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1. Introduction

A large variety of location, distribution, scheduling and other prob-

as can be formulated as variants of a mathematical model known as the

vering or set covering problem. A partial list of real world problems to

ch this approach has been successfully applied includes the following

stances (see the Bibliography on Applications at the end of the paper) :

-~ site selection and facility location-allocation problems

- location of emergency service facilities (fire stations, hospitals

etc.)

~ choice of size and location of drilling platforms in offshore
oilfields

- vehicle routing : truck dispatching problem, tanker fleet and

airline fleet scheduling

- crew scheduling for airlines, bus companies, railways

-— the minimum test set (diagnostic) problem (in industry, medecine,

experimental design)

- switching circuit design (electrical engineering)

— distribution of broadcasting frequencies among radio or TV stations

- information retrieval (from computer files)

- assembly line balancing

- stock cutting

- various capital investment decisions
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The (weighted) set covering problem is

(sc) min{ex|Ax > e, x)= 0 or 1, jen}

where A= (a,,), aj, = 0 or 1, tet = {1,...,m}, jen = {1,...,n}, cer”,

eer", and e = (1,...,1). Its mame comes from the following interpretation:

if the rows of A are associated with the elements of the set M, and each

column a, of A with the subset hy of those ieM such that 34; = 1, then (SC)

is the problem of finding a minimum-weight family of subsets Ms

union is M, i.e., which "cover" M, each subset M, being weighted with c

>» jeN, whose

i

The special case when c, = 1, ¥ jeN, is called the simple (unweighted) covering
i

problem.

Another interpretation of (SC) is as follows. Let G = (V, E) bea

bipartite graph, i.e., a graph whose vertex set V can be partitioned into

two subsets, V, and Vos such that Esv, xv, i.e., every edge (i, j)eE is
1 2?

of the form ieV,, jev,. We say that a vertex j in V, covers a vertex i in
2

v, if (i, j)eE. If vertex j has weight c., ¥ jev,, then (SC) is the problem
1 j

of covering the vertices of vy with a minimum-weight subset of the vertices

of V,, with M=V,, N= V), and for jeV,, M, = {iev, |G, j)ez}.

A close relative of (SC) is (weighted) set partitioning (equality-

constrained set covering) problem

(SP) min{ex|Ax = e, == 0 or 1, jen}

where A, e and c are as before. (SP) can be brought to the form (SC) by

writing

min{cx + Gey|Ax - y=e, y>0, x)= 0 or 1, jen}

and then, using y = Ax - e,
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min{-@m + ¢’x|Ax >e, x, = 0 or 1, jen}

with ce’ = c+ @eA, For sufficiently large 8 (for instance, 9 > Z cy), this

problem has the same set of optimal solutions as (SP) whenever thedaveer is

feasible. Both set covering and set partitioning are used in formulating

the problems listed above, and sometimes a mixed covering-partitioning prob-

lem arises. Also, in many real-world situations a few extra constraints may

be needed, which require appropriate modifications of the solution methods.

In the next section we discuss the modeling potential of the set

covering approach, illustrating the problem formulation techniques on several

important classes of real-world problems. In section 3 we describe a class

of algorithms for solving set covering problems, based on cutting planes,

heuristics and subgradient optimization, Finally, as an Appendix we provide

two bibliographies, one on theory and algorithms, the second one on applica-

tions (classified by area) of the set covering and set partitioning models.

2. Modeling Techniques

The high versatility of the model under discussion stems from the

fact that all the real world problems listed above, and a great variety of

other problems, can be formulated as follows. Given

(i) a finite set M;

(ii) a system of constraints on the elements of M, defining a family F

of "acceptable" subsets of M; and

(iii) a function on M defining a cost for every member of the family F;

find a minimum-cost collection of members of F which cover M, i.e., whose

union is M.

The applicability of the set covering model to problems amenable to

this formulation is based on the simple but important observation that in



most cases problems of this form can be solved with a satisfactory degree of

precision by the following two-stage approximation procedure.

