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1. Introduction

Consider the model,

By Bo By Bp &;
q: = ax: Xig “ree Xy ais 36 e* (1)a Ld

where qs (i = 1,2,...n) represents the gen observation on the

th observation on the pt inde-dependent variable, Xip the i

pendent or explanatory variable (p = 1,2,...,P), assumed non-

stochastic, €5 is the qth value of the stochastic disturbance

term, and a, B4,..., Bp are the parameters. The observations

q; and ip are assumed to be nonnegative for all i and p

This model is generally referred to as the multiplicative mo-

del, and is extensively used in applied regression analysis.

There are two main reasons for its popularity: First, expla-

natory variables are often assumed to interact and the multi-

plicative specification is one way of modeling such interac-

tion without loss of degrees of freedom. Secondly, the model

has the advantage of becoming linear upon applying a loga-

rithmic transformation, that is,

= 6in qi za +B 1nx; ,+81nx; 9+... +Bplnx,pte; 2)
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where a' = Ina. Thus ease of estimation is provided. We may

add that in an economics or a marketing context ease of inter-

pretation can be seen as a third advantage in the sense that

the parameters Bs are elasticities. A major drawback inherent

to the multiplicative specification is its inability to deal

with zero values of the x's or q's, since their logarithm is

minus infinity. Yet zero values for either some observations

of the x's or q's, or both are quite common in empirical stu-

dies. A number of procedures for resolving this difficulty

have been proposed in the literature:

i) the most commonly used procedure is to replace a vector of

observation x, or q containing at least one zero element by,

Xp +1, q+ 1 vespectively, where 1' = (1 1...... 1). Or

to quote from SNEDECOR and COCHRAN:

"If some 0 values of x occur log(x+1) is often used"

[B], p. 329. +
ii) In other cases all Xip are left unchanged, except for zero

values being replaced by ones.

Some authors explicitly acknowledge this data adjustment pro-

cess, while others do not even bother to do so. The implica-

tion being that, one, it is common practice, and two, it is ge-

nerally assumed that adding one to all or some elements of an

observation vector does not substantially alter the model to

be estimated.

iii) Discard those observations that contain zero values. YOUNG

and YOUNG [11] examined the problem of zero values in the

dependent variables and demonstrated that it is more appro-

priate to discard those observations rather than arbitrari-

ly replacing the zeros by ones.

BRANDT [4| observes that in his own work he does not limit

the conclusion to the independent variable only.

Some comments on these procedures are in order. The third one

boils down to explicitly admitting the breakdown of the model

for zero values. Thus, model (1) is in fact redefined for

Xip > 0 , and qy > 0. As a result the researcher will, for



example, be unable to make statements about qs when Xpi =O.
If he wants to do so, he will need a separate model to deal
with just that case. A second consideration which is of much
practical relevance is that after discarding all observations
containing zeros, we may have very few observations left. For
example, with the empirical data to be used in section 3 , on-
ly seven out of twenty four observations would remain. In that
study it will be justified to introduce one of the explanatory
variables with a one period lag as well, in which case exactly
one observation would remain! It thus becomes all the more ne-
cessary to have a model which can handle zero values properly.
One possibility would of course be to take recourse to one of
the other two adjustment procedures (i on ii). These will lead
to almost identical estimates if non-zero values are much lar-
ger than one. Both procedures, however, suffer from a major
drawback, namely, an arbitrary constant (in this case one) is
added. This is hard to justify for the following reasons:
Not only may the magnitude of the constant be important, but
also its magnitude relative to that of the non-zero observa-
tions. As a result the scaling of the observations may be cri-
tical. Adding one to each observation is obviously different
if the variable is measured in dollars, or thousands of dollars,
or millions of dollars. A possible solution would then be to
treat the constant itself as a Parameter. We will examine spe-
cification and estimation issues of such procedure in section 2.
Some empirical results will be presented and commented upon in
section 3. We should add here that our analysis is limited to
the explanatory variable only.

