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Abstract.

Random selection of strategies greatly extends the opportunity to develop optimum
strategies for discrete two-person games. A consequence, however, is that the payoffs
received by the players can have probability distributions, which complicates the determin-
ation of optimum strategies. This problem can be greatly simplified by only considering
some reasonable type of « representative value » for a distribution. The expected-value
approach uses the distribution mean. The distribution median is another reasonable
possibility. For the common situation where the players behave competitively, a form
of game theory is developed by applying the median approach to the payoffs for each
player. This form of median game theory has very desirable properties with respect to
effort needed for application and, compared to expected-value game theory, strong
advantages with respect to generality of application. For example, the payoffs can be
of a very general nature. A player has an optimum strategy when the game is one
player median competitive (OPMC) for him. A game is median competitive when it
is OPMC for both players. Competitive games are an important subclass of median
competitive games wherein nondecreasing desitability of the payoffs for one player
corresponds to nonincreasing desirability of the payoffs to the other player. This paper
contains an introduction to median game theory and examples of competitive, OPMC for
one player, and median competitive games.

Introduction and discussion.

Two players, each with choice among a finite number of stategies, is the
situation considered. Each player selects one of his strategies, separately and
independently of the choice made by the other player. A pair of payoffs, one
to each player, is associated with every possible combination of a strategy
choice by each player. These pairs of payoffs are the possible outcomes for
the game, Statement of the possible payoffs to a player in matrix form is con-
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venient, whete the rows represent his strategies and the columns the strategies
of the other player. Both of the payoff matrices are known to the two players.

A player is said to use a mixed strategy when he assigns probabilities
(sum to uniy) to his possible strategies and randomly selects the strategy to
be used according to these probabilities. The payoff to each player has a pro-
bability distribution (determined by the probabilities that the players assign)
when at least one player selects his strategy randomly. Knowledge of the pro-
bability distributions of the payoffs is the maximum information that possibly
can be obtained about the payoffs occurring for a game.

Determination of optimum mixed strategies is a basic problem of game
theory. That is, the problem is to optimally choose the probabilities for the
mixed strategies, where unit probabilities are possible. Unfortunately, many
complications cloud this choice when all the properties of distributions receive
consideration. The problem is greatly simplified, however, when consideration
is limited to some kind of « representative value » for a distribution. The
distribution mean (expected payoff to the player) is used as the representative
value in the well established expected-value approach. Another reasonable way

to represent a distribution of payoffs is by its median, and this is the basis
for median game theory.

One form of median game theory is that where the payoff matrices are
considered separately. The payoffs are ranked according to increasing desir-
ability within each matrix and the situation is such that the resulting rankings
are the same for both players (that is, the players are in agreement on the
rankings). The median approach is applied to the payoffs for the players (with
respect to the orderings). This form of median game theory receives virtually
all the consideration in this paper. Another form, based on rankings of out-
comes, is being developed. However, all publications to date are concerned
with rankings of payoffs,

A very desirable feature of median game theory is that the payoff
«values » can be of an exceedingly general nature, Some or all of the payoffs
need not even be numbers (for example, might designate categories). A
ranking of payoffs, within a matrix, should virtually always be possible (for
example, on a paired comparison basis). However, the players are required
to agree on the rankings.

The payoffs are required to be numbers (ordinarily expressed in the
same unit) for expected-value game theory., Moreover these numbers are
required to satisfy the arithmetical operations. This excludes for example, the
important situation where the payoff values in one or both matrices are ranks.
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Another very desirable feature of the median game theory considered
here concerns the necessity for accurate evaluation of payoffs. Knowledge of
the relative ranking within each matrix, combined with accurately detemined
« values » for at most two payoffs in each matrix (whose locations are iden-
tified by the rankings) is sufficient for application. Ordinarily, all the payoffs
need to be accurately evaluated for expected-value game theory. The effort
required for evaluating payoffs can be a very important practical consideration
(ref. 1). For example, suppose that each player has 400 strategies, which is
not unusually large for meaningful practical situations. Then, the number of
combinations of strategies is 160.000. Obtaining enough information to rank
160.000 payoffs usually requires a small fraction of the effort needed to
accurately evaluate 160.000 payoffs.

