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Abstract

The purpose of this survey article is to introduce the reader to a very elegant formu-

lation of convex optimization problems called conic optimization and outline its many

advantages.

After a brief introduction to convex optimization, the notion of convex coneis in-

troduced, which leads to the conic formulation of convex optimization problems. This

formulation features a very symmetric dual problem, and several useful duality theorems

pertaining to this conic primal-dual pair are presented.

The usefulness of this approach is then demonstrated with its application to a well-

knownclass of convex problems called [p-norm optimization. A suitably defined convex

cone leads to a conic formulation for this problem, which allows us to derive its dual and

the associated weak and strong duality properties in a seamless manner.
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1 Introduction

1.1 Optimization

The main goal of operations research is to model real-life situations where some decisions

have to be taken and help to identify the Best one(s). One may for example want to choose

between several available alternatives, tune numerical parameters in an engineering design or

schedule the use of machinesin a factory.

The concept of best decision obviously depends on the problem considered andit is there-

fore far from easy to coin a universal mathematical definition for it. Most of the time, a

decision is described as a set of parameters called decision variables, and one seeks in fact

to minimize (or maximize) a single objective function depending on these variables. This

function may for example represent the cost associated to the decision. Moreover, we are

very frequently faced with a situation where some combinations of parameters are not al-

lowed (e.g. physical dimensions cannot be negative, a system must satisfy some performance

requirements, ...), which leads us to consider a set of constraints acting on the decision

variables.

Optimization is the field of mathematics whose goal is to minimize or maximize an ob-

jective function depending on several] decision variables under a set of constraints. The main

topic of this article is a special category of optimization problemscalled conver optimization’.

1.2 Computational complexity

When mathematicians started to consider optimization problems more than a century ago,

they were mainly interested in the existence of a solution method andits finiteness, i.e. the

were seeking algorithms guaranteed to terminate after a finite numberof steps. However, the

introduction and generalization of computers in the second half of the 20‘" century resulted

in a true revolution in this domain, which led scientists to become more and moreinterested

in the practical application of these methods to actual problems. Indeed, it became possible

to formulate an overwhelming amount of real-world problems as optimization problems.

However, the previously neglected concept of computational complezity surfaced at that

time [GJ79] and refrained the enthusiasm of practitioners: a solution method, even if proven

to be finite, is of little practical use if the time or the number of elementary operations it

requires grows too fast with the size of the problem to besolved.

Indeed, many optimization problems are provably very hard to solve, which means it is

often not possible to solve these problems in practice. To fix ideas, let us consider as an

example the class of Lipschitz-continuous functions of ten variables with a Lipschitz constant

equal to 2 and the seemingly simple problem that consists in computing an approximate

minimizer of such a function f on the unit hypercube. Without further assumptions, it is

possible to. prove that, for some choices of f, the computation of this minimizer with 1%

accuracy can require more than 107° evaluations of f (see e.g. [Nes96]). This example, built

on a quite simple class of objective functions, elementary constraints and a modest accuracy

requirement, is sufficient to demonstrate that some optimization problems are unsolvable in

practice.
 

'This class of problems is sometimes called conver programmingin the literature. However, following other

authors [RTV97, Ren99], we prefer to use the more natural word “optimization” since the term “programming”

is nowadays strongly connected to computer science. The same treatment will be applied to the other classes
of problems that will be mentioned in this article, such as linear optimization, semidefinite optimization,etc.

 



There are basically two fundamentally different ways to react to this distressing fact:

a. Ignore it, i.e. design a method that is supposed to solve all optimization problems.

Because of the above-mentioned result, it will be slow (or fail) on some problems, but

hopefully will be efficient on most real-world problems weare interested in. This is the

approach that generally prevails in the field of nonlinear optimization.

b. Restrict the set of problems that the method is supposed to solve and design a method

that is provably efficient on this restricted class of problems. This is for example the

approach taken in the field of linear optimization, where one requires the objective

function and the constraints to be linear.

Each of these two approacheshas its advantages and drawbacks. The major advantage of the

first approach is its potentially very wide applicability, but this is counterbalanced by a less

efficient analysis of the behaviour of the corresponding algorithms. In more technical terms,

methodsarising from the first approach can most of the time only be proven to converge to

an optimum solution (in some weak sense), but their computational complexity cannot be

evaluated. On the other hand, one can often estimate the efficiency of methods following

the second approach, i.e. bound the numberof arithmetic operations they need to attain an

optimum with a given accuracy. We chose to focus on this second approachin therest of this

article.

1.3. Why convex optimization ?

The next relevant question that has to be answered consists thus in determining which specific

classes of optimization problems are going to be studied. It is rather clear that there is a

tradeoff between generality and algorithmic efficiency: the more general your problem, the

less efficient your methods. Linear optimization is in this respect an extremecase: it is a very

particular (yet useful) type of problem for which veryefficient algorithms are available (namely

the simplex method and, morerecently, interior-point methods, see e.g. [Dan63, RTV97}}.

However, some problems simply cannot be formulated within the frameworkof linear

programs, which leads us to consider a much broaderclass of problems called conver opti-

mization. Basically, a problem belongsto this categoryif its objective function is convex and

its constraints define a feasible convex set. This class of problems is much larger than linear

optimization, but still retains the main advantage of the second approach mentioned above,

namely the existence of solution methods whose computational complexity can be estimated.

This choice is supported by the following properties:

a. Many problems that cannot be expressed within the frameworkof linear optimization

are convex or can be convexified (which means that one can find an essentially equivalent

convex reformulation of the problem).

b. Convex optimization possesses a very rich duality theory (see Section 3).

c. Convex problems can be solved efficiently using interior-point methods. The theory

of self-concordant barriers developed by Nesterov and Nemirovski [NN94] provides an

algorithm with polynomial complexity applicable to all classes of problems that are

known to be convex.

 



Unfortunately, checking that a given optimization problem is convex is far from straight-

forward (and might even be more difficult than solving the problem itself). The convex

problems we deal with are thus convex by design, i.e. are formulated in a way that guarantees

their convexity. This is done by using specific classes of objective functions and constraints,

and is called structured conver optimization.

We would also like to mention that although it is not possible to model all optimization

problems of interest with a convex formulation, one can nevertheless do it in a surprisingly

high number of situations. The reward for the added work of formulating the problem as a

structured convex optimization problem is the great efficiency of the methods that can be

then applied to it.

