cats 4 (4,2) (n-—3)(n-1) 4n?~—16n4+12

CEP 4 (4,2) (n—3)(n-1)| 4n?—16n+4+12

ce 4 (4,3) (n—-3)(n-2) 4n? — 20n + 24

ce 4 (4,3) (n -3)(n—2) 4n? — 20n + 24
Total 36n? — 152n + 144

Not facet generating

cam 8 (3,3) (n — 2)? 8n? — 32n 4+ 32
Total 8n* — 32n + 32        

Note that for p = 6 and p = 5 these constraints are exactly the (2 x 3)-
rectangle and &-hexominocontraints, since K = @ and K = {k}respectively.

Table 2 shows that we have 44n? — 184n + 176 such 4-border hexomino

constraints, and according to table 3 there are 84n? — 400n + 432 3-border
constraints. For n = 8 this means 1520 4-border and 2608 3-border hexomino

constraints.

In the section 2.4 it is shown that the 4-border and 3-border hexominoes
in the top part of these tables yield constraints which are facet generating.

2.3.4 2-border hexominoes

Whenonetries to apply the technique of previous section to some 2-border

hexomino, the resulting constraint turns out to be exactly the sum of the

two constraints of type (2) corresponding to the two pentominoes included
in the 2-border hexomino.

Hence 2-border constraints are of no interest, since they would simply be
redundant.

 



Table 3: list of all 3-border hexominoes
Facet generating
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shape # forms box #plac/form #placements

Ching 8 (4,3) (n—3)(n-2) 8n?—40n 4.48

ca (4,3) (n—3)(n—2) 8n? — 40n 4 48

cg, 8 (4,3) (n-3)(n-—2) 8n? — 40n + 48

“i 8 (4,3) (n -3)(n-2) 8n? — 40n + 48

claleners 8 (5,2) (n—4)(n—1) 8n? — 40n+ 32

cma 4 (4,3) (n—3)(n-2) 4n? —20n+ 24

Cole 4 (5,2) (n-—4)(n-—1)| 4n? — 20n+ 16
Total 48n? — 240n + 264

Not facet generating

He 8 (3,3) (n — 2)? 8n? — 32n + 32

Clattie 8 (4,2) (n—3)(n—1)| 8n? —32n+24

Cm, 8 (4,3) (n—3)(n—2) 8n?—40n+ 48

cl 8 (4,3) (n—3)(n—2) 8n? — 40n + 48

ae 4 |(33)| (n—2)2 4n?—16n+16
Total 36n*? — 160n + 168        

2.4 Facets

Let us call the convex hull of all pure 0-1 feasible points of the pentomino-

exclusion problem given by (1)-(3) the pentomino-ezclusion polytope. It turns

out that many of the defining and valid inequalities derived in previous sec-
tion in fact define facets of this polytope.

Indeed the classica] study of facets for the general covering polytope by
Balas and Ng[1] gives all the results necessary to obtain the following con-
clusions.

Theorem 1

The following properties hold for the pentomino-ezclusion polytope:

1. It is fully dimensional, i.e. of dimension n?.



2. All the defining pentomino-erclusion (or covering) constraints (2), ex-
cept B and C, are facet generating.

8. The valid inequalities (7), (9) and (10), respectively generated by the
(2 x 3)-rectangle , the &-heromino, the seven 4-border hezominoes in
the top-part of table 2 and the seven $-border herominoes in the top-part
of Table § are the only facet generating p-border heromino-constraints.

Proof

The first statement follows from the fact that at least 2 (in fact exactly
5) variables z; appear in every covering constraint (2) (see [1], 1., p58).

Accordingto [1], 5., p59, a covering constraint (2) Diep z; > 1 (P € P)
defines a facet if and only if two properties hold: first, that no other P’ € P
exists with P’ C P, which is evident here since all P € P have the same

- cardinality, and secondly, that for each k ¢ P there exists some k’ € P which

lies in every P' € P with k € P’ Cc PU{k}. In our context this last property
means that the hexomino obtained by adding any additional cell to P can

be disconnected by taking out just one other cell. For most pentominoes
this particular disconnecting cell may be chosen independently of the added
cell, as shown by a dot in table 1. For the W pentomino a disconnecting

cell always exists, but not a fixed one. For EA and EB one may obtain a full
2 x 3-rectangle by adding just one cell, which cannot be disconnected by

deletion of a single cell.

All p-border hexomino-constraints have coefficients in {0, 1,2}, hence are
of the particular type studied in [1], and can therefore be tested for being
facet-defining thanks to their theorem 2.6. We restate this theorem below

using our notation, i.e. H for some hexomino, K C its kernel and B =

H \ K its border, and discuss the implication of each part to our particular
pentomino setting.