Stage 1. Using (ii) and (iii), generate explicitly a subfamily FCF,

> = 1)5 a> with associated costs ey jeN, for which the probability that

r
t

contains an optimal solution is sufficiently large.

Stage 2. Replace the objective function (iii) by cx, and the system

of constraints (ii) by Ax >e, x; = 0 or 1, jeN, where the columns of A

correspond to the elements of F (i.e., ayy = 1if Cia and ay = 0 otherwise),

and solve the resulting set covering problem.

In the following we illustrate this modeling procedure on several

examples.

Offshore Drilling Platforms. To start the exploration of an offshore

oilfield, after fixing the location of the wells to be drilled on the basis

of geological data, one has to choose the appropriate size and location of

the platforms to be used for the drilling (and later for the exploitation)

of the wells. Drilling platforms vary immensely in size and cost, A platform

may handle just one or two wells, or as many as 30-40 wells; it can be just

a few yards high or as high as the Empire State Building; and it may cost any-

where between a few hundred thousand dollars and 100 million dollars. The

best platform/well configuration depends on the distances between the wells,

the shape of the seabed, the depth of the water, the depth to which one has

to drill to reach the oil, etc. These factors define both the system of

constraints on the size and location of the platforms, and the cost function.

Rather than trying to write down explicitly these complicated and highly non-

linear functions and constraints, one can proceed as follows. Given the

location of m wells expressed as a set of coordinate pairs in 2-space,
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yp Wy dorees Wigs Wag) > a set of heuristic rules are defined and put into

a computer program, for grouping together wells that might lend themselves to

being drilled from a single platform, For each such group of wells, say Mi

the cost of the corresponding platform, connecting pipes and other necessary

equipment, is estimated and expressed as a single number cy The wells are

grouped in many different ways, and each group My corresponds to a candidate

platform, i.e., one that may or may not be built. Each candidate platform j

is associated with a cost c, and a column a, of a 0-1 matrix to be used in

a set covering problem, namely aay = 1 if well i is included in the group of

candidate platform i, 844 = 0 otherwise. Solving the set covering (or set

partitioning) problem formulated this way will then select an optimal combina-

tion of drilling platforms to be built. Although the set covering problem

can usually (i.e., up to 1000-2000 columns) be solved to optimality, the

solution obtained is not necessarily optimal for the real problem, since some

combination of platforms and wells may have been omitted in the Stage 1 pro-

cedure of generating platform candidates, But if a sufficiently reliable

procedure is used in Stage 1, i.e., one that does not omit any promising

candidate, then the optimal solution of the Stage 2 problem should be pretty

close to the optimum of the real problem.

Location and Number of Emergency Service Facilities. In deciding upon

the number and location of hospitals, fire stations or other emergency service

facilities dedicated to fill the needs of a certain area, one good criterion

to use is that each point in the area be reachable from at least one facility

in no more than some predetermined time limit t. If the points of the area

(population centers, villages, quarters of a city, etc.) are represented as

vertices of a graph, and the candidates for the location of a service facility

40



as a subset of those vertices, and if the edges of the graph have lengths

associated with them that reflect the time needed to reach an end-vertex of

the edge from the other, then Stage 1 consists of determining, for each

candidate location j, the set M, of vertices reachable from j within the

time limit t. Stage 2 will then solve a set covering problem whose coefficient

matrix A has a column ag for each candidate location for a service facility,

with ayy = 1 if point i can be reached from candidate facility j in no

more time than t, aay = 0 otherwise. The solution gives both the number and

location of the facilities needed, Obviously, the result is a function of

the time limit t, and solving the problem for the relevant range of values

of t also provides information about the cost of improving the emergency

services, or the savings achievable through a relaxation of the service

requirements,

Crew Scheduling. Airlines, bus companies, railways are facing the

problem of scheduling their crews for the flights or trips to be provided in

a given time period. To take the case of an airline, crews based in various

cities have to be scheduled to man the flights of a given time period, say

a week, so as to make the best use of their time, The conditions that have

to be met are those of avoiding conflicts in the schedule, providing for reason-

able breaks between flights, keeping a limit on the number of hours flown

at night as well as a balance between the various crews in this respect,

having each crew spend time periodically at its home base, etc. All these

and other considerations that have to be taken into account give rise to a

highly complex cost function and constraints, hard even to formulate.