1.4 Conic optimization

The purposeof this survey article is to introduce the reader to a very elegant formulation of

convex optimization problems called conic optimization and outline its many advantages.

After a brief introduction to convex optimization, the notion of convex coneis introduced

in Section 2, which leads to the conic formulation of convex optimization problems. This

formulation features a very symmetric dual problem, which allows us to state in Section 3

several useful duality theorems pertaining to this conic primal-dual pair. Section 4 presents

a classification of conic optimization problems with respect to feasibility, attainability and

optimal duality gap and features someillustrative examples.

Section 5 demonstrates then the usefulness of this conic approach by applying it to a

well-known class of convex problems called !,-norm optimization. A suitably defined convex

cone leads to a conic formulation for this problem, which allows us to derive its dual and the

associated weak and strong duality properties in a seamless manner. Thefinal Section 6 sum-

marizes the advantageousfeatures of this conic formulation. Material surveyed in Sections 2-4

is quite classical, see e.g. [Roc70, SW70, Stu97], while the approach taken in Section 5 is more

recent and can be found with greater detail in [Gli01b, GT00}.

2 Convex optimization

2.1 Traditional formulation

Let us first recall that a set is convex if and only if it contains the whole segment joining any

two of its points. Moreover, a function f : D+> R is convex if and only if its domain D and

its epigraph, defined by

epi f = {(z,t)|z€ Dand f(z) <2},

are two convexsets.

The standard convex optimization problem deals with the minimization? of a convex

function on a convex set, and can be written as follows

inf fo(z) st. reS, (C)
 

2Note that contrary to the case of linear optimization, the problem of maximizing a convex function on a

convex set cannot be transformed into a convex minimization problem in the form (C), and is very often much
more difficult to solve (see [Roc70, §32}).

 



where S € R” is a closed convex set and fo : S++ R is a convex function defined on S. The

convexity of both the objective function fo and the feasible region S plays a very important

role in this problem, since it is responsible for the following two important properties [Roc70,

Sw70}:

© Any local optimum for (C) is also.a global optimum, which implies that the objective
value is equal for all local optima. Moreover, the set ofall local optima is always convex

(and thus connected).

© There exists a dual convex problem strongly related to (C). Namely, the pair of problems

consisting of a convex optimization problem andits dual satisfies a weak duality property

(the objective value of any feasible solution for one of these problems provides a bound

on the optimum objective value for the dual problem) and, under certain conditions, a

strong duality property (equality and attainment of the optimum objective values for

the two problems). These properties are discussed with more detail in Section 3.

Wenote that the objective function fo can be assumed with anyloss of generality to be

linear, so that. we can define it as fp(z) = c'z using a vector c € R™. Indeed,it is readily

seen that problem (C) is equivalent to the following problem with a linear objective:

inf ¢ st. (2,t)eS,
(z,theRr+1

where & C R"+! js suitably defined as

S = {(z,t) €R*x R| ze and fo(z) < t} .

Equivalence follows from the fact that the constraint defining $ is necessarily satisfied with

equality at any optimal solution (z*,t*), ie. we must have t* = fo(z*). Moreover, this

equivalent problem is convex, since S is the epigraph of the convex function fo. We will thus

work without any loss of generality in the rest of this article with the problem

inf chr st. 2ES. (CL)
zéER”

Let us now ask ourselves how one can specify the data of problem (CL), i.e. how one can

describe its objective function and feasible set. While specifying the objective function is

easily done by providing vector c, describing the feasible set S, which is responsible for the

structure of problem (CL), can be done in several manners. ;

The traditional way to proceed in nonlinear optimization is to provide a list of convex

constraints defining S, i.e.

S={reER"| f(x) <0 Wie I = {1,2,...,m}},

where each of the m functions f; : R®? ++ R is convex. This guarantees the convexity of S, as

an intersection of convex level sets, and problem (CL) becomes

inf cr st. fi(t)<OViE T= {1,2,...,m}, (CF)
zeRr

which is the most commonly encountered formulation of a convex optimization problem.

However, a much more elegant way to describe the feasible region consists in defining S as

the intersection of a convex cone and an affine subspace, which leads to conic optimization.

 



2.2. Conic formulation

Convex cones are the main ingredients involved in conic optimization.

Definition 2.1. A set C is a cone if and only if it is closed under nonnegative scalar multi-

plication,i.e. .

réEeC=>rdAre€C forall AE R,.

Establishing convexity is easier for cones than for general sets, because of the following

elementary theorem [Roc70, Theorem 2.6]:

Theorem 2.1. A cone C is convex if and only if it is closed under addition, i.e.

reECandyeCsart+yec.

In order to avoid some technical nuisances, the convex cones we are going to consider will

be required to be closed, pointed and solid, according to the following definitions. A coneis

said to be pointed if it doesn’t contain any straight line passing through the origin, which can

be expressed as

Definition 2.2. A cone C is pointed if and only if CN —C = {0}, where —C stands for the set
{x| -reEC}.

Furthermore, a cone is said to be solid if it has a nonempty interior, i.e. it is full-

dimensional.

Definition 2.3. A cone is solid if and only if int C # @ (where int S denotes the interior of

set S).

For example, the positive orthant R4 is a pointed and solid convex cone. A linear subspace

is a convex cone that is neither pointed, nor solid (except R" itself, which is solid, and {0},

which is pointed).

Weare nowin position to define a conic optimization problem: let C C R” be a pointed,

solid, closed convex cone. The (primal) conic optimization problem is

inf clr st. Ar=bandzréC, (CP)
zeR”

where z € R” is the column vector we are optimizing and the problem datais given by cone C,

am Xn matrix A and two column vectors 6 and c belonging respectively to R™ and R". This

problem can thus be viewed as the minimization of a linear function over the intersection of a

convex cone and an affine subspace. Asan illustration, we observe that a linear optimization

problem in the standard form can be formulated by choosing cone C to be the positive orthant

Ri, which leads to. the well-known. primalformulation

inf clr s.t. Ar=bandzr>0.
zeR”

When comparing the primal conic problem (CP) with the standard convex problem (CL),

one observes that the only difference resides in the special choice of the feasible set S = CNL,

where CL is the affine subspace defined by £ = {z € R" | Ar = 5}. Since C and CL are convex,
CNC is also convex and problem (CP)is clearly a convex optimization problem. However,

one can show that the class of problems in the traditional form (CL) is not larger than the

10

 



class of problems in conic form (CP). Indeed, one can readily check that problem (CP)is

equivalent to

inf @'2 st. A®=bandZEH, (CL’)
zeRnt

where @ = (zp, x), 6 = (0,c), A = (1,0!**), 6 = 1 and 4 is the so-called conical hull of $

defined by

H = {(zo,z) € Ry x R® | Sy € S such that x = zy} .

