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Summary.

Expressions are derived for the mean value and variance of the areas

of exceedance of functional bounds for second order stochastic process X (4)

in the interval (0, T) and applied specially to normal stochastic processes

Finally, bounds for exceedance planning are obtained.

1. Introduction.

In the study of the behaviour of the stochastic process associated

with the deterioration or aging of many engineering systems, one of the

performance indexes used is the random time that the stochastic process

exceeds some previous bounds.

A close scruting of the problem suggests that in many situations, as

deterioration studies, the random amount of time spent outside the bounds

is not very important provided that the amount of exceedance is small and,

on contrary, if the amount of exceedance is large the deterioration of the

system may be very large even if the time of exceedance is short.

The deterioration may be considered, in simple cases, simultaneously

proportional to the intensity and the duration of the exceedance, that is, to

the area in which the excursion of the stochastic process exceeds the bounds.

We can even, more generally, introduce a response function or deterioration

intensity, the area corresponding to the proportional response function.

In manysituations we can, only, be interested in upper or lower exceed-

ances (that is, the exceedance of the upper or lower bounds); we will also

consider, for the exceedance of both bounds, the case in which there is no

compensation by the exceedance of the bounds as well as the case in which

the exceedances, having different signs, may compensate the effects.

The bounds are considered as levels of risky situations to be avoided ;

we will assume that they may be variable with time,

A study of this problem for a normal stationary process was made by

Leadbetter (1963).
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2. Basic Results.

Let X(/) (0 < # < ew) be a second order stochastic process with an

almost surely continuous sample function, mean value function j.(f), variance

function 9°(/) and correlation function p (f, 5) [the correlation between X (#)
and X(5)].

Let A(t) and b(t) [—o < b(t) < bi) < + co] be the bounds in

whose exceedance we are interested. In practical problems wewill, in general,

use bounds such that

b0) <n < 6, (1)
and, even more, symmetric bounds such that

bY) + bU) = 2p(). (2)

Associated with the stochastic process we can define two exceedance

stochastic processes (upper and lower) as

Yi) = XQ — A) if XW > BD)

= 6 if X() < (4) (3)
and

XY) = b) —XW if X() < BY)

=0 if X() > b(). (4)Vv > =

The total exceedance Y(/) and net exceedance Y,(f) stochastic processes

are evidently given by the relations

YW) = XW) + YO =1¥.(—)|

Yo() = XV) — YO) (5)
Y(#), Y(#) and Y(f) are always non-negative.

The random areas of exceedance are then, for the interval (0, T),

Tt
upper exceedance area A(T) = J Y(t) dt

o

T

lower exceedance area A(T) = f Y(t) dt
oO
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total exceedance area A(T) = f Y() dt = ‘A(T) + A(T)
0

net exceedance area A(T) = i Yo (t) dt = A(T) — A(T).
°

The two random variables A(T) and A(T) are evidently the basic ones

and, in the sequel we will deal only with them. Let, then, denote by

m(T), m(T), 52(T), $2(T) and r{T) the mean values, variances and correla-

tion coefficient of A(T) and A(T); the analogous values for the other areas

are immediately deduced from previous formulae.

We will compute, now, the general expressions of this quantities. Let

F(x; 4) and G (x, 93 4,5) be the distribution functions of X(é) and of the

pair [X(), X()].

The mean values have then the expressions (#7denoting the mean value

operator)
+00

m(T) = fom [YO] de = j (Si fl — Fad] ax | dt (6)

and similarly
f° b

m(T) = if fo F (x; #) dx| dt (7)
[Y=° J

For the computation of the variances and covariances we have

R(T) = i; f cov [¥(), ¥(s)] dt ds

with

cov FUYON = fof16 bain IF es DEG Maedy @)

e(T) = f. f cov [Y(/). X(s)] de ds

with
b(t), b(s)

cov [Y(), Y()] = f. f. [G(x 954 JEON Ess) 4xdy (0)

and r(T) 3(T) s(T) = f s cov [Y(), Y(9)] de ds
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with
my

cov [Y(¢ » 954,

5s)

dx dy (10Iv = ff POD F Os) —G e956Axdy (10)
In the cases of symmetry we have :

wi(T) = m(T)
5(T) = s(T). (11)

3. Some Special Processes.

Let us now suppose that X(¢) — p(?) / o(t) is stationary of first order,
that is,