2. Speetfiecation and estimation

Replacing the elements of Xp by Xpi ab Kp leads to the
following reformulation of model (1),

8 Bo Bp €.4 iaks+x; 4) (ko 4x5 9) cree (ky + Xip) e (3)

"q

where the ps vather than being arbitrarily predetermined con-



stants, become themselves model parameters. Some of these may

be set equal to zero. Rather than saying that this will be the

case for each p whose observation vector x. does not contain

any zero elements, it might be more appropriate to set those Ks

equal to zero, that theoretically should be zero. To clarify

this point let us consider the following example.

Suppose retail sales of a product (q;) is related to adverti-

sing expenditures (x54) and distribution (x39) measured by

the number of retail outlets carrying the product. The index

i represents time. If interaction between marketing instru-

ments is considered important, a specification as it would ty-

pically appear in the marketing literature is,

i nt sp? ef oH

On examining this specification, we see that it is not entirely

appropriate. With zero advertising expenditures we do not ne-

cessarily expect sales to be zero. So replacing Xi by Xi4 + ky

seems indicated. As far as the distribution variable is concer-

ned, it should be clear that with Xi0 equal to zero, sales

should be zero. Thus, an improved specification would be,

By Bo 3
Z i

qi =a (x54 + k,) Xi9 e (5)
1

Specification (5) is arrived at on the basis of prior knowledge,

and is independent of whether or not x, contains any zero ele-

ments. The reader may observe that one might get into difficul-

ties when Xj equals zero. From a practical point of view this
2

will not be a problem, since one can hardly be expected to be

interested in studying the sales of a product that is not for

sale.

Returning to the general formulation (3), we note that

the model will be invariant under a linear transformation

(translation and rescaling) of the Xpit That is, the model

will yield the same estimates of the parameters By> and the sa-

me value of goodness of fit, whatever the units of measurements

of the data. Two consequences of the introduction of the para-

6



meters kp are of particular interest. First of all, the 85 can

no longer be interpreted as elasticities. The elasticity of ay

with respect to Xpi indeed depends on Xpi itself , that is,

1 - (6 ay /a;) = & Xi

ag Kis §xip PX Pp kK, + Xip

The second difficulty is the added complexity in estimation and

testing, following from the fact that the introduction of the

parameters Kp makes the model nonlinear in the parameters. The-

oretically, however, least squares estimation will still yield

maximum likelihood estimates, at least under the usual assumpti-

on of normally and independently distributed disturbance terms.

A large number of nonlinear estimation or function mi-

nimization procedures are in use. The special structure of (3)

points to simple direct search procedures such as golden section

or FIBONACCI-search. The direct search need only be applied to

the parameters Ke since for given values of the latter, the re-

maining parameters can be estimated by ordinary least squares.

Direct search procedures may, however, become quite cumbersome

if the number of nonlinear parameters (ky? is three or more.

In that event nonlinear estimation or optimization methods may

seem more appropriate. For the specific problem at hand, they

have the disadvantage of not taking into account the fact that,

for given values of the kp the problem becomes linear upon ap-

plying a simple logarithmic transformation. In our computa-

tional experience several nonlinear estimation or optimization

methods had problems with convergence, and in one case, to be

reported upon in section 3.1, none of those applied did con-

verge. We would, therefore, propose to make use of the special

structure of (7) in developing an appropriate estimation method.

One possibility is outlined below. Let us rewrite (3) as,

Yq = Bo + By25q + +++ + BOZi, + +++ + Bpsp + ey Cry

where y; = Inq, Bo = Ina, and Zap = In(k, + Xip)- Written

in matrix notation (7) becomes,



Ve ZktsS

where y! = (yy Youre yy)? B' = (By By see Bp) >

e' = (€, &9 ves €,)

and & = (2) Zy +s- Zp)

with ZY = (Zzy.+-Z,5)+

Conditional on k' = (ky +++Kp) the estimation of § is the ordina-

ry least squares estimator,

3 -18, = (a'g)* Bly (9)

The unconditional least squares objective is to minimize RSS

with respect to 8 and

k

;

RSS = (y - 2 B)' (y- 2B) (10)

Substituting (9) for 8 in (10) we obtain,

RSS = y'(L - B(B"S) a" )y (11)

which has to be minimized with respect to k. Or since y'y does

not depend on k, minimizing (10) with respect to B and k is

equivalent to

max y’ B (B'g)? Bly (12)

Optimizing (12) can be expected to be more efficient than di-

rect optimization of (10). Computational experience to be re-

ported upon in section 3 has indeed confirmed this expectation.