An important class of games is that in which the players behave compe-
titively toward each other. Then, the concepts of a player acting protectively,
or vindictively, are helpful in determination of optimum strategies (ref. 2).
A protective player attempts to maximize the payoff he receives, regardless
of the payoff to the other player. A vindictive player tries to minimize the
payoff to the other player, without consideration of his own payoff. A (mixed)
strategy whereby a player can be simultaneously protective and vindictive is.
an optimum strategy for him when the behavior is competitive.

The competitive viewpoint is adopted for the median game theory based
on rankings of payoffs. An optimum solution occurs for a player if and only
if the game is one-player-median-competitive [OPMC]. A game is median
competitive if and only if it is OPMC for both players. ldentification of
OPMC games is considered in ref. 3. Special cases of median competitive
games (competitive games, or generated by a competitive game) are identified
in ref. 2. A game is competitive when its outcomes can be arranged in sequence
so that the payoffs to one player have nondecreasing desirability and also
the payoffs to the other player have nonincreasing desirability.

The situation of competitive behavior also is that considered for expected-
value game theory (for example, see ref. 4). Optimum solutions, of a mini-
max nature, occur for games that satisfy a zero-sum condition (sum of payoffs
is zero for all strategy combinations) or some mild modifications of this con-
dition. Such games are a special case of competitive games and a very small
subclass of the median competitive games.

Thus, this median game theory has strong application advantages over
expected-value game theory, with respect to both generality of application and
effort required for application.
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Some results for median game theory are stated in the next section. This
is followed by some examples of games that are competitive, generated by a
competitive game, OPMC for one player only, and median competitive but
not generated by a competitive game,

Some median results.

For simplicity in stating results, the desirability of a payoff and the
«value » of a payoff are considered to be the same. The referenced develop-
ments of results are stated in terms of payoff values, with those values being
numbers. However, it is easily scen that these results apply to situations where
relative desirability can be determined among the payoffs for each player (and
also the players agree on the resulting orderings).

The players are called T and IT and, for standardization, the payoff to
player T is listed first in a game outcome. In all cases : there is a largest value
Py (Py) in the payoff matrix for player I (II) such that, when acting protec-
tively, he can assure at least this payoff with probability at least 1,/2. Also,
there is a smallest value P*; (P’};) in the matrix for player I (II) such that
vindictive player II (I) can assure, with probability at least 1/2, that player
I (I} receives at most this payoff. The relations P’y < Py and Py < Py
hold, with equality possible. Detailed methods for determining Py, Py, P/,
P’y, also protective median optimum strategies and vindictive median optimum
strategies, are given in refs, 2 and 3 (with the method of ref. 3 usually being
preferable). An outline of the method in ref. 3 is given in the Appendix.

Games occur such that a player can be simultaneously protective and
vindictive. This happens if and only if the game is OPMC for this player.
Mare specifically, let set T (I) be those outcomes where the payoff to
player 1 (II) is at least P; (Py) and also the payoff to player II (I) is at most
Py (Pf). A game is OPMC for player I (II) if and only if he can assure,
with probability at least 1/2, that an outcome of set I (IT) occurs. To deter-
mine whether a game is OPMC for player I (II), first mark the payoffs in
his matrix that belong to the outcomes of set I (II). Then form a new payoff
matrix for player T (IT) by replacing the marked payoffs of his matrix with
unity and the unmarked payoffs with zero. Consider the resulting matrix of
ones and zeroes to be the payoff matrix for player 1 (II) in a zero-sum game
with an expected-value basis and solve for the value of the game to player
I (II). The situation is OPMC for player I (IT) if and only if this game value
is at least 1/2. When this is the case an optimum strategy for player I (IT)
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in solution of this zero-sum game is median optimum for him. Some further
discussion is given in the Appendix. A game is median competitve if and
only if it is OPMC for both players. The OPMC results are given in ref. 3.

For standardization purposes, a game is considered to be competitive if
and only if the totality of its cutcomes can be arranged in a sequence so that
the payoff values for player I are nondecreasing and also the payoff values
to player II are nonincreasing. An important special case is that where the
payoffs to player I are strictly monotonic increasing and simultaneously the
payoffs to player II are strictly monotonic decreasing.