Fost) = Fy lx — p()/o()] (12)

and let G, be such

G(s 7545) = Golx — pl) [ol ¥ — wl) /o(); 4.5] (13)

Supposing, also, that the reduced bounds are constants and B we have

v

w(T) = fu (| dx f a(t) de

m(T) = srko(x)| dx .ao(t) dt

HD) = ffal) obSf S"[Go934 9 —Fola) F()] dx dy} dt ds

s*(T) II

and

r(T) 3(T) s(T)

ed S fio o(s) se [Fo(0) Fu) — Gas 736.) dsedy } deds

Let us, finally, consider a normal stochastic process, It satisfies pre-

vious considerations with F,(x) = (x) the standard normal distribution

function and G,(x, y; 4 5) = © (x, 9) the binormal distribution function
p

with standard margins and correlation coefficient p = p (#, 5); we will also

suppose the symmetry of the reduced bounds B =c>0,p=—c.

ff o(d) o() (¢ I [Go (e, ¥54, 5) — Fo(x) Fy (y)] dx dy} dt ds
(14)

(15)
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Applying the formulae obtained we have, owing to the development

oO i

&(x9) = Do) 0) (16)
j=o 7+

given in Cramer (1946),
© +00

m(T) = m(T) = f o(/) dt f. [L — (xdx (17)

=I: f o(2) o(s) \fSf [&, (x9) — &() @()] a dy dtds
©

 = f J o(t) o(s) {5 ©leno dids (18)

where Q(x) = 1 — (x) (using integration by parts) and, also,

H(T) F(T) 51) = f° J ott) a(){ 3oF [Qen(o) de ds

(19)

Let us apply, now, those considerations to the normal stationary and

brownian motion stochastic processes.

In the first case we have p(¢,5) = p(|f— 5|) and o(f) = 1 (say) so

that

iT) = mT =T. LB — el de (20)

eo G4) 2

ay = 9m =2 3 C7y Pata ee a ey
and

eo GD(¢ v

ney en ty) = 2 & Ayfare a ea

which are contained in Leadbetter (1963) results.

For the brownian motion process as we have p(t) = 0, o(/) = vt (say)

and p(t,s) = min (z, 5) / V/s we obtain, after simple computations,

2 400
7i(T) = mt) = > TH f= 20) & (23)
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(I) = #(T) = — 2 7G+3) (24)
and

“ty at) = 2S (yy IOPOr#(T) (T) = 5 = (—1) jG 43) (25)
from which follows that

«oO 2 [QO(c)]? ca [(Q4) (0)?nT) = (ay ROOF,

5

ror 6O= 2 OW Era! Z Fees) 9)
independent of [, a result that could be expected.

4. Exceedance Planning.

Let us deal now with the problem of obtaining information for planning,
based on previous sample results. For simplicity of exposition we will deal
only with the essentially positive total area, the signed net area and the
upper and lower areas being dealt with similarly, -

Let A,(T), ..., A,(T) be a sample of random total areas for n excur-
sions of the stochastic process X(#) and let K(@) be the distribution function
of the (random) total area A(T).

For the next observation of an excursion of the stochastic process we
have

+00
Prob {A,,,(T) < max [A,(T), ..., A,(T)}} = f K(a) dK»(a) = njn +1;

if we have 19 excursions of the stochastic process, for instance, the pro-
bability that in the 20th excursion the maximum of the observed total areas
will be exceeded is 51%.

We could suggest the use of a safety factor v (> 1) — see Freudenthal
(1963) — and search what is the value of

inf Prob {A,.,(T) < v max ([A,(T), ..., A,(T)]} > n[u+1.

It is sufficient to take the family of distribution functions

K(@=0 if a<0oT
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to obtain

inf f K (va) dK°(a) = njr +1;

as it stands the lower bound cannot be improved. The same san be said

about the more general problem dealt with in the following.

Consider now the question of evaluating the probability that, from a

previous sample of n excursions of a stochastic process, in the next mexcur-

sions the total area will be between the ‘th and jth ordered total areas. Its

value is evidently given by

ff SOL K@—KOEO™ |} —K@P aKy) 4Ke)
O0<yKzK4n

(27)

 

so that for » and m fixed we can search the values of 7 and jto obtain

some level of probability, provided they are compatible; see Tiago de Oli-

veita (1952).

The use of a safety factor for the average does not seem very pro-

mising for exceedance planning, as it can be easily seen.
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