1. H is minimal,i.e.

eH=uU{PeP|PcH}andK=Ky:=n{ PeP|PcH},
both of which evidently hold for all hexominos H.

e if H’ c H and Ky = Ky then H' = H, which is evident also in

our setting, since the only strict subsets of a hexomino H large

enough to hold a pentominoareitself pentominoes P, for which

Kp = P which can never equal Ky = K.

 



2. A pair {j, j’} C B is called a 2-cover of H ifevery P c H meets {j, j’}.
The second condition now states that the 2-cover graph on B must

contain an odd cycle in each of its components.

In our setting every pair in B (such exist as soon as p > 2) is evidently
a 2-cover, so the corresponding 2-cover graph is a complete graph on p
nodes, which contains an odd cycle as soon as p > 3.

3. For some k ¢ H let T(k) = { PE P|kE PC Hu {k} }. Thelast
condition states that for every k ¢ H with nonvoid T(k)

e either some k’ € K belongs to all P € T(k)

e or somepair in B meets every P € T(k) and every PC H

Observe in oursetting that the only k ¢ H with nonvoid T(k) are the
neighbourcells of H, i.e. which have at least one edge in common with

H,or,in still other words, addition of which to H yields a heptomino.
Hence we may translate the condition as follows:

e In every heptomino containing H all subpentominos can be ex-

cluded by way of either one kernel cell or two border cells of H.

This last property is easily checked. E.g. for the (2 x 3)-rectangle, the
&-hexomino and thefirst four 4-border hexominoes in the top-part of

table 2, the fixed pairs of bordercells indicated by a dot respectively in

FA , 10 and in table 2 will disconnect any heptomino obtained by
adding one neighbourcell. For the other hexominoes in the top-part
of tables 2 and 3 the property can also be checked, although not with
a fixed pair in B.

For each hexomino in the bottom-part if these tables a x indicates a
neighbourcell which violates the property, showing them not to be
facet defining.

A direct proof, using only elementary notions of linear algebra, of some
of the above results can be foundin [5].

2.5 Final observation

Following up on an earlier version of this work [5] Glerup and Larsen [3] have
obtained many moreresults. They observed that every n-border hexomino
constraint (n > 2) is combinatorially equivalent to the set of pentomino
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exclusion constraints for those pentomino placements that are covered byit.
They study what other constraints (involving larger subsets of the board)

also have this property, and how to exploit this in order to obtain the most
economical formulations in terms of numberof constraints. This enabled the

solution of the pentomino exclusion problem on many rectangular and torus
shaped boards, of dimensions for which the total numberof constraints (even
whenrestricted to the facet-generating ones) was prohibitive.

3 The pentomino spanning problem

3.1 Introduction

Let us define a pentomino-shape (often just called a pentomino) as the set
of all its placements,i.e. as a set of subsets of the board.

Placing several pentominoes on the board implicitly means that the cor-

responding placements are pairwise disjoint subsets of the board.

A pentomino(-shape) is excludedif it cannot be added to the board with-
out overlapping other already placed pentominoes. Therefore a set of place-

ments of pentominoes (or configuration) spans the board when it cannot be
extended to include more pentominoes.

3.2 A general set spanning problem and an IP formu-

lation

Formalizing these observations we define the following more general problem.

Considera finite set J (the board) and a set P of subsets of J (the place-
ments). P is partitioned into a set S of shapes , where each S € S consists
of the different possible placements of shape S.

A configuration is a set of placements, at most one for each shape, which

are pairwise disjoint.
A configuration spans the board if it is maximal for inclusion, i.e. there

is no configuration that contains additional placements.
The general set spanning problem is to find a spanning configuration of

minimum size (cardinality).

We introduce a binary variable yp € {0,1} for each placement P € P,

which indicates whether P is an element (yp = 1) or not (yp = 0) of the
configuration.

 



Clearly the objective is to minimize the number of placements in the
configuration, i.e.

min )> yp (11)
Pep

To be feasible the configuration must satisfy two conditions:

1. For each shape the configuration contains at most one of its
placements

Yo yp <1 foreach SES (12)
PEs

in other words: the variables yp (P € S) form a special ordered set (of
type 1) for each SES.

2. The placements are pairwise disjoint
which maybe restated as: every point i € J of the board may be covered

at most once by the placements. This is expressed by the inequalities

>> yp <1 foreachiel (13)
PEC,

where C; = {PEP | ie P}.

Finally we must also express that the configuration should span the

board. In other words we must express as constraints that ‘if a shape S
is not represented in the configuration, then none of its placements can be

added toit’.