Instead of trying to do so, however, one usually sets up this problem as a
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set covering problem without ever writing down the constraints in functional

form. In Stage 1, tentative routes are explicitly generated for each crew,

that take into account the requirements, i.e., exclude conflicts, provide for

breaks, etc. This is done by many airlines through heuristic programs that

examine explicitly a very large number of possible schedules for each crew

and retain those among them that are not obviously bad. Each such candidate

schedule for a crew generates a column a, of the 0-1 matrix A, where aay =l

if schedule j (for a given crew) includes flight-leg i, 4a; = 0 otherwise,

and a cost ‘; which is a synthetic expression of the extent to which schedule

j meets (or violates) the above listed requirements. Here a flight-leg is

a flight leaving a given city at a given time and reaching another city at

a given time. Solving the set covering problem (or set partitioning problem;

depending on conditions specific to each airline), provides a schedule for

each crew that covers all the flight legs to be covered during the period in

question, while minimizing the total cost of the overall schedule (in terms

of inconvenience, or sometimes actual money).

The Minimum Test Set Problem. The following problem arises in environ-

ments as diverse as product classification and quality control in industry,

medical diagnostics, design of experiments, etc. Given a set of objects

Q = {1,...,4}, and a set of attributes (properties) P = {1,...,p} of some

of these objects, find a minimal set S of properties to enable one to distinguish

between the objects; in other words, find a set S¢P such that for every pair

of objects i, jeQ, there exists at least one property keS such that object i

has property k and object j does not have it, or vice versa, In an industrial

context, the properties in question are characteristics that make it possible
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to classify a product (as belonging or not belonging to a certain class,

being or not being admissible, etc.) on the basis of a minimum number of

measurements or tests. In a medical context, one is looking for a minimum

number of tests that one has to perform in order to safely diagnose a disease,

or, which is the same thing, be able to distinguish between diseases showing

similar symptoms. Other applications abound, and the problem can also be

formulated somewhat more generally by assigning weights to the properties

and asking for a minimum-weight (rather than a minimum-cardinality) set of

properties to satisfy the required condition. Here the interpretation of

the weights may be the cost of the tests or measurements (in industry), the

risk involved in the tests (in medicine), etc.

The formulation of this problem as a set covering problem is not so

straightforward as in the other examples discussed above. Let D = (d be
45)

the incidence matrix of objects versus properties, i.e., let D have a row

for every object and a column for every property, with dey = 1 if object i

has property j, Sey = 0 otherwise. Then our problem can be stated as that

of finding a minimum number of columns (or, if the properties are weighted,

a minimum-weight subset of the column set) such that the submatrix of D

consisting of these columns has no pair of rows that are componentwise equal;

in other words, such that for every pair i, k of rows (objects), the submatrix

in question contains at least one column (property) j such that oy = 1 and

a5 = 0, or 45 = 0 and 4 =.

Now define a new O-1 matrix A = (a) with n = p columns, one for

every column of D, and m = } q(q-1) rows, one for every distinct pair of

rows of D and such that, if row k of A corresponds to the pair of rows

ys j, of D, then
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With this definition, the minimum test set problem can be formulated

as the set covering problem

(SC) min{cx|Ax > e, x, = 0 or 1, jen},

where e and N are as before, while c, is the weight assigned to property j

 

(i.e., if we are solving the unweighted problem, c 1, ¥ jen).

 

3. Solution Methods

In this section we discuss a class of algorithms for solving set

covering problems, based on cutting planes from conditional bounds [1, 2].