The set H is closed under nonnegative scalar multiplication and is thus a cone, and its

convexity stems from the convexity of S : if (xo, x) and (xg,x') both belong to H, we have

z= azoy and x’ = zy’ with y,y’ € S, implying

 
/

ro Lo ,
a2+a' = (2p +25) ——y +

(20 29) (= +25" zo +25"

with '
Zz x . ‘oy + —2_y' €S (since S is convex),

To + Zp ro + Zp
 

which is enough to prove that (rp + rp,z + 2’) € # and thus that 7 is convex by virtue

of Theorem 2.1. Problem (CL’) is thus expressed in the standard conic form. Moreover,its

linear constraints being simply equivalent to zo = 1, the definition of H implies then that

(1, xz) € H if and only if z € S, proving thus the strict equivalence between problems (CL)

and (CL’), besides the additional variable z9 = 1 which doesn’t play any role in (CL’). In

conclusion, the conic formulation (CP) allows us to express all convex optimization problems

without any loss of generality.

The special treatment of the linear constraintsin the conic formulation, i.e. their repre-

sentation as an intersection with an affine stibspace, can be justified by the fact that these

constraints are easier to handle than general nonlinear constraints, from the following points

of view

a. theoretical: linear constraints cannot cause a nonzero duality gap, in the sense that

strong duality is valid without a Slater-type assumption for linear optimization (this

topic is developed further in Section 3),

b. practical: it is often easy for algorithms to preserve feasibility with respect to these

constraints, as opposed to the case ofnonlinear constraints.

But the main advantage of the conic formulation resides in the very symmetrical formulation

of the dual problem, which we present now.

2.3. Dual problem

As mentioned earlier, to each (primal) convex optimization problem corresponds a strongly

related dual problem that can be found using the theory of Lagrange duality. However, the

expression of this dual problem in the general case of problem (CF) is far from symmetric

and involves some kind of bilevel optimization of the objective function (i.e. optimizing an

objective function that is itself the result of an inner optimization process).

However, the Lagrangean dual of a conic problem such as (CP) can be expressed very

nicely in a conic form, using the notion of dual cone.

11

 



Definition 2.4. The dual of a cone C C R” is defined by

C* = {x © R" | x72" > for all rz EC} .

For example, the dual of R} is R} itself (we.say it is self-dual). Another example is the

dual of the linear subspace £, which is C* = C+, the linear subspace orthogonal to £ (note

that in that case the inequality of Definition 2.4 is always satisfied with equality).

The following theorem stipulates that the dual of a closed convex cone is always a closed

convex cone [Roc70, Theorem 14.1].

Theorem 2.2. IfC is a closed conver cone, its dual C* is another closed conver cone. More-

over, the dual (C*)* of C* is equal to C.

Closednessis essential for (C")* =C to hold (without the closedness assumption on C, we

only have (C*)* = clC where cl S denotes the closure of set S [Roc70, Theorem 14.1}). The

additional notions of solidness and pointedness also behave well when taking the dual of a

convex cone: indeed, these two properties are dual to each other [Stu97, Corollary 2.1], which

allows us to state the following theorem:

Theorem 2.3. If C is a solid, pointed, closed conver cone, its dual C* is another solid,

pointed, closed conver cone and (C*)* =C.

The (Lagrangean) dual of our primal conic problem (CP)is defined by

sup bly st. ATy+s=candse€C*, (CD)
yER™SER"

where y € R™ and s € R” are the column vectors we are optimizing, the other quantities A,

b and c being the sameas in (CP). It is immediate to notice that this dual problem has the

samekindof structure as the primal problem,i.e. it also involves optimizing a linear function

over the intersection of a convex cone and an affine subspace. The only differences are the

direction of the optimization (maximization instead of minimization) and the way the affine

subspace is described (it is here a translation of the range space of AT, while the primal

involved a translation of the null space of A). It is also easy to show that the dual of this

dual problem is equivalent to the primal problem, using the fact that (C*)* =C.

As asimpleillustration, the dual of a linear optimization problem in standard form involves

the dual of the positive orthant R3, whichis self-dual and gives thus the well-known

sup bry st. ATyt+s=cands>0.
yeR™,sER”

The reason why the conic dual (CD) is much simpler than the usual Lagrangean dualof

problem (CF), i.e. involves a single-level optimization, is simple: this is due to the fact that

the inner optimization that must be performed in the-dual of (CF) is here implicitly carried

out when the dual cone is introduced. Indeed, when considering a primal conic problem

built with a new convex cone, formulating the dual problem requires to computefirst the

corresponding dual cone. This frequently necessitates a few analytic calculations, which have

to be done only once and can then be used to express the dual of any conic optimization

problem using the primal cone.

An interesting interpretation of the conic formulation (CP) is based on the fact that we

may view the constraint z € C as a generalization of the traditional nonnegativity constraint

12

 



x > 0 of linear optimization. Indeed, let us define the relation > on R® x R® according to

r>yea2x-—yeEC. This relation is reflexive, since r = t + 0 € C is always true. It is also

transitive, since we have

grmyandy>zerc-yeCandy—-ze€C>(z-y+(y-z)=zr-zeElCerrz

(where we used the fact that a convex cone is closed under addition, see Theorem 2.1). Finally,

using the fact that C is pointed, we can write

rmyandy>zrer-—yeCand —-(x-y)eCar-y=0>r=y,

which shows that relation > is antisymmetric and is thus a partial order on R” x R". Defining

>* to be the relation induced by the dual cone C*, we can rewrite our primal-dual pair (CP)-

(CD) as

inf clz 8.t. Ar=bandz>0
zéER*

sup bly s.t. cr* Aly,
yeR™

which looks very much like a generalization of the well-known primal-dual pair of linear

optimization problems.