The first order conditions of (12) are, ag is shown in the ap-

pendix,

Eee) B= OF P (13)

P

The optimization algorithm can then be described as follows:



Step 1. Choose initial values for the elements of k
Step 2. Calculate 8 from (9) and compute the corresponding

residuals é
Step 3. Substitute B and € in (13) and solve for k thus

obtaining new estimates
Step 4. Return to step 2 unless the new estimates of k do

not differ in absolute value from the previous
ones by more than a predetermined small constant 6.

3. Emptrtcal results

The data base used in the empirical study below con-
sists of 36 monthly observations on sales (a, of a food pro-

duct. The explanatory variables are advertising expenditures
(a) in thousands of dollars, promotion expenditures (pr) in
thousands of dollars, price of the product per pound (p.) in

cents, and a competitive price index (Pai: The data base was

split up in two subsets, an estimation sample consisting of
the first 24 observations, a prediction sample made up of the
vemaining 12 . The reader is given an idea of the structure
of the data base in table 1 (the full data base cannot be prin-
ted because of the proprietary character of the data). The
table indicates that there are no advertising expenditures in
just two months, whereas promotion is zero in 26 of the 36 ob-

servations.

Table 1.a : summary information on advertising and promotion

data in the estimation sample

 

 

Number of
Mean auras observations
($,000) observations|With value < 20

(excluding 0)

advertising 87.25 2 2

promotion 60.75 7 0     
 



Table 1.b : summary information on advertising and promotion

data in the prediction sample

 

 

Number of

Mean eee observations

($000) i with value < 20
observations a

(excluding 0)

advertising 78.08 0 4

promotion 81.08 9 0      

The table further indicates that advertising expenditures are

sometimes quite low even when they are not zero. We should al-

so mention that price and competitive price showed relatively

little variation during the period under study and that in ad-

dition they were highly correlated (correlation coefficient of

0.86). We will therefore use Pr = Pe/Pot in those specifica-

tions containing price.

It is of course not our objective here to arrive at the best

possible specification. We just want to use the data base to

illustrate some of the points made and questions raised in sec~

tion 1 and 2. Section 3.1 will deal with estimation, whereas

prediction will be discussed in section 3.2

3.1. Estimation

3.1.12.. One kK parameter

First we examine the case with one explanatory variable

and one kb parameter. We assume here that the only explanatory

variable is advertising expenditures. Model (3) then becomes

8 €
= 1 €

qd, =o (a, + k,) e (14)

Parameters a and By » were estimated using ordinary least squa-

ves for a number of different values of k, - The corresponding

adjusted coefficients of determination R? are shown in table 2.
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Table 2: R2 as a function of ky (equation (14))

 

 

ky RZ

0.001 0.1809

0.005 0.2423

0.01 0.2610

0.05 0.3171

0.10 0.3483

0.50 O.4421

1 0.4923

5 0.6233

10 0.6778

100 0.7703

150 0.7697

200 0.7675   
 

The results indicate that, contrary to what seems to be common

belief, R2 is highly sensitive to what constant is added to ay:

The implication being that adding an arbitrary constant, such

as one, to ay is a dangerous procedure indeed. With ky 2a,

R? = 0.4929 , whereas applying the algorithm described in sec-

tion 2 , the maximum value of R? is equal to 0.7705 with a cor-

responding estimate ky = 144.748 . It should further be noted

that adding ky = 0.001 in our case corresponds to adding one to

all observations in case advertising is measured in dollars ra-

ther than in thousands of dollars. Thus applying the common

+ 1 and with a, measured in
t t t

dollars would have resulted in an R? of 0.1809 as compared to

procedure of replacing a, by a

0.7705 obtained by applying the procedure proposed in this pa-

per. The estimated parameters Bi will of course also be quite

different. This is to be expected since ky = 114.748 differs a

lot from ky =1. But also in terms of interpretation, the re-

sults are quite different. A fair comparison seems to be the

average advertising elasticities derived from these estimates.°

Table 3 shows the results.