First note that for any shape S the expression pes yp can take on only

values 1 or 0, meaning that S is represented in the configuration (has been
placed), or not, respectively. We therefore have implicit binary variables (see

(4)
zs= D0 yp

Pes

stating whether S is placed or not.
Secondly, observe similarly for each 1 € J we have an implicit binary

variable

i= > YP
PEC,

which states whether the point i is covered by the configuration, or not.
What must be expressed now is the following property:

for any S € S and any PES:

if S has not been placed,
then not all i € P may be uncovered
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or,

if all i € P are uncovered (Vi € P: x; = 0),
then S must have been placed (elsewhere) (zs = 1).

This is expressed by the logical implication constraint (see (4])

> Tj > 1- Zs

ieP

The correctness of this constraint can be checked also as follows : in case

zs = 0 we obtain the constraints used in [2] to prohibit the placement P,
while in case zs = 1 the inequality becomes redundant.

In other words, and in termsof the original variables yp, the spanning
property is expressed by the constraint set

XY ye+ DS yq21 foreach SE Sand PES (14)
i€P QEC; Qes

This completes the IP formulation, consisting of (11), (12), (13), (14).

3.3. Observation

It must be observed that, similarly to minimum covering problems, usually

there will be many optimal solutions. This is a consequenceof the fact that

at the one hand the objective only counts the number of used placements,
and so can only take on values between 0 and #S, while at the other hand

the numberofdifferent configurations is of much higher order in s = #S —
when all S have similar cardinality p, and only taking the first constraints

into account we may have O(p*) configurations. It follows that the same
objective value will usually appear for large numbers of configurations.

For this reason B&B methods will probably work badly on this standard

formulation. It is therefore necessary to devise and include additional con-
Straints aimed at reducing this degeneracy. It is not clear howthis might
be achieved on the general problem described above, but for more specific
instances, like the pentomino on a square board case several things may be
done as explained in the section 3.5.

3.4 The pentomino spanning problem in particular

According to Table 1 the formulation developed above contains 63n? —240n+
196 binary variables grouped into 12 sets (shapes) out of which at most one
may be chosen. Therefore an upper bound on the total numberof feasible



solutions is n*4 (in fact exactly the product of all values (+1) in the last
column of the Table): just disregard any of the non-SOSconstraints.

The total numberof constraints are:

# Forms / shape type (12) 12
Disjointness type (13) n?
Spanning type (14) 63n? — 240n + 196

In other wordsfor the standard 8 x 8 board we have 2308 binary variables

and 2384 constraints.

 

     

3.5 Symmetry breaking constraints

An important way of limiting the numberof equivalent solutions is to take

symmetry into account. Evidently any solution yields equivalent solutions

by any symmetry of the square. What should be doneis to accept only one

representative among these symmetric solutions. A way of obtaining this
reduction is as follows.

Consider a shape S which is placed in the configuration, and select one

particular symmetric form of it. By applying symmetries to the square board
it is always possible to bring this particular shape S in the chosen position.

Therefore accept only this particular form to appear, thus forbiddingall other
equivalent symmetric solutions.

Of course this reduces most when S has many forms. Therefore we prefer-

ably apply this method to the shapes with 8 forms,if available.

So let us numberthe shapesin the table from S,; to S;2, sorted on number

of forms (and as a second key the number of placements) — Table 1 was
already sorted this way. We want to make use of the first shape, i.e. the S;
(1 <i < 12) which is placed (zs, = 1), but none of the previous ones has

been placed (zs, = 0 for all j = 1,...,7—1). Andfor this shape S; we accept

only oneofits forms (e.g. the one shown in the table), i.e. we impose that

all other forms of this shape may not be placed. Denoting by S} the set of
all placements of the chosen form we have therefore the following constraints

‘if zs, = 1 and zs, = 0 for all j = 1,...,2—1,

then yp = 0 for all P € S; \ Sy’
or (see [4))

i-1
yp <1—25,+ S025, for alli=1,...,12and Pe S;\S}

j=l

or, after plugging in the expressions of the zs = Diges Yq :

t-1

yp+ >. yo- >. do ¥q <1 foralli=l,...,12andPe€S,\ St (15)
QeS, J=1 QES;
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The total number of symmetry breaking constraints is 51n? — 194n + 159,

which is the table’s last column sum minusthe one-to-last column sum. For

n = 8 this leads to an extra 1935 constraints.

This number may be reduced to only 12, by replacing the full set for
each shape by one constraint obtained after summingall left hand sides of

all constraints of type (15) for every S € S. However, one may expect these
relaxed symmetry breaking constraints to be much less performant ...

Note that this symmetry breaking is slightly incomplete. Indeed, when

none of the shapes with 8 forms (i = 1,...,5) have been placed in the

configuration, only the symmetries ofthe first shape placed, (Sg = Z = “Hh
will be broken, and this does not represent the full symmetry group of the

square.