To conclude this section, we state another example of primal-dual pair of conic problems,

using this time one of the most versatile cones one can encounter in convex optimization, the

positive semidefinite cone S4.

Definition 2.5. The positive semidefinite cone S} is a subset of S", the set of symmetric

n Xn matrices. It consists of all positive semidefinite matrices,i.e.

M €S? #2™Mz>0¥z€R" & X(M) >0

where A(M) denotes the vector of eigenvalues of M.

It is straightforward to check that S% is a closed, solid, pointed convex cone. A conic

optimization problem of the form (CP) or (CD) that uses a cone of the type S% is called a

semidefinite problem3. This cone provides us with the ability to model many more types of

constraints than a linear problem (see Section 4 and e.g. [VB96] for a list of applications in
various domains such as engineering, control, combinatorial optimization, finance, etc. ). .

The examples of conic optimization problems we have given so far, namely linear and

semidefinite optimization, were both self-dual. This is however not always the case, and

Section 5 will present an example of nonsymmetric conic duality.
 

*The fact that our feasible points are in this case matrices instead of vectors calls for some explanation.
Since our convex cones are supposed to belong to a real vector space, we have to consider that S$”, the space of

symmetric matrices, is isomorphous to R*'"+)/?, In that setting, an expression such as the objective function
c'z, where c and z belong to R”'"+)/?, is to be understood as the inner product of the corresponding
symmetric matrices C and X in the space S”, which is defined by (C,X) = traceCX. Moreover, A can be

seen in this case as an application (more precisely a tensor) that maps S” to R™, while AT is the adjoint of A

which maps R™ to S”.

13

 



3 Duality theory

The two conic problems of a primal-dual pair are strongly related to each other, as demon-

strated by the duality theoremsstated in this section. Conic optimization enjoys the same

kind of rich duality theory as linear optimization, albeit with some complications regarding

the strong duality property.

The results we present in this Section are well-known and can be found for example in

the Ph.D. thesis of Sturm [Stu97, Stu99] with similar notations, more classical references

presenting equivalent results are [SW70] and [ET76, §III, Section 5]).

Theorem 3.1 (Weak duality). Let x a feasible (i.e. satisfying the constraints) solution for

(CP), and (y, 8) a feasible solution for (CD). We have

T T
bySecn,

equality occurring if and only if the following orthogonality condition is satisfied:

zis=0.

This theorem shows that any primal (resp. dual) feasible solution provides an upper(resp.

lower) boundfor the dual (resp. primal) problem. Its proof is quite easy to obtain: elementary

manipulations give

clx — bly = 2! — (Az)Ty = 27(Aly +s) — zlAly = a's,

this last inner product being always nonnegative because of zs € C, s € C* and Definition 2.4

of the dual cone C*. The nonnegative quantity zs = clz — bTy is called the duality gap.

Obviously, a pair (x, y) with a zero duality gap must be optimal. It is well known that the

converse is true in the case of linear optimization, i.e. that all primal-dual pairs of optimal

solutions for a linear optimization problem have a zero duality gap (see e.g. [Sch86]), but this

is not in general the case for conic optimization.

Let us denote for convenience the optimum objective values of problems (CP) and (CD)
by p* and d*. Wewill say that the primal (resp. dual) problem is unbounded if p* = —oco (resp.

d* = +00) and that it is infeasible if there is no feasible solution, ie. when p* = +oo (resp.

d* = —oo). We emphasize the fact that although our cone C is closed, it may happen that

the infimum in (CP) or the supremum in (CD)is not attained, either because the problem is

infeasible or unbounded, or because there exists a sequence of feasible points whose objective

values tend to p* (or d*) but whose limit is not feasible (some examples of these situations

will be given in Section 4). We will say that the primal (resp. dual) problem is solvable or

attained if the optimum objective value p* (resp. d*) is achieved by at least one feasible primal
(resp. dual) solution.

The weak duality theorem implies that p* — d* > 0, a nonnegative quantity which will be

called the duatity gap (at optimality). ‘Under. certain. eircumstances,.it.can be proven ta be

equal to zero, which shows that the optimum values of problems (CP) and (CD) are equal.

Before we describe the conditions guaranteeing such a situation, called strong duality, we

need to introduce the notion of strictly feasible point.

Definition 3.1. A point x (resp. (y,s)) is said to be strictly feasible for the primal (resp.

dual) problem if and onlyif it is feasible and belongs to the interior of the cone C (resp. C*),
Le.

Ax =bandxzéintC (resp. Aty+s=cand sé intC") .

14

 



Strictly feasible points, sometimes called Slater points, are also said to satisfy the interior-

point or Slater condition.

Theorem 3.2 (Strong duality). If the dual problem (CD) admits a strictly feasible solution,

we have either

© an infeasible primal problem (CP) if the dual problem (CD) is unbounded, i.e. p* =

d* = +00

© a feasible primal problem (CP) if the dual problem (CD) is bounded. Moreover, in this

case, the primal optimum is finite and attained with a zero duality gap, i.e. there is at

least an optimal feasible solution x* such that c'x* = p* = d*.

The first case in this theorem (see e.g. [Stu97, Theorem 2.7] for a proof) is a simple
consequence of Theorem 3.1, which is also valid in the absence of a Slater point for the dual,

as opposed to the second case which relies on the existence of such a point. It is also worth

to mention that boundedness of the dual problem (CD), defining the second case, is implied

by the existence of a feasible primal solution, because of the weak duality theorem (however,

the converse implication is not true in general, since a bounded dual problem can admit an

infeasible primal problem ; an exampleof this situation is provided in Section 4).

This theorem is important, because it provides us with way to identify when both the

primal and the dual problems have the same optimal value, and when this optimal value is

attained by one of the problems. Obviously, this result can be dualized, meaning that the

existence of a strictly feasible primal solution implies a zero duality gap and dual attainment.

The combination of these two theorems leads to the following well-knowncorollary:

Corollary 3.1. If both the primal and the dual problems admit a strictly feasible point,

we have a zero duality gap and attainment for both problems, i.e. the same finite optimum

objective value is attained for both problems.