Now, consider some new material on OPMC games that is given in this
paper. On OPMC game for player I (IT) is generated by a competitive game
when there exists a sequence arrangement of the totality of outcomes such
that : First, the payoffs of player I (II) in outcomes that, in the sequence,
are above (below) any outcome with payoff P; (P;) have values at least
(most) equal to P; (Py), and the payoffs in outcomes below {above) any out-
come with payoff Py (Py) are at most (least) equal to Py (Pyp). Second, also the
payoffs of player 1I (I) in outcomes above (below) any outcome with payoff
P’y (P7y) are at most (least) equal to P’y (P7), and the payoffs in outcomes
below (above) any outcome with payoff P, (P’;) are at least (most) equal
to P’y (P7). A median competitive game is generated by a competitive game
if and only if it is OPMC generated by a competitive game for both players,
which is a case considered in ref. 2,

Competitive games have desirable features when the possibility of coope-
ration between the players is considered, and some of the median competitive
games that are generated by competitive games also have these desirable
features (ref. 5). In addition, interpretation of the implications of an optimum
median solution is greatly simplificd when the game is competitive, and some-
what simplified when the median competitive situation was generated by a
competitive game. As will be seen from the examples, a game that is OPMC
for a player, or both players, is not necessarily generated by a competitive
game.

To summarize, for the form of median game theory considered, an opti-
mum solution exists for a player if and only if the game is OPMC for him,
A procedure is outlined for determining whether a game is OPMC for a
playet, and for determining a median optimum strategy when the game is
OPMC for him. Then, when player 1 (11) uses a median optimum strategy,
he assures with probability at least 1/2 that simultancously he receives at least
Py (Py) and that the other player receives at most Py (P7).
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Finally, consider a possible extension to another form of median game
theory. Here, the outcomes are ranked, separately by each player, and there
need not be any agreement in these rankings. The median approach is applied
to these rankings of outcomes. An advantage is almost complete generality
of application, with solutions for situations where the players do not behave
competitively (or only partially competitively). A disadvantage is the substan-
tial increase in the effort needed for application. Often, all of the payoffs
would need to be accurately evaluated. A first step in the development of
this form of game theory, for competitive behavior, occurs in ref. 6. The pro-
cedure used in ref. 6 is to suitably supplement set I (II) with outcomes until
the first time player T (I1I) can assure an outcome of his augmented set with
probability at least 1/2.

Examples.

To illustrate some of the aspects of median game theory, six examples
of discrete two-person games are considered. Player I has five strategies and
player 11 has four strategies. For both players, the possible payoffs arc the
numbers 1(1)26, where these could represent ranks for one or both players.

The examples are selected so that in all cases P, — 13 and Py = 14.
When the game is OPMC for player I, the relation P’y = 7 holds, When
the game is OPMC for player II, the relation Py, = 8 holds. The Appendix
contains some discussion of cases where Py, P, Py, Py and median opti-
mum solutions are readily determined. These considerations receive direct use
in obtaining the results that are stated in the following material.

An example of a competitive game occurs for the payoff matrices in
Table 1. The twenty possible outcomes can be arranged in sequence so that
the payoffs to player 1 are increasing and the payoffs to player 1l are
decreasing. A median optimum mixed strategy for player 1 is obtained by
assigning probability 1/2 to each of his strategies 2 and 3. For player II, a
median optimum strategy is obtained by assigning probability 1/2 to cach
of his strategies 1 and 2.

The game of Table 2 is generated by the game of Table 1. Here,
Pr, = 7 and P’;y = 8. The matrices of Table 2 are obtained by exchanging
payoffs within the matrices of Table 1 so that the conditions for generation
of a median competitive game are satisfied. The median optimum strategies
for the game of Table 1 are also optimum for the game of Table 2.
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Table 3 contains a game that is OPMC for player I and, for him, is
generated from the competitive game of Table 1. That is, all payoffs at least
equal to Py = 13 for player 1 ate paired with payoffs at most equal to
Py = 8 for player II, The game is not OPMC for player II in any sense.
Examination shows that P;; = 14 and Py, = 6. Let the outcomes where the
payoff is at least 14 to player II and also the payoff to player I is at most 6
be marked in the matrix for player 1. An outcome of this marked set cannot
be assured with probability at least 1/2 by player 1I. As before, a median
optimum strategy for player 1 consists in randomly selecting one of his stra-
tegies 2 and 3 with equal probability.