11



Table 3: By and average advertising elasticity 1q 4
>

(equation (14))
 

 

By Naya

k, = 1) 0.424 11226

ki =

|

0.603 .2604

414.748     
 

It should be clear that R? will not always vary so dramatical-

ly as in the example above. To show this, let us look at the

following specifications,

8 8 8B, €

a, = a(a,+1) *prytky) Cry +k) e it (15)

8 8 8 6,D, €

= ata, +1) “(prtk,) prey +k) 3 6 Ht 9% (16)

8 8 8 8. €

a. = a¢a,+1) d(pr, +ky) (prey +k,) Sp) Bet (17)

In the above equation Pry-4 represents lagged promotion. In

promotion months consumers tend to buy more than they normally

do. Sales in a post promotion month are therefore expected to

be below their normal level. The expected sign of B3 is nega-

tive. In equation (16) a dummy variable D, is introduced. It

takes on a value of zero except when poth t and t-1 are promo-

tion months. It is expected that B, will be negative. Final-

ly, Bs being the price parameter, it is also expected to be ne-

gative. Table 4 shows the estimated parameters Ky oBy e+ +Bg oR”

and the value of R? obtained with ky zi. The latter is

represented by Rigs The table further indicates the number of

iterations, ns needed to find the least squares estimates.

To examine stability of the estimates, each model was estimated

first with 23 observations (n = 23) (not 24 because of the lag-

ged promotion term), then 35 observations (n = 35). Goodness

of fit improves but not by as much as in the first example.

12



Table 4 : estimates of models (15), (16) and (17) with

n = 23 and n = 35

 

 

Model

|

n ny kK, By B, 8, By 8. R2 R?

(15)

|

23/13] $61.28].04}1.03]-.49 7 = -861).825

€15)

|

35/27 |1135.85].03]2.02/-.99 = = -9121.876

(16)

|

23/23) 268.09].04] .58]/-.26|-.07 - -857].840

(16)

|

35/25] 703.18 ].03 |1.34]-.64 |-.05 = -910 |.887

(17)

|

23)20] 425.50].04] .84]-.39 - -1.17

|

.866].831

(17)

|

35/34] 736.75 |.03 |1.36]-.69 ial - .99] .9151].881             
Looking at the estimated coefficients it would appear that the

advertising, price, and dummy variable coefficients show rea-

sonable stability, when the last twelve observations are added,
whereas the promotion related parameter estimates do not. This
is partly due to the fact that the effect of higher values of

k, is compensated by having higher values (in absolute values)
of Bo and By - This is demonstrated by looking at the implied

average promotion (Ng pr? and lagged promotion (Ng ,pr-? elas-
ticities. As shown in table 5 these elasticities show great

stability indeed. In fact taking a third decimal into account
the six estimates of 7 range from 0.103 to 0.106, those ofd>pr

between 0.046 and 0.052"q,pr-

Table 5 : average promotion and lagged promotion elasticities

in models (15), (16), (17)

 

 

Model n Na,pr g,pr-

(15) 23 +10 605

(45) 35 +10 "05

(16) 23 -11 -.05

(16) 35 o1t -.05

(17) 23 -10 -.05

(17) 35 -10 -.05      
13



3.1.2. Two or three kp parameters

In models (15), (16) and (17) k, was arbitrarily set

equal to one. In model (18) it becomes itself a parameter,

thus making the number of k,'s equal to two:

8 8 8 6,D, €
2 3 yet t

a F a(a,+k,) *(prytk,) (pryiy +k») e e (18)

Estimates for n = 23 are shown in table 6 , where ny again re-

presents the number of iterations the estimation procedure

needed to converge, and RY is the R? corresponding to kp = >

all p. With ky set equal to one, and only Ky a parameter R

changed 0.840 for ky = 1 to a maximum value of 0.857

Table 6 : estimates of models (18) and (19) with n = 23

 

1 Bo 83a ~
™

~ RD
?

ic
o

nw wa

Model |n.