When the dual problem has nostrictly feasible point, nothing can be said about the

duality gap (which can happen to bestrictly positive) and about attainment of the primal

optimum objective value. However, even in this situation, we can prove an alternate version

of the strong duality theorem involving the notion of primal problem subvalue. The idea

behind this notion is to allow a small constraint violation in the infimum defining the primal

problem (CP).

Definition 3.2. The subvalue of primal problem (CP) is given by

p = lim [ing cP s.t. \\Az - bl <eand 2 eC]
e—0tF

(a similar definition is holding for the dual subvalue d7).

It is readily seen that this limit always exists (possibly being +00), because the feasible

region of the infimum shrinks as e tends to zero, which implies that its optimum value is a

nonincreasing function of ¢. Moreover, the inequality p~ < p* holds, because all the feasible

regions of the infima defining p~ as € tends to zero are larger than the actual feasible region

of problem (CP).

The case p~ = +00, which implies that primal problem (CP)is infeasible (since we have

then p* > p” = +00), is called primal strong infeasibility, and essentially means that the

affine subspace defined by the linear constraints Ar = 6 is strongly separated from cone C.

Weare now in position to state the following alternate strong duality theorem:
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Theorem 3.3 (Strong duality, alternate version). We have either

© p- = +00 and d* = —co when primal problem (CP) is strongly infeasible and dual

problem (CD)is infeasible.

© p~ = d* in all other cases. *

This theorem (see e.g. [Stu97, Theorem 2.6] for a proof) states that there is no duality
gap between p~ and d*, except in the rather exceptional case of primal strong infeasibility

and dual infeasibility. Note that the second case covers situations where the primal problem

is infeasible but not strongly infeasible (i.e. p~ < p* = +00).

To conclude this section, we would like to mention the fact that all the properties and the-

orems described in this section can be easily extended to the case of several conic constraints

involving disjoint sets of variables.

Note 3.1. Namely, having to satisfy the constraints z' € C? for all i € {1,2,...,k}, where

C’ C R™, we will simply consider the Cartesian product of these cones C = C! xC?x---xC* €

R21 ™and expressall these constraints simultaneously as x € C with x = (z!,z?,...,z*).
The dual cone of C will be given by

C* = (C1)* x (C?)* x --- x (CF) C Row ,

as implied by the following theorem:

Theorem 3.4. Let C! and C? two closed conver cones, and C = C} x C? their Cartesian

product. Cone is also a closed conver cone, and its dual C* is given by

c*=(C1)* x (C*)*.

4 Classification of conic optimization problems

In this section, we describe all possible types of conic programs with respect to feasibility,

attainability of the optimum and optimal duality gap, and provide corresponding examples.

Given our standard primal conic program (CP), we define

Fi. ={ceER" | Ar =bandz eC}

to be its feasible set and 6 = dist(C, L) the minimum distance between cone C and the affine

subspace £ = {x | Az = b} defined by the linear constraints. We also call F744 the set of

strictly feasible solutions of (CP), i.e.

F454 ={2z ER" | Ax =b and re intC}.

4.1 Feasibility

First of all, the distinction between feasible and infeasible conic problems is not as clear-cut

as for linear optimization. We have the following cases*

© A conic program is infeasible. This means the feasible set 7, = 0, and that p* = +oo.

But we have to distinguish two subcases
 

4In the following, we'll mark with a ({) the cases which never happen in the case of linear optimization.
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~ 6 =0, which means an infinitesimal perturbation of the problem data maytrans-

form the program into a feasible one. We call the program weakly infeasible(t).

This correspondsto the case of a finite subvalue, i.e. p> < p* = +00.

~ 6 > 0, which corresponds to the usual infeasibility as for linear optimization.

Wecall the program strongly infeasible, which corresponds to an infinite subvalue
Dp” =p" = +00.

© A conic program is feasible, which means F, 4 @ and p* < +00 (and thus 6 = 0). We

also distinguish two subcases

— F14 = 0, which implies that all feasible points belong to the boundary of the

feasible set F, (this corresponds indeed to the case where the affine subspace L

is tangent to the cone C). This also means that an infinitesimal perturbation of

the problem data can make the program infeasible. We call the program weakly

feasible.

— F44 40. We call the program strongly feasible. This means there exists at least

one feasible solution belonging to the interior of C, which is the main hypothesis

of the strong duality Theorem 3.2.

It is possible to characterize these situations by looking at the existence of certain types

of directions in the dual problem (level direction, improving direction, improving direction

sequence, see [Stu97]). Let us nowillustrate these four situations with an example.

Example 4.1. Let us choose

C=S2 and z= (3 nm) .
Zz «2

We have that z € C & 2, > 0,22 > O and zz > zi.

If we add the linear constraint 73 = 1, the feasible set becomes the epigraphof the positive

branch of the hyperbola 2122 = 1, ie. Fy = {(21,22) | 21 > O and 21272 > 1} as depicted on
Figure 1.

 

  

     

10

8

6 Feasible region

4

2

Infeasible region

0
0 0.5 1%

Figure 1: Epigraph of the positive branch of the hyperbola z)2r2 = 1.

This problem is strongly feasible.
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© If we add anotherlinear constraint +; = —1, we get a strongly infeasible problem (since

x, must be positive).

© If we add x; = 0, we get a weakly infeasible problem (since the distance between the

axis x, = 0 and the hyperbola is zero but 2, still must be positive).

© Finally, adding 1 +22 = 2 leads to a weakly feasible problem (because the only feasible

point, 21] = 22 = 3 = 1, does not belong to theinterior of C).

4.2 Attainability

Let us denote by F* the set of optimal solutions, i.e. feasible solutions with an objective equal

to p*

Fr=Fin{zeER"|clr=p"}.

Wehavethe following distinction regarding attainability of the optimum:

© A conic program is solvable if F* 4 @.

© A conic program is unsolvable if F* = 9, but we have three subcases

— If p* = +00, the program is infeasible, as mentioned in the previous subsection.

— If p* = —oo, the program is unbounded.

— If p* is finite, we have a feasible unsolvable bounded program ({). This situation

happens when the infimum defining p”* is not attained, ie. there exists feasible

solutions with objective value arbitrarily close to p* but no optimalsolution.