Several versions of such an algorithm were implemented jointly with A. Ho [3],

and extensively tested on randomly generated and real world problems, with

the conclusion that this algorithm is a reliable and efficient tool for solving

large, sparse set covering problems of the kind that frequently occurs in

practice. With a time limit of 10 minutes on a DEC 20/50, we have solved

all but one of a set of 50 randomly generated set covering problems with up

to 200 constraints, 2000 variables and 8000 nonzero matrix entries (here

"solving" means finding an optimal solution and proving its optimality),

never generating a branch and bound tree with more than 50 nodes. For prob-

lems that are too large to be solved within a reasonable time limit, the

procedure usually finds good feasible solutions, with a bound on the distance

from the optimum (for the one unsolved problem, this bound was 2.3%).
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We consider the set covering problem (SC) introduced in section 1, and

denote

My = {teula,, = 1}, jen; N, = tiewla,, = 1}, ie.

We also use the pair of dual linear programs

(L) min {cx|Ax>e, x> 0}

and

(D) max {ue|uA <c, u > 0}

associated with (SC).

A 0-1 vector x satisfying Ax >e is called a cover, and S(x) = tien|x, = 1}

its support. A cover whose support is nonredundant is prime. For a cover x, we

denote T(x) = {ieM| atx = 1}, where a‘ is thei-th row of A.

The theory underlying the family of cutting planes from conditional bounds

can be summarized as follows (for proofs of these statements, interpretation of

the cuts in terms of conditional bounds, and further elaboration on their

properties, see [2]).

Let zy be some upper bound on the value of (SC), and let u be any feasible

solution to (D), with s = c - uA, such that the condition

qa) Eos, >z,- ue
jes J7 U

is satisfied for some SSN. Let S = {j(1), ..., j(p)}, and let Qa L = My. eee we Bs

be any collection of subsets of N satisfying

(2) = 8 <s jen.1) >
4 | 560, j@) j

Then every cover x such that cx < Zy satisfies the disjunction

P
(3) V (x, = 0, JeQ)-

ist 4
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Further, for any choice of indices h(i)eM, i = 1,..., p, the disjunction

(3) implies the inequality

}® Eo x,>1
jew J

where

P
w= UW \Q,)-ea Se

Finally, if j(i)eQ,, i= 1,...,p, and if x is a cover such that $< S(x),

 and ACL) eT Ge)M, = 1,...,p, then the inequality (4) cuts off x and definesoma
a facet of

P = conv{x ¢ R"|Ax Pe, £ x, > 1, x20, x; integer, jen},
jew

where convV means the convex hull of the set V.

Using the above results, one can generate a sequence of cutting planes that

are all distinct from each other, by generating a sequence of covers x and

feasible solutions u to (D). The covers x provide upper bounds, while the vectors

u provide lower bounds on the value of (SC). Since every inequality that is

generated cuts off a cover satisfying all previously generated inequalities,

and the number of distinct covers is finite, the procedure ends in a finite

number of iterations, with an optimal cover at hand.

The algorithm alternates between two sets of heuristics, one of which finds

a "good" prime cover x for the current problem and a (possibly improved) upper

bound, while the other generates a feasible solution to (D) satisfying condition

(1) for S = S(x), and from it a cutting plane (4) that cuts off x, as well as a

(possibly improved) lower bound, Whenever a disjunction (3) is obtained with p = 1 >
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all the variables indexed by Qa are set to 0. The second set of heuristics is

periodically supplemented by subgradient optimization to obtain sharper lower

bounds.

Though this procedure in itself is guaranteed to find an optimal cover ina

finite number of iterations, for large problems this may take too many cuts,

Therefore, as soon as the rate of improvement in the bounds decreases beyond a

certain value, the algorithm branches.

A schematic flowchart of the algorithm is shown in Fig. 1. PRIMAL

designates the set of heuristics used for finding prime covers, DUAL the

heuristics used for finding feasible dual solutions, TEST is the routine for

fixing variables at 0. CUT generates a cutting plane violated by the current

cover. SGRAD uses subgradient optimization in an attempt to find an improved

dual solution and lower bound. BRANCH is the branching routine which breaks

up the current problem into a number of subproblems, while SELECT chooses a new

subproblem to be processed.