 

(18) 51|78.741126.47|126.47|.25|.26|-.14|-.07|.902|
.840

(19) 26197.45| 14.22|697.83|.29|.09]-.51)-.09 |. 904 ~840            
 

Letting ky be a parameter as well changes the maximum R? value

to 0.902. In models (15) to (18) the same constant k, is

added to both promotion and lagged promotion. Theoretically

these should be the same, since they involve the same basic

variable. If we do not formally impose this asa constraint,

model (19) is obtained:

8 8 B 6,D, €
- t 2 3 yet €

qa, = ala, +ky) (prtky) (pry_4 +k,) e e (19)

We would then expect ky and ky not to be too different. This

is, however, not at all the case as is seen from table 6 .

Table 7 indicates that the implied average promotion and lag-

ged promotion elasticities do not differ much between models

(18) and (19). For values of promotion far from the average;

however, differences may be substantial as shown in table 8

for the case of promotion.

14



Table 7 : average advertising, promotion and lagged promotion
elasticities in models (18) and (19)

 

asa

|

"q,pr} "q,pr-

S
I

siModel

 

(18) +12 -08 -.05

(19) 14 -07 -.04     
 

Since theoretically ky should be equal to k3 it is to be ex-
pected that the model (19) will not perform as well as (18)
when applied to the prediction sample. This point will be fur-
ther explored in section 3.2

Table 8: Ng ra as a function of pr in models (18) and (19)>

 

 

 

Promotion Na,pr

(18) (19)

0 -00 -00

4. -00 01

10 02 04

50 07 07

100 o 2, -08

1000 +23 -09     
We further observe that the goodness of fit of model (19) is
about the same as that of (18). To get an idea of what the
improvement would have been with advertising scaled in dol-
lars, tens, or hundreds of dollars, model (19) was estimated
for these three cases. The results Presented in table 9 show
once again that the improvement of fit over adding an arbitra-
ry constant of one may be substantial.

15



Table 9: R? for various values of ky : ky and k3 in model (19)

 

 

Values of k R?

ky = ky = K = 0.004 0.792

ky = Ky = k = 0.01 0.800

ky = ky = k3 = Owt 0.813

ky = ky = k3 = 1.0 0.840

ky = 97.45 3 Ky = 14.22 0.904

k3 = 697.83   
 

Finally it may be interesting to say a few words about our com-

putional experience. Model (19) was estimated by an iterative

method based on a first order TAYLOR expansion of the nonlinear

model, a by the FLETCHER-POWELL method 1. and by FIACCO and

MC CORMICK's Sequential Unconstrained Minimization Technique

(sumT) [3]. None of these algorithms converged in estimating

model (19). Table 10 shows the estimates obtained by the

FLETCHER-POWELL method after 200 iterations, with initial va-

lues of kp = 1 for all p

The table shows two sets of estimates. The first was obtained

on an IBM 1130, the second on a large IBM 370. The R? was in

poth cases about 0.902 showing that the Rr? function is very flat

flat for relatively large ranges of Ky > ky and k, . 8 The

example clearly demonstrates the power of the special purpose

algorithm based on the results derived in the appendix.

Table 10 : estimates obtained by applying the FLETCHER-POWELL

method after 200 iterations

 

> >

system ky ky k3

 

IBM 1130

|

107.70

|

26.71

|

577.28

IBM 370 85.95

|

44.04

|

608.90     
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3.2. Prediction

In section 3.1 various aspects of estimation of model

(3) were examined on the basis of empirical evidence. It may

also be of interest to examine whether considering one or more

of the k,'s as parameters leads to better predictions. In

this section a number of models estimated on the basis of the
first 24 (or 23) observations are applied to the prediction

sample consisting of the last 12 observations. The quality

of the predictions can be assessed by way of THEIL's inequali-

ty coefficient [9] pp. 32-48 ,

a he

TH, =

—

3228 (20)
36, 36 |
Zoq.s + = oq:
i=a5°> i=25 >

With ky = 1 in equation (14), TH, = 0.1447 , whereas with ky

equal to its optimal value of 114.748 , TH, is equal to 0.1252,
or about 13.5 per cent less.