Let us examinea little further the last situation. In this case, we have a sequenceoffeasible

solutions whose objective value tends to p*, but no optimal solution. This implies that at

least one of the variables in this sequence of feasible solutions tends to infinity. Indeed,if it

was not the case, that sequence would be bounded, and since the feasible set F is closed (it

is the intersection of a closed cone and a affine subspace, whichis also closed), its limit would

also belong to the feasible set, hence would be a feasible solution with objective value p", i.e.

an optimal solution, which is a contradiction.

Example 4.2. Let us consider the same strongly feasible problem as in Example 4.1 (epigraph

of an hyperbola).

© If we choose a linear objective equal to 21 + 22,, F* is reduced to the unique point

(21, 22,23) = (1,1,1), and the problem is solvable (p* = 2).

© If we choose another objective equal to —z1 — zo, F* = @ because p* = —oo, and the

problem is unbounded.

© Finally, choosing x; as objective function leads to an unsolvable bounded problem: p*

is easily seen to be equal to zero but #* = @ because thereis no feasible solution with

x, = 0 since the product z,22 has to be greater than 1.
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4.3. Duality gap at optimality

Finally, we state the various possibilities about the duality gap at optimality, which is equal

to p* — d*:

© An optimal solution pair (£,y) has a zero duality gap.

© The optimal duality gap is strictly positive (1).

© The optimal duality gap is zero but there is no optimalsolution pair. In this case, there

exists pairs (r,y) with an arbitrarily small duality gap (which means that the optimum

is not attained for at least one of the two programs (CP) and (CD))(4).

Of course, the last two cases can be avoided if we require our problem to satisfy the Slater

condition. We can alternatively work with the subvalue p~, for which there is no duality gap

except when both problems are infeasible.

Example 4.3. The first problem described in Example 4.2 has its optimal value equal to

p* = 2. Its data can be described as

c= 10 ,A:S? GR: 71 73 H+ r3 andb=1.
0 1 z3 «22

Using the fact that the adjoint of A can be written as®

T. 2. 0 y/2A Rosine (0, 0)

and the dual formulation (CD), we can state the dual as

0 y/2 8, 83\_ 1 0 $1 $3 2
supyi st. (9 0 + s3 382) \0 1 and $3 8 € Si

or equivalently, after eliminating the s variables,

1 =y1/2 2supy, s.t. (4 1 ) esy.

The optimal value d* of this problem is equal to 2, because the semidefinite constraint is

equivalent to y? < 4, and the optimal duality gap p* — d* is zero as expected.

Changing the primal objective to c = ¢ 0): we get an unsolvable bounded problem

infr,; st. 23 = land.2j72.>1.

whose optimal value is p* = 0 butis not attained. The dual becomes

1 —y/2 2
supy, s.t. (4) 0 ) est

®To check this, simply write (Az, y) = (z, ATy), where the first inner product is the usual dot product on
R" but the second inner product is the trace inner product on S".
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which admits only onefeasible solution, namely y, = 0, and has thus an optimal value d* = 0.

In this case, the optimal duality gap is zero but is not attained (because the primal problem

is unsolvable).
Finally, we give here an example where the optimal duality gap is nonzero. Choosing a

nonnegative parameter \ and s

0 -1 0 T1 Ta FS za + 1

C=Si,c=]-1 0 0}, A:S34R?: [24 zo 26 ~(* *) and 5= (8) ,
x2 0

0 oO A Zn Ig 23

we have for the primal

T1 Yq Fs

infAr3~—224 st. 23 +24=1, r2=Oand 24 22 2 eS}.

tT Te Xs

The fact that x2 = 0 implies z4 = x¢ = 0, which in turn implies z3 = 1. We have thus that

all solutions have the form
Ty 0 m5

0 0 0

zs 0 1

which is feasible as soon as x > 72. All these feasible solutions have an objective value equal

A, and hence are all optimal: we have p* = 4. Using the fact that the adjoint of A is

0 w/2 0
AT: R? 4S}: (“) mH 1y/2 ye 0

0 0 Nn

we can write the dual (after eliminating the s variables with the linear equality constraints)

as
0 -l-m/2 0

supyi s.t. —-l-—y)/2 —ye2 - 0 € Ss)

0 0 A- Yi

The above matrix can only be positive semidefinite if y, = —2. In that case, any nonnegative

value for yo will lead to a feasible solution with an objective equal to —2,i.e. all these solutions

are optimal and d* = —2. The optimal duality gap is equal to p* —d* = \+2, whichis strictly

positive fear all values of A. Note that in this case, as expected from the theory, none of the

two problems satisfies the Slater condition since every feasible primal or dual solution has at

least a zero on its diagonal, which implies a zero eigenvalue and hence that it does not belong

to the interior of S3.

5 Application to /,-norm optimization

5.1 Problem definition

Ip-norm optimization [PE70a, Ter85] is an important class of convex problems, which includes

as special cases linear optimization, quadratically constrained convex quadratic optimization

and l,-norm approximation problems. The purpose of this section is to show howthis class of
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problems can be modelled with a conic formulation and the advantages of such a procedure

(see [GT00} for a more detailed exposition).
Let us start by introducing the primal /,-norm optimization problem, which is basically a

slight modification of a linear optimization problem wherethe use of !,-norms applied to linear

terms is allowed within the constraints. In order to state its formulation in the most general

setting, we need to introduce the following sets: let K = {1,2,...,r}, J = {1,2,...,n} and

let {Jk},ex be a partition of J into r classes, i.e. satisfying

Used, =I andNI; = for all k #1.

The problem data is given by two matrices A € R™**" and F € R™** (whose columns will

be denoted by a;, 1 € J and f;, k € K) and four column vectors b € R™, c€ R", dé R" and

p € R® such that p, > 1 Vi € J. Our primal problem consists in optimizing a linear function

of a column vector y € R™ undera set of constraints involving /p-norms of linear forms, and

can be written as

1 isup bTy st. > —|a-—afy"<d&—-—fey VkEK. (Ply)
iel, **

Defining a vector g € R® such that = + + = 1 for all i € J, the dual problem for (Pi,)

can be defined as (see e.g. [Ter85])

1

Gi
inf W(z,z)=cTot¢déz+ DO nS —|S (Diy)

kEK|z_,>0 i€l,
  

x st { Ar+Fz=bandz>0,
2k “ R=OS> 7, =OViE lh.