The four decision boxes of the flowchart can be described as follows. Let

zy and zr be the current upper bound and lower bound, respectively, on the

value of (SC).

ly Tf zr > the current subproblem is fathomed (1.1). If z, <z,, and
L U

some variable belonging to the last prime cover has been fixed at 0, a new

Zy>

cover has to be found (1.2). Otherwise, a cut is generated (1.3).

2. After adding a cut, the algorithm returns to PRIMAL (2.1) unless the

iteration counter is a multiple of some constant a, in which case (2.2) it

uses subgradient optimization in an attempt to improve upon 2. Based on some

experimentation, the value of w is chosen such that (|MJ/10) < a< (\M|/20).
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35 If 2, 2 ap the current subproblem is fathomed (3.1). I£ Zp < zy but

the gap 2y 7 2, has decreased by at least ¢ > 0 during the last 8 iterations for

some -onstant B, we continue the iterative process (3.2). Otherwise, we branch

(3.3). Again, based on some experimentation, we use ¢ = 0.5 and B = 4a, with

qa as defined in 2.

4. If there are no active subproblems, the algorithm stops: the cover

associated with zy is optimal (4.1). Otherwise, it applies the iterative procedure

to the selected subproblem (4.2).

Next we briefly discuss the various ingredients of the algorithm and their

role in making the procedure efficient.

Primal heuristics. Most of the procedures we use to generate prime covers are

of the "greedy" type, in that they construct a cover by a sequence of steps, each

of which consists of the selection of a variable aa that minimizes a certain

function of the coefficients of Ripe They differ in the function f used to

evaluate the variables. If ky denotes the number of positive coefficients of %

in those rows of the current constraint set not yet covered, the general form

of the evaluation function is £(c).k,)-

Since it is computationally cheaper to consider only a subset of variables

at a time and since every row must be covered anyhow, we restrict the choice at

each step to those variables having a positive coefficient in some specified

row i,eM, where M indexes the rows. Denoting by R the set of rows not yet

covered and by S the support of the cover to be constructed, the basic procedure

that we use can be stated as follows.
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t = 1, and go to l.

 

Step 0. Set R=M, S =

Step 1. If R=, go to 2. Otherwise let ky = [ane], choose i,¢R, and

choose j(t) such that

ECs (Ey esr? = ae £(e,, kD.

jeN,
*

Set Re RM(gy S © SU{j(t)}, t<t +1, and go to 1.

Step 2. Consider the elements icS in order, and if S\{i} is the support of

a cover, set S¢ S\{i}. When all ieS have been considered, S defines a prime

cover.

As to the choice of i, in Step 1, we order the rows of the initial coefficient

matrix once and for all according to decreasing Ny» and then always choose i, as

the vast element of the ordered set R. Since the cuts generated in the procedure

also tend to have a decreasing number of 1's, i.e, later cuts tend to have

fewer positive coefficients than earlier cuts, this rule approximates the criterion

of always choosing a row with a minimum number of positive coefficients.

If the set Nyin step 1 is replaced by N and step 2 is removed, i.e.

if the choice of columns is not restricted every time to a particular row and

the procedure is allowed to stop whenever a cover is obtained, whether prime or

not, then the above procedure is the greedy heuristic shown by Chvatal [4] to

have the following property: if Zot is the value of (SC) and z the value of
heu

the solution found by the heuristic, then

d5 L2 fue S yeu?heu

where

d = max |M,|,
jeN
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and this bound is best possible. From a practical standpoint, this bound is

of course very poor and it was shown by Ho [6] that there is no better bound for

any function £ used in the above procedure, Ho's proof of this result relies on

the construction of examples for which the worst case bound is attained, and

different families of functions f require different examples. This suggests as

a practical remedy against the poor worst case performance of the heuristic, the

intermittent use of several functions f rather than a Single one. This idea

was implemented and tested with reasonably good results. The following five

functions were considered: (i) cys (id) o/h (iii) c,/logykss (iv) ef, Tog,k55

(v) elk, Mn ky. In cases (iii) and (iv), logyk is to be replaced by 1 when ky =1;

and in case (v), da % is to be replaced by 1 when ky = lor 2.