TABLE 1. TABLE 2.
Competitive Generated median competitive
11 11
L 2 5 4 1 2 3 4
1 1 9 16 11 1 5 9 16 11
2 20 2 15 12 2 20 3 15 10
I 3 717 5 13 1 3 7 19 1 13
5 10 6 18 3 4 12 6 18 2
4119 4 8 14 5 17 4 8 14
I I
1 2 3 4 5 1 2 3 4 5
1 20 1 14 11 2 1 19 5 14 11 6
2 12 19 4 15 17 2 13 20 3 16 18
I 11
) 3 6 16 3 13 3 1 2 15 4 12
4 10 9 8 18 7 4 10 9 8 17 7

The game of Table 4 is median competitive but is not generated by any
competitive game. First, consider markings in the payoff matrix for player I
of the outcomes where his payoff is at least P; = 13 and also the payoff to
player II is at most P;; = 8. An outcome of this marked set can be assured
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with probability at least 1/2 and, as before, 2 median optimum strategy for
player I is to randomly select one of his strategies 2 and 3 with equal pro-
bability. Second, consider markings in the payoff matrix for player II of the
outcomes where his payoff is at least Py; = 14 and also the payoff to player I
is at most P, = 7. An outcome of this marked set can be assured with pro-
bability at least 1/2 and, again, a median optimum strategy for player I is
to randomly choose one of his strategies 1 and 2 with equal probability.
Finally the game is not OPMC generated from a competitive game for player
I or player II. This follows from occurrence of the payoffs (18, 10), (3, 3),
(11, 18), which could not be obtained through generation from a competitive
game when Py = 13, Py = 14, P4y = 7, Py =8

TABLE 3. TABLE 4.

Generated OPMC for player 1 Median competitive, not generaled
(not OPMC for player 1)

I 11
1 2 3 4 1 2 3 4
1111 5 16 9 1 1 9 16 11
2120 3 15 10 2|20 2 15 12
1 3 7 19 1 13 | 3 7 17 5 13
4112 6 18 2 4110 6 3 18
s |17 4 8 14 519 4 8 14
I I
1 2 3 4 5 ¥ 2 3 4 3§
G I 5 14 11 6 120 1 14 11 2
2 113 20 3 16 18 2 |12 19 4 15 17
I I
3 1 2 15 4 12 3 5 6 16 3 13
4110 9 8 17 7 4118 9 8 10 7

Next, consider the game of Table 5. For player II, this game is OPMC
but not generated by a competitive game. The OPMC part for player II is
verified by marking in his matrix the positions of outcomes where his payoff
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is at least Py; = 14 and also the payoff to player I is at most P, = 7. An
outcome of this marked set can be assured with probability at least 1 /2, and,
as before, a median optimum strategy for player II is to randomly select one
of his strategies 1 and 2 with equal probability. The game is not OPMC
generated from a competitive game for player II, as is seen from occurrence
of the outcomes (3, 6) and (8, 18). Now consider player I. This game is
not OPMC in any sense for player 1. Examination shows that P; = 13 and
P’y = 7. In the matrix for player I, let the outcomes be marked which are
such that the payoff to player I is at least 13 and also the payoff to player 11
is at most 8. An outcome of this marked set cannot be assured with probability
at least 1/2 by player 1.

TABLE 5. TABLE 6.
OPMC for player 11, not generated Not OPMSC for either player
(nor OPMC for player I)

I 11
1 2 3 4 1 2 3 4
1 1 9 16 11 1 16 9 1 11
2 20 2 15 12 2 20 2 15 12
I 3 7 17 5 13 I 3 7 1 5 13
4110 6 18 8§ 4110 8 18 6
5 19 4 3 14 5 19 4 3 14
I I
1 2 3 4 5 1 2 3 4 5
1120 1 14 11 2 {20 1 14 11 2
2112 19 4 15 17 2112 19 4 15 17
i 3 5 13 16 3 6 11 3 5 13 16 3 6
4 110 9 8 18 7 4 110 9 8 18 7

Finally, consider the game of Table 6. This game is not OPMC, in any
sense, for either player. First, consider player I. Examination shows that
P, = 13 and P’;; = 7. Let the outcomes where the payoff to player I is at
least 13 and also the payoff to player II is at most 7 be matked in the payoff
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matrix for player 1. An outcome of this marked set cannot be assured with
probability at least 1/2 by player 1. Likewise, let a similar marking be done
for player II, where P’;; = 8 and Py = 14. Player II cannot assure an outcome
of the marked set with probability at least 1/2.