We note that a special convention has been taken to handle the case when one or more

components of z are equal to zero: the associated terms are left out of the first sum (to avoid

a zero denominator) and the corresponding components of z have to be equal to zero. When

compared with the primal problem (Pi,), this problem has a simpler feasible region (mostly
defined by linear equalities and nonnegativity constraints) at the price of a highly nonlinear

(but convex) objective.

5.2 Cones for [,-norm optimization

Let us now introduce the C? cone, which will allow us to give a conic formulation to [-norm

optimization problems.

Definition 5.1. Let n € N and p € R® with p; > 1. We define the following set

n [x;|*
ce= {(z,8,n) €R" xR, xR,|aS <n}

i=1

 

using in the case of a zero denominator the following convention:

[zal _ +oo ifz; #0,

0 0 if2;=0.
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Figure 2: The boundary surfaces of £() and £) (in the case n = 1).

This convention means that if (z,6,«) € £L?, @ = 0 implies zr = 0". This set is in fact a solid,

pointed closed convex cone (see [GT00]), and is hence suitable for conic optimization.
To illustrate our purpose, we provide in Figure 2 the three-dimensional graphs of the

boundary surfaces of £) and £°) (corresponding to the case n = 1).

The dual cone of £? can be explicitly computed. Let us introduce for ease of notation the

switched cone £8, defined as the L? cone with its last two components exchanged,i.e.

(2,0,K) ELE (2,4, 0) E LP.

This allows us to describe the dual of £? (which is another solid, pointed closed convex cone

by virtue of Theorem 2.3)

Theorem 5.1 (Dual of £°). Let p,q € R4, such that * + - = 1 for each i. The dual of

L? is £4.

The dual of a £? coneis thus equal, up to a permutation of two variables, to another £?

cone with a dual vector of exponents. We also have (£8)* = £9, (£2)* = LE and (£2)* = LP,
for obvious symmetry reasons.

5.3 Conic formulation for /,-norm optimization

We now proceed to show how a primal-dual pair of lp-norm optimization problems can be

modelled using the £? and £4 cones. Let us start with the primal problem (Pip). The following

notation will be useful in this context: ug (resp. Ms) denotes the restriction of column vector

v (resp. matrix Af).to the components(resp. rows).whase. indices, belong to set, &.

Westart by introducing an auxiliary vector of variables r* € R” to represent the argument

of the power functions, namely we let

ap=q - aly for all i € J or, in matrix form, z* = c— Aly ,

and we also need additional variables z* € R" for the linear term forming the right-hand side

of the inequalities

Zh =d.—- fry for all k € K or, in matrix form, z*=d—FTy.

 



Qur problem is now equivalent to

T T * T . 1 apse oesup by st. Aty+z* =c, F’y+z* =d and S> = I24 ‘<2, Week,

ely

where wecan easily plug our definition of the £? cone, provided we fix variables @ to 1

sup b'y st. Aly+z*=c, F’y+2* =d and (z7,,1, 2%) € LY ke K

(where for convenience we defined vectors p* = (p; | i € Ix) for k € K). We finally introduce

an additional vectoroffictitious variables v* € R™ whose componentsare fixed to 1 by linear

constraints to find

sup b'y st. Aly+2*=c, Fly+2* =d, v' =e and (ri, » Ups 2) € LY Vk EK

(where e stands again for the all-one vector). Rewriting the linear constraints with a single

matrix equality, we end up with

AT x* c k

sup bTy s.t. FT] y+ 2* =| d] and (xj, uj, zf) EL” WkEK, (CPlp)
0 vu e

which is exactly a conic optimization problem in the dual® form (CD), using variables (¥,3),

data (A,5,¢) and a cone C* such that

z= c

g=y,8=| 27), A=(A F 0), b=b,é=([(d] andCt =“? x Lx.x LF,
. e

where C* has been defined according to Note 3.1, since we have to deal with multiple conic

constraints involving disjoint sets of variables.

Using the properties of £?, it is straightforward to show that C* is a solid, pointed, closed

convex cone whose dualis

(C*)"=CH=L2 x LP x-. x Lt,

anothersolid, pointed, closed convex cone (where we have defined a vector g € R” such that

x + x = 1 for all i € I and vectors q* such that g* = (q; |i € I) for k € K). This allows

us to derive a dual problem to (CPl,) in a completely mechanical way andfind the following

conic optimization problem, expressed in the primal form (CP) (since the dual of a problem

in dual form is a problem in primal form):

x (x
inf (ct d™ e') Zz s.t. (A F 0)|z| = and (2y,, vk, ze) € cr forallke Kk,

v v

which is equivalent to

infclo+d?z+eTv st. Ac+Fz=b and (z;,,vp, 2x) € LY forallke K, (CDlp)
 

®This is the reason why we added a * superscript to the notation of our additional variables, in order to

emphasize the fact that the primal [,-norm optimization problem (Pi,)is in fact in the dual conic form (CD).
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where x € R", z € R" and v € R" are the dual variables we optimize. This problem can be

simplified: making the conic constraints explicit, we find

|%

infclet+d'z+elv st. Ar+Fz=b6, 2S <u, Vk € K andz>0,
. iel, 7k

keeping in mind the convention on zero denominators that in effect implies z, = 0 > x,, = 0.

Finally, we can remove the v variables from the formulation since they are only constrained

by the sum inequalities, which have to be tight at any optimal solution. We can thus directly

incorporate these sums into the objective function, which leads to

Ti
inf W(z,z)=clat+d?z+ > a >—|5

k
i (Diy)

keK|ze>0 tel, 7   

* ot Av+Fz=bandz>0,

on mnz=O0S57,=-0VEX.

Unsurprisingly, the dual formulation (Di,) we have just found without much effort is exactly

the standard form for a dual [,-norm optimization problem (Ter85].

5.4 Duality properties

Until now, we have shown how a suitably defined convex cone allows us to model a well-known

class of problems such as [,-norm optimization with a conic formulation. The approach we

took consisted of the following steps:

a. find the definition of a convex cone that allows the formulation of primal /,-norm opti-

mization,

b. compute the dual cone,

c. derive from it the expression of dual [,-norm optimization.