This is of course no guarantee that ky = 114.748 results in

the best predictions. To examine this somewhat more closely,
TH, was calculated for values of ky ranging from 2 to 120 in

steps of 2. Some selected values are shown in table 11

From these result appears that TH, is minimal for ky = 116,
quite close to the least squares estimate indeed. Table 11 al-
so contains the values of TH, corresponding to values of ky
equal to 0.001 , 0.01 , 0.1 and 1 , this to make evaluation of
the scaling effect possible.

Table 11 : THEIL's inequality coefficient (TH, ) for selected
values of k, (model (14))1

 

TH +1578 61557 .1526 1.1447 .1423 .1351 .1279 .1254 +1253
 

k 0.001 0.04 0.1 a 2 10 50 100 110   
 

+1252 .1252 .1250 .1251
    1 112 114 116 118 17—_ 



Disadvantage of the definition of the inequality coefficient

TH, is that the denominator contains za; » which of course

varies with the model specification and parameter constraints.

It may therefore be preferable to assess predictive ability by

the following variant of the inequality coefficient, which has

the advantage of having a denominator with constant value,

that is, independent of specification and parameter constraints

(21)

 

With ky = 1, TH, = 0.2781 3; with ky = 114.748 , TH, = 0.2394 ,
22

or 14 per cent less. TH, was also computed for values of Ky

ranging from 2 to 200 in steps of 2. Here TH, is minimal for

ky 200 and equal to 0.2367 , only marginally less than the"

value of TH, corresponding to ky = 114.748 . That this is

close to the minimum value is indicated by the fact that around

ky = 200 , ATH, is about 0.00002 for Ak, = 2.

Finally we come to prediction with models involving

more than one kK, parameter. To that extent, models (18) and

(19) are compared with model (16). Model (18) differs from

(16) to the extent that in the former ky is a parameter, where-

as in the latter it is arbitrarily set equal to one. We there-

fore expect better predictions with model (18) than with (16).

In model (19) the condition ky = kg is not imposed in estima-

and k
2 3

must be equal, worse predictions are expected with model (19).

ting the parameters. Since, however, theoretically k

These various expectations are confirmed by the results in

table 12

18



Table 12 .THEIL's inequality coefficient (TH) for ky =

and for ky = Ke (least squares estimates) in mo-

dels (16), (18) and (19).

 

 

 

TH,
Model x

k, = 1 k. = k.
i ci i

(16) 0.0899 0.0591

(18) 0.0899 0.0544

(13) 0.0899 0.0935     
4. Conelustons

In this paper we have reviewed three commonly used

procedures for dealing. with the problem of zero values in mul-

tiplicative models. This led.us to propose a fourth procedure,

applicable in cases where zero values appear only in the expla-

natory variables. The merits of the procedure were illustrated

with an empirical example. At a minimum the results indicate

that adding an arbitrary constant of one may be inappropriate,

since goodness of fit, estimates and predictions appear to be

quite sensitive to which constant is added. At the same time

this paper provides the basis for developing efficient algo-

rithms to implement the procedure. Further empirical studies

are of course needed to fully appreciate the potential of the

proposed method.
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Appendix

Optimal values of the kp are obtained by differentia-

ting equation (12) with respect to kD » for p = 1,.0.,P . and

setting equal to zero, that is,

gi (y' Ca" wt6k
P

Z' y) = 0 (A.1)

which since the k,'s appear as parts of the elements of the %

 

matrix, can be rewritten as a0

n m $ “1 623,

ho: (y' & (a! 2)? Bt y) zt = 0 (A.2)
win: cate OB == = od 6k,
i=1 j=1 ij P

Equation (A.2) can also be written as,

r ecy' & (a'g)* at y) | Z
—=|} 2 9 (A.3)
|6k

 

 

where oo (y' 2 catayt Z' y) is the (i,4)t? element of

 

=1
é(y' & (B'S)

~

By) 6z.. 63
>» and —+1 is the ¢i,4)t element of ——.

