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ABSTRACT

This papergives a generalization of a risk process under experiencerating in the sense

that a Brownian motion is added to the classical model. When the aggregation of claims

up to timet, is a diffusion or a compound Poisson process,the probabilities of ruin, both

in transient and infinite horizon time, are studied.



1. INTRODUCTION

The problem of perturbed experience rating

The principle of experience rating is to adjust premiums

continuously (in our paper) on the basis of previous information.

Premiums should match the amount of claims and should, at the

same time, if possible, take into account the market environment.

For example, when the profitability is good, the solvency

margin increases to a high level, this stimulates competition

and implies new companies drawing up tariff or premium reductions

(which suppose that free competition is authorised). Conversely,

when the profitability is bad, the insurer should collect more

money and consequently increase premiums to face risk exposure.

A familiar example is the bonus-malus rating in automobile

insurance. For these reasons, we can consider an "experience

rating" mathematical model.

Nevertheless, there is a difference between examining premiums

in theoretical way and how they actually appear in reality.

Actually in practice, the insurer uses "some kind" of experience

rating system, which is not based only on risk-theoretical bases

but also on other circumstances, let us say, indirect influence

factors like :

1) uncertainty on inflation ;

2) Up to date statistics not being available at the time

of calculation ;

3) uncertainty due to a lack of precise knowledge about

economic activity.

etc.

For example, when industrial and commercial businesses are under-

going a tremendous upswing, this tends to accelerate motor

and other traffic, which in turn, tends to increase the number

of claims.

On the other hand, during recessions the effects are mainly

opposite. So to take into account these indirect influences



we will add, to the "experience rating" model, a perturbation

by introducing a Brownian motion for the continuous case

considered here (section 3).

In section 4 and 5 we study the case where the aggregate

claims up to time t is a Brownian motion with drift and

compound Poisson processes respectively.

Moreover, we apply the results of GERBER's paper 1973 (4]

to calculate an upper bound for the ruin probability before

time t.

Remark

PENTIKAINEN AND RANTALA [9,10] in their studies of the

insurance industry in Finland, suggested, in §2.2. Vol.IT

"Models for premium fluctuation", to perturb the experience

rating model with a "white noise" (discrete case) and gave

solution to premium calculation for a very simple case.

DESCRIPTION OF THE RISK PROCESS

We consider a risk process in which the total premiums

received in the time-interval [0,t] is denoted by P(t),

and (S(t), t 2 0) represents aggregation of claims up to

time t, we assume that the processes P(t) and S(t) are

Markovian and defined on a probability space (2,T, P).

Finally, let Z(t) be a surplus of a company at time t,

t > 0 and write x for 2(0). We have

(1) z(t) = x + P(t) - S(t) = t wv °

Obviously, Z(t) is one-dimensional Markov process.
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Consider a risk process satisfying(1) except that

each element of premium paid is modified by a refund or

surcharge according to the stochastic differential equation

(2) d P(t) = (p - k (P(t) - S(t))dt + odW(t)

with P(0) = 0 a.s.

and where : (i) p is the base premium constant rate

(ii) (W(t), t 2 0) is a standard Wiener process

independent of (S(t), t 2 0)

(iii) o is a positive constant, k being the

"experience rating factor" (0 < k < 1).

Equation (2) is a linear stochastic differential equation.

From GIHMAN AND SKOROHOD [6] we have the solution

(3) P(t) = exp(J* = kas) (f° exp(- f*- kdu).(p + k8(s))ds

+ ol exp(-)f*- kdu)odW(s)]

or equivalently

C3") Pe) = e KER CoE ~ 1) ee Off eK s(s)ds + oX(e))

fe aks
where we define X(t) = dW(s).

From the relation (1), it follows that

solketak) ee SKE Ost eK S8(s) ds(4) ee) =a 4 2=

+ eX® ox(t) - s(t).

In view to characterize and reduce this expression we have

the following two propositions.



Proposition 1

X(t) is a gaussian process with zero mean and with
 

covariance

puinten td e2ku au
(5) cov(X(s), X(t)) =

For the proof see for example ARNOLD [1] chapter 5.

By elementary computation we can write relation (5) as

(5) cov(x(s), XCE) = x (e7REMEPCES) yy,

Let 1(t) = (f* e§® dn(s) where

(n(t), t 2 0) is a stochastic process defined on (2,0, BP),

and having stationary, independent increments, finite variance

with n(0) = 0 and belonging to D [0,”),where D(0,~)

denote the space of functions on [0,”) that are right-continuous

and have left hand limites.

We have the following result, justifying the integration by parts

for the stochastic integral ECE) 2

*
Proposition 2

The process (I(t), t 2 0) is well defined, a.s. finite,

and every sample path satisfies the following relation
 

(6) r¢t) = ek ae) - kf ek® n(s)ds.