It is worthwhile to note that only the first of these steps requires some creative thinking,

while the second step is merely a question of accurate calculations and the third step is

so straightforward it can be performed in a quasi-mechanical way. This contrasts with the

traditional way of handling a convex problem in the form of (CF), where computing the dual

is the most difficult part.

This conic approach can of course be seen as an interesting method to compute a dual

problem, but otherwise has not yet brought us any new insight about the problem. However,

as stated earlier, the true power of this conic formulation only comes into play when dealing

with duality issues. Indeed, the application of the general theorems presented in Section 3 to

the conic formulation of a convex problem will allow us to derive its properties in a seamless

way.

A few interesting duality results are known for I,-norm optimization. Namely, a pair of

feasible primal-dual {,-norm optimization problems satisfies the weak duality property, which

is a mere consequence of convexity, but can also be shown to satisfy two additional properties

that cannot be guaranteed in the general convex case: the optimum duality gap is equal to

zero and at least one feasible solution attains the optimum primal objective. These results

werefirst. presented by Peterson and Ecker [PE70a, PE67, PE70bj and later greatly simplified

by Terlaky [Ter85], using standard convex duality theory (e.g. the convex Farkas theorem).

Let us now state these theorems and show how they can be proved in the conic framework.
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Theorem 5.2 (Weak duality for /,-norm optimization). If y ts feasible for (Pl,) and
(x,z) is feasible for (Dip), we have y(z,z) > bly. Equality occurs if and only if the following

three conditions are satisfied for allk € K andi é I,

1 i : os (%
2e(D_ 5 le — aryl? + fey—de)=0, ai(q—aly) <0, zlae—aly|* = se . (5.1)

iel, k

  

Sketch of the proof. Theidea of the proof simply consists in showing that the primal-dual pair

(Pi,)-(Dl,) is essentially equivalent to the conic pair (CPi,)-(CDI,), which is known tosatisfy

a similar weak duality property because of Theorem 3.1 (see [GT00] for the details). O

The weak duality property is a rather straightforward consequenceof the convexity of the

problems,and in fact can be proved without too manydifficulties without sophisticated tools

from conic duality theory. However, this is not the case for the next theorem, which deals

with a strong duality property.

In the case of a general pair of primal and dual conic problems, the duality gap at the

optimum is not always equal to zero, neither are the primal or dual optimum objective values

always attained by feasible solutions (see the examples in Section 4). However, it is well-

known that in the special case of linear optimization, we always have a zero duality gap

and attainment of both optimum objective values. The status of /p-norm optimization lies

somewhere between these two situations: the duality gap is always equal zero but attainment

of the optimum objective value can only be guaranteed for the primal] problem.

Theorem 5.3 (Strong duality for /,-norm optimization). If both problems (Plp) and

(Dip) are feasible, the primal optimalobjective value is attained with a zero duality gap, i.e.

1
pt =maxbly s.t So = la - aly!" <d - fly Vee K

i€ly ‘

=infy(z,z)  s.t. {

 

Azt+Fz=bandz>0

an=Osa=0Viek =a.

Sketch of the proof. The strong duality Theorem 3.2 tells us that zero duality gap and primal

attainment are guaranteed by the existence of a dual strictly feasible solution (excluding the

case of an unbounded dual, which cannot happen since the primal is feasible). The idea

behind this proof will thus consist in pointing out a strictly feasible solution for (CDI,).

Unfortunately, it may happen that such a point does not exist, which leads to the application

of the following three-step strategy:

a. Since the linear constraints of the problem may prevent the existenceofa strictly feasible

solution to (CDI), we define a restricted version of (CDip) where the problematic

components of the dual variables have been removed. Hopefully, this restricted problem

(RDI,) does not behave too differently from the original problem (CDip) because the

removed components did not play a crucial role in it.

b. Since this restricted problem now admits a strictly feasible solution, its dual problem

(RPI,) (which is a problem in primal form) is solvable with a zero duality gap.

c. Thelast step of the proof consists in converting this optimal solution with a zero duality

gap for the restricted primal problem (RP/,) into an optimal solution for the original
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primal problem (CPlp), which is enough to show that there is a zero duality gap with

primal attainment between our original problems (Pl,) and (Dl,).

The whole procedure can be summarized with the following diagram:
 

   

(Plp) =  (CPlp) tem (CDlp) = (Dl,)
« Ta
(RPlp) Strong(zero gap) (RDI,)

1
(Attainment) b. (Strictly feasible)

Werefer the reader to [GT00] for the technical details of the proof. 0

It is worthwhile to note that this proof is simpler and shorter than the original proofs

one can find in the literature [PE70a, PE67, PE70b, Ter85], the specificity of the class of

problems under study being confined to the convex cone used in the formulation. Moreover,

the fundamental reason why this class of optimization problems has better duality properties

than a general convex problem becomesclear: this is essentially due to the existence of a

strictly interior dual solution (even if a reduction procedure involving an equivalent regularized

problem has to be introduced when the original dual lacks a strictly feasible point).

6 Conclusions

In this article, we have presented the conic formulation for convex optimization problems. We

hope to have convinced the readerof its various advantages over the traditional formulation,

namely

© The standard primal-dual pair of conic problems does feature a great deal of symmetry.

© The dual problem can beeasily derived once the dual cone has been computed.

¢ Duality theorems can berevisited and proved by means of the general conic duality

theory, which often leads to shortened and simplified proofs and provides additional

insight about the problems (see also [Gli0la] where a work similar to what was outlined
in Section 5 was done for geometric optimization).

© The conic formulation also proves helpful when designing and analysing algorithms: the

theory of self-concordant barriers for convex optimization is derived by Nesterov and

Nemirovski using a conic formulation [NN94], while Nesterov and Todd generalize a
very efficient class of primal-dual methodsoriginally developed for linear optimization

to a class of conic problems built with so-called self-scaled cones [NT97].

© Finally, the. investigatianof the similarities between geometric optimizationand.J,-norm

optimization led the author to the definition of a common generalization of the corre-

sponding convex cones [Gli0lb, Chapter 7]. This resulted in a large class of separable

convex problems defined as

sup by st. So gil-aly)<de-fey VkEK,
ely

where the g,’s are arbitrary scalar convex functions. Duality properties for this seem-

ingly new class of problems appear to be rich and are currently underinvestigation.
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