The five functions were tested on a set of randomly generated problems, with

the result that mixing them intermittently rather than using any one of them by itself

improves the quality of the solution considerably.

A different primal heuristic, that we use every time the subgradient method

is applied to obtain an improved lower bound, is based on the reduced costs

gs, = S, - ua produced by the subgradient method. This procedure sets x =lj

if 85 =0, x; = 0 otherwise. The resulting vector x either is a cover, or else

if row i is uncovered, then 8, > 0 for all ie, and u, can be increased to

uy + a“ 83° This creates at least one new reduced cost s, equal to 0, and for

each auct k we set x, = 1. We proceed this way until every row is covered, after

which we apply step 2 of the first heuristic to make the cover prime. This

second heuristic, though considerably more expensive than the first one (because

of the computational effort involved in the subgradient method), consistently

outperformed the first heuristic.
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Dual hevristics and subgradient optimization. The purpose of these procedures

is to find, at a low computational cost, "good" feasible solutions to (D), hence

"good" lower bounds are the value of (SC). The heuristics used are again of the

greedy type, in that they construct a feasible solution to (D) by a sequence of

steps, each of which consists of selecting a row i,, with a small number of

positive coefficients, and assigning to uy the maximum value that can be assigned
co

without violating the constraints or changing some earlier value assignment. In

choosing i,, priority is given to ieT(x) = {ictla*x = 1}, where x is the current

cover. This is done in order to obtain a reduced cost vector s = c - uA that

satisfies condition (1) for S = S(x), since it is known (see [2]) that this is the

case if u satisfies u(Ax-e) = 0.

While this heuristic (used with minor variations depending on the situation)

provides reasonably good solutions to (D) at a very low computational cost, a

sharper lower bound could of course be obtained by solving (D) to optimality,

After sufficient cuts have been added, the value Zr of (D) may exceed z thusw?

bringing the procedure to an end. However, the computational effort involved in

repeatedly solving (D) by the simplex method is considerable, and increases about

quadratically with the number of cuts added to the constraint set of (SC). On

the other hand, one can use subgradient optimization to find a near-optimal

solution to (D) at a computational cost that increases only linearly with the

mumber of cuts added. This is what we are doing periodically in order to generate

lower bounds stronger than those provided by the heuristic.

Our experience with the subgradient method has been that although it is more

expensive than the dual heuristics often by 1 or 2 orders of magnitude, it

nevertheless pays off if used sparingly, in combination with the heuristics.
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On the one hand, it usually improves the lower bound; on the other, it produces

a set of reduced costs that can be used to obtain improved covers, as explained

in connection with the primal heuristics. At the same time, subgradient optimi-

zation cannot replace the dual heuristics, since it usually provides fractional

solutions to (D) and such solutions tend to yield weaker cuts than the integer

solutions obtained by the heuristic.

Fixing variables and generating cuts. Every time a new solution u to (D) is

obtained either by the heuristic or by subgradient optimization, the algorithm

searches for variables xj such that s, >z,- ue, and fixes them at 0. This4-7

feature comes into play from early on in the procedure, and in the randomly

generated test problems that we solved, the number of variables left by the time

the first branching occurred, was almost always close to the initial number m of

constraints.