Appendix.

Considered first is evaluation of P;, Py and determination of median
optimum strategies for the case of players acting protectively. This is followed
by an outline of a method to evaluate Py, P’y and to determine median optimum
strategies for the case of players acting vindictively. Finally, some very easily
applied methods that often can be used are presented. These methods are
also usable for determining whether a game is OPMC for a player and fre-
quently yield a median optimum strategy when the game is OPMC, The easily
applied methods are applicable for all the examples that are considered. The
results of this Appendix are implied by the material of ref. 3.

For player 1 (1) acting protectively, first mark the position(s) in his
matrix of the largest payoff value. Then also mark the position(s) of the
next to largest payoff value. Continue this marking, according to decreasing
payoff value, until the first time that player I (II) can assure a marked
value with probability at least 1/2. Then Py (Py) is the payoff value associated
with the last of the markings.

A general method for determining when a marked value can be assured
with probability at least 1/2 is obtained by a special use of zero-sum expected-
value game theory. Let a modified payoff matrix for player I (II) be deter-
mined by replacing every marked payoff by unity and every unmarked payoff
by zero. Player 1 (IT) can assure a marked payoff with probability at least
1/2 if and only if the value of this game, to player I (II), is at least 1/2.
A protective median optimum strategy for player I (II) is obtained as an
optimum strategy for him in the solution of the zero-sum game the first time
that the game value is at least 1/2.

Another method, that is much more easily applied, is often usable. Let
the marking, according to decreasing payoff value, be continued until the first
time that marks in all columns can be obtained from two or fewer rows. Now
examine the unmarked positions and suppose that « unmarks » in all rows
can be obtained from two or fewer columns. Then, for player 1 (1I), the
value of Py (Py) is the payoff value associated with the last of the markings.
If a fully marked row occurs, use of this row provides a protective median
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optimum strategy. Otherwise, consider any two rows that together have marks
in all columns. Random selection of one of these rows, with equal probability,
furnishes a protective median optimum strategy.

For player 1 (II) acting vindictively, first mark the position(s) in the
matrix for player II (1) of the smallest payoff value. Then also mark the
position(s) of the next to smallest payoff value. Continue this marking,
according to increasing payoff value, until the first time that player T (I1)
can assure a marked value with probability at least 1/2. Then P’y (P*)) is the
payoff value associated with the last of the markings.

A general method similar to that for the protective case can be used to
determine when a marked value in the matrix for player I (I) can be assured
by player I (II) with probability at least 1/2. A modified payoff matrix for
player II (I) is determined by replacing every marked payoff by zero and
every unmarked payoff by unity. Player I (II) can assure a marked payoff
with probability at least 1/2 if and only if the value of this game, to player
IT (1), is at most 1/2.

Another more easily applied method is frequently usable. Let the marking,
according to increasing payoff wvalue, be continued until the first time that
marks in all rows can be obtained from two or fewer columns, Examine the
unmarked positions and suppose that «unmarks » in all columns can be
obtained from two or fewer rows. Then, in the matrix for player IT (1), the
value of P’y; (P*1) is the payoff value associated with the last of the markings.
If a fully marked column occurs in the matrix for player I (1), vindictive
player T (II) can use this column as a median optimum strategy. Otherwise,
consider any two columns that together have marks in all rows. Random
selection of one of these two columns, with equal probability, provides a
vindictive median optimum strategy.

Finally, consider an easily applied method of determining whether a game
is OPMC for a player and, if so, of determining a median optimum strategy.
This method is not generally applicable but often is usable. It is simlar to the
easily applied methods stated for protective and for vindictive players.

For player I (IT) considered, mark the positions in this matrix that cor-
respond to the outcomes of set I (II). The game is OPMC for this player if
the marking is such that marks in all columns can be obtained from two or
fewer rows. If one row is fully marked, this row provides a median optimum
strategy for the player. Otherwise, for the game OPMC to the player, consider
the unmarked positions. Suppose that « unmarks » in all rows can be obtained
from two or fewer columns, Then, for any two rows that have marks in all
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columns, a random selection of one of these rows, with probability 1/2 for
each row, provides a median optimum strategy.
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