68 6k 6k
P P

aa
Applying the chain rule of differentiation we can write,

 

  

 

Tat y) =

~ -4 uf
4 6(2'B) -1|°2

“" BN 4B |g B'+ 2 (B'#) “|iy
ij oi

(A.4)

83
In the above expression 3z is an xm matrix with all

1)
elements except the (i,j)th equal to zero, the latter being

20



equal to one. We can rewrite this as

Tet wi (A.5)

where, e. is an x 1 unit vector, that is, its ann element is

one, all others are zero, and u., a mx 1 unit vector, with

its 3th element equal to one. Using (A.5) and realizing that

the first and third terms in (A.4) are the same, the latter can

be rewritten as,

T6(B'B)
'

oZ,5 a" y. (A.6)
1d

2 yleuu! (ata)Bh y byt

In the above the derivative of (a'g)7t with respect to z.. can
. 12 a 4]be written as

tgy7t '6(B') -1 6(2'2) -1
3a = - (42'S) SenBD (A.7)

ij ij

and 6(B'2) ; a
TeCCB et 2 (A.8)
255 = ay ay = 

where at *Ly4 Zig tee Zim

Using (A.7) and (A.8) and after combining terms, (A.6) becomes

=12 ytegul (a'g)"7 gt y - 2y' B (aig)? gz ul (2'8)I | | | Io
n

K

(A.9)

< i
Since, z = Z'e. » and making use of the fact that both terms

in (A.9) are scalars, (A.9) reduces to,

=2
2elyy' B(B'B) "us - 2 ef B (BIB)
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-2eptly- a atatary|y a gm)a,

= 2e)é Ba, (A.10)

Since (A.10) is the (4,3) TF element of the matrix

Sy! 2 Catayrt 2" y)
SE the latter must be equal to 2 é B'. 

Using this result in (A.3).we finally obtain,

o>a syd gs A grey -we CY’ B (B'B)* Bly) = 2 tr (BE we70
D P

or the first order optimality conditions are,

8B
6k

Pp

1 8B = 0, DF Bas o paP.I
m
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Footnotes

1 That this is often applied in empirical work is exempli-

fied by a study by HOUSTON and WEISS [5] p. 153.

This is not exactly what he writes. In fact he states:

"However, I do not limit this [YOUNG and YOUNG'S | conelu-
sion to the independent variable" [1] p. 101. It is qui-
te clear from the context, however, that he discards ob-

servations for zero values. for the dependent and indepen-

dent variables.

See, for example, NAERT and LEEFLANG (7 Sections 5.313

and 6.3

See, for example, GOLDFELD and QUANDT cy pp. 57-58.

By average advertising elasticity we mean the elasticity

corresponding to the average level of advertising expendi-

tures as computed from the data.

Had advertising been measured in dollars, the change would

have been more substantial. This is to be expected given

the results obtained in table 3 , and will be illustrated

again in discussing the case with three k parameters.

See MARQUARDT [6].

This may also explain why adding or deleting a few obser-

vations may significantly alter the estimates, as was evi-

dent from the results in table 4

It is interesting to observe that this result materializes

although there are no zero value observations for adverti-

sing in the prediction period.
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Since in some cases the same kp may be associated with dif-

ferent x's , a distinction is made here between the index

representing the variable (j = 1,.-- om), and the index for

the parameters ke (p = 1,..-,P). As such the notation

slightly deviates from that in the main body of the paper,

making the results somewhat more general.

For some basic results of vector and matrix differentiation

see, for example, THEIL [10] pp. 30-33 .

See THEIL [10] p. 33 «
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