To generate cuts, the algorithm uses the results stated at the beginning of

this section. In order to obtain a cut (4) as strong as possible, i.e. with |v|

as small as possible, the construction of the sets a and the choice of the indices

h(i)eM is done sequentially, so that at each step the set Ma

The cut generating subroutine is as follows. Let x be a cover with S(x) and T(x)

ay is minimized.

defined as before, let u be a feasible solution to (D), with s = c-uA, and assume

that s satisfies (1) for S = S(x),

Step 0. Set W=9, S = {ieS(x)|s, > 0}, y =ue, t = 1, and go to 1,

53



Step 1. Let

v, = min{max s: nin(s,|s, 2% ~ yi},
jes 1 Ges

I= {ies|s, =v.j, Q= {ienls, zy), M,= U ™

Choose i(t) such that

Is, \quw| = min [s, \quw|
(*) tet, *

and let {j(t)} = TN; (4) ‘

Then set W~ WN,(,)\Q, YOY + Sp). TE Y 2 zy 80 to 2.

Otherwise set S + S\ {j(t)},

2 3.sl M5e 50H,
s : otherwise

t“t+1, and go tol.

Step 2. Add to (SC) the inequality

xox, >i.
jew J

This procedure terminates after a number of iterations equal to the number

of jeS(x) such that 8, > 0, with an inequality satisfied by every cover better

than the one associated with Zy> and violated by the cover x.

Typically, the cuts tend to become successively stronger during the procedure,

the last few cuts often having just one or two 1's. The total number of cuts

required to solve an m x n problem tends to increase with both mand n, For the

randomly generated sparse problems solved in our experiment, the number of cuts
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needed was typically less than 3m or n/3, This of course refers to the number

of cuts required when the cuts are used within the framework of an algorithm

that also uses implicit enumeration. The cuts by themselves, without branching,

were able to solve all 20 test problems from the literature that.we could obtain,

and all but one of 10 randomly generated test problems with m = 100 and n = 100,

200,...,1000. As to the larger problems, six of the ten 200 x 1000 problems

and four of the ten 200 x 2000 problems that we generated, were solved by

cutting planes only without branching.

Branching and. node selection. We branch whenever the gap Zy - z decreases

by less than ¢ = 0.5 during a sequence of 4 @ iterations, where a is the frequency

of applying the subgradient method (in number of iterations). The algorithm

uses two branching rules intermittently, The first one is based on disjunction

(3), the second one is a variant of the dichotomy proposed by Etcheberry [5].

Since our tests showed that none of the two rules dominates the other, we use

both rules, with the following choice criterion: since rule 1 fixes more variables,

but at the cost of creating more branches, we prefer rule 1 only if it fixes

more variables than could be fixed by creating the same number of branches through

binary (dichotomic) branching. More precisely, we choose rule 1 if, while

creating p branches, it fixes at least p logop variables. As to node selection,

we use the LIFO rule.

Computational experience. A detailed account of our computational experience

is to be found in [3]. Here we reproduce only the results on the largest 10

test problems, a set of randomly generated problems with 200 constraints and

2,000 variables, with 8,000 non-zero entries in the coefficient matrix and with

costs drawn from the interval [1,100]. The results are shown in Table 1.
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Table 1. Results on 10 randomly generated problems.

 

 

 
 

| Before first branching Nodes in Time

No. Zz Zz Zz. Variables search tree Cuts Dec 20/50

opt u L left seconds

1 253 256 250.6 204 30 473 327.9

2* 307%** 315 299.3 408 >51 >625 >600

3 226 226 226.0 0 1 0 26.9

4 242 247 240.3 258 49 765 393.2

5 211 211 211.0 0 1 15 38.7

6 213 213 213.0 0 1 “10 32.7

7 293 296 291.0 173 15 298 248.7

8 288 288 286.1 125 28 413 241.4

9 279 281 276.2 181 7 118 140.6

10 265 265 265.0 0 1 0 25.9       
* Time limit of 10 minutes exceeded.

*k Best solution found in 10 minutes.

Based on our computational experience, we can assert that the above described

algorithm performs considerably better than earlier procedures proposed in the

literature, and is in fact a reasonably reliable, efficient tool for solving

large, sparse set covering problems, as well as for finding good approximate

solutions to problems that are too hard to solve exactly.
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