Indeed, choosing for S§ all the placements of the form Hh, this still allows

any feasible solution to be rotated over an angle of 7, which may yield an

equivalent feasible solution. Excluding this calls for a modification of the
symmetry breaking constraints for i = 6, expressing that additionally among

the 4 forms of the next shape (S7 = W = GP ) only 2 are allowed excluding

their 7 turned forms,e.g. allow only the two forms EP and h . This means
we need constraints that impose that as soon as none of the shapes with full

symmetry group (1,...,5) are used, then only the placements of forms aon

Hand “th are allowed for shapes Z and W.

Defining S7 as the set of all placements of forms uP and Hh , we may
write the additional constraints

5

yp Ss (1 - 25.) + (1 - z5,) + >_ 2s, for all Pe€ S7\ 57

j=l

Many more similar symmetry breaking constraints may be written, e.g.
when shape Z is the first to be used, but W is not used, or when W is the
first shape to be used, etc. These are left to the reader.

It must be clear, however, that these additional constraints will often not

be very powerful, since they only have any chance to be activated under very
stringent conditions: when many of the shapes are not used. And this will
happen only on smaller boards, where the problem tends to be easier, so
probably the corresponding problem instance will be already easily solvable

without them.
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3.5.1. Valid inequalities

For each valid inequality of p-border type (p = 6,5, 4,3) for the pentomino-
exclusion problem, we may deduce a corresponding valid inequality for the
pentomino spanning problem,as follows.

Consider some p-border hexomino placement H with border B and kernel

K =H \ B.Let us denote by S(H) the set of pentomino shapes of which a
placement is contained in H,i.e.

S(H) ={S€S|abeE B: H\ {b} € S$}

We can then state the following property which should hold for any feasible

configuration:

If none of the (placements of the) shapes in S(#)is used,
then the p-border constraint (10) corresponding to H must hold.

Indeed,if this is not true, then H would contain a ’hole” large enough to
fit in a pentomino of some shape in S(#)thatis still free, which is forbidden

for spanning configurations.
In other words we must have the implication:

If Yses(Hy 2s = 0,
then we must have yep 2% +2 nex Zh = 2.

and this may be expressed in a similar way as shown in Figure 1 by the
constraint

Somt+2S>a,+2 SS 2522 (16)
beB heK SES(H)

or, using the definition of the implicit variables z; and zs,

~~ DV wt2>) Vo wt+2 Do dup 22 (17)
bEeB PEC, heK PEC, SES(H) PES

This leads to a quite large number of supplementary constraints.

4 Final observations

4.1 Exclusion vs spanning

Note that the pentominoexclusion problem in[2] is of a quite different nature

than the spanning problem.

43

 



Inthe exclusion problem the set of shapes which may be used to block
(the monominoes) and the set of shapes to be blocked (the pentominoes) are
fixed in advance, and even disjoint (but this latter can easily belifted in a

generalized statement). In the spanning problem these sets are one and the
same and it is the solution that has to make the choice which shapes are
blocking and which are blocked, implying many more decisions to take.

This explains why the spanning problem looks (and most probably is) so
much harder than the exclusion problem.

4.2 Generalisations

4.2.1 Polyominoes

Evidently, the pentomino exclusion and spanning problemsdiscussed here are
directly generalisable, together with both the symmetry breaking constraints
and the valid inequalities to higher order polyominoes and other shapes of

boards.

4.2.2 Generalised exclusion

Also general versions of the exclusion problem can easily be defined, in which
the board is an abstract set, and the excluded placements are just general
subsets.

One mayalso generalise the individual cells used for exclusion to a fixed

set of subsets, as being the blocks which are allowed to be used in order to

exclude the forbidden ones. This was done in [3] for pentomino exclusion by
dominoes.

4.3. Further generalisations of spanning

One might wish to consider spanning problemsallowing for more than one
placement of some shape.

The temptation to limit the numberof such placements by changing the
right hand side of the constraints (12) must be resisted. Indeed it is only
whenthis right hand side equals 1 that the expressions }°pes yp are implicit

binary variables. But when these are allowed to take on other values than 0
or 1, then our spanning constraints (14) are incorrect.

There is in fact a quite simple way to allow for more than one placement
of some shape. Observe that the statement of the general spanning problem
in section 3.2 allows for different shapes with common placements. Therefore

it also allows for several copies of a same shape, which is exactly what was
sought here.



Observe, however, that this introduces even more degeneracy in the prob-
lem, which may be handled by some new symmetry breaking constraints, now

in order to break the permutation symmetry between the copies of one and

the same shape. This type of symmetry breaking was already discussed in
[4].
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