Furthermore, I(t) is a.s. in D[0,~)

*
This proposition was pointed out by Harrison in [7].



Proof

co kt is ; 4 z a
Since e is a continuous function of bounded variation, we

can apply lemma 1 chapter 3 of [2] for the function n(t) ;

then the proposition follows form theorem 2 of DUNFORD and

SCHWARTZ [3, p.154].

So, from (6) put n(t) = S(t) (when S(t) satisfies the

conditions on ») we can rewrite (4) as

Skt -kt
e(7) a(t) = x # BU - BRE) - fF eK a s(s)

°

+ ek ox(e)

THE DIFFUSION PROCESS

Assume now that S(t) satisfies the differential (stochastic)

equation

ds(t) = mdt + o, dW, (t)

where m is a constant and w(t) is a standard Wiener process

independent of W(t).

Then the relation (7) gives

(8) Z(t) = x + 2a = ekFy ~ oRE ye OES nas

kt
+ eo (ao, X(t) + oX(t))

1

where we define, as before,

t ks
K,(t) = of eo” aw, (s)

From proposition 1 (x,t), t 2 0), is a gaussian process inde-

pendent of (X(t), t 2 0) with zero mean and as covariance

function

cov(k, (9), X,(t)) = (e?R(min(t.s)) 4)ale
2k



It is well known that the sum of two independent gaussian

processes is a gaussian one. So we can write :

(o, ¥,(t) + oX(t)) = oX(t)

where (i) (X(t), t 2 0) is a gaussian process with zero

mean and having the same covariance function

of (x, Ct), t 2 0)

Gi) 37 04 + 0?

So write from relation (8)

z(t) = x + Z(t)
with

ekty skt(9) Z,(e) = Ba - + oek* Kcr)

It is clear that (2, (t), t > 0) is a gaussian with independent

increments.

4.1. An upper bound on the probability of ruin

We are interested in the variable "time of ruin" defined

as usual by

T = inf {t 20 ; Z(t) < O}

Introduce the usual probabilities of ruin, respectively on

finite and infinite horizons :

pe [ T<t / Z(0)

eB [ T<» / 2(0)

¥(x,t)

¥(x)

x],

sali.i 1

GERBER [4] shows that

(10) ¥(x,t) < min e™* max wlet 2169)],
rx O<s<t

Now, as

a 1
Z(t) = J (m(t), s(t))



with

=kemt) =~= e**)
2

2 6 =2kt
so (t) = aR Git = ie )

where u=po-m,

we can write

Cit) we lek41 6] = exp [- rm(t) + 4 s®cepr7

For fixed t, the exponent in (11) is 0 if mr, ere 0,

- aor 2 = ry(t) = 5 re
ge Td oe

so, for r > ry(t) it is positive and increasing.

Consequently, the maximum in (10) is 1 if O<r< ry(t)

This reduces (10) to

a2

Gi VGe0) So ominw “expinx = 28Gi-- Sy eine?5 k ak
r2r y(t)

We find (by differentiation) that the minimum is assumed by

 

 

_ 2 kx + p( - et)
O13) tain 7 s2kC178 EF)

Consequently, we have

i" -kt =kt
Ga) vle,e) < exp(l Peet WO fe) pg whee gj

2 =2kt kx
ok (1-e )
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4.2. The ultimate ruin is certain

In order to calculate ¥(x), recall that

(15) 2(t) = ESF Ex ef + BoeKE ~ 1) 4 5 x]

and define

ic ae
(16) Ce) = x eK Boek 4) 4 ox,

Obviously T = inf{t > 0; c(t) < 0}.
We have

Proposition 3

*Z(t) is a diffusion process with a drift u(y) =p - ky,= s
where » = » + kx and an infinitesimal variance : a (y) = 3?

It is clear that Z(t) is gaussian and has continuous sample

paths with independent increments, the first two moments of this

process are

IE Z(t) =x + ga - ee)

32 a2ktvar(Z(t)) = S21

-

e°KF)

Thus, we can represent Z(t), by what HARRISON [7] called,

compounding Brownian motion,

jw Se Gi = 22%) t
V2k

okt
e  Vv °(17) Z(t) = x + Ba

From this, it follows that Z is a strong Markov with

stationnary transition probabilities, so it is a diffusion.

An elementary computation show that

Wtu(y) = lim  wlz(t + bt) - Z(t) / z(t) = y] (uo + kx)- ky.
atro AE

and

oy) = tim  wr(zce + ae) - 2(e))2 / z(t) @ y] = 8?atxo AF

1



Consequence

In fact Z(t) is an Ornstein-Uhlenbeck (0.U.) process.

To verifie it, let us recall the classical 0.U. denoted by

Z(t)

=e 2atZ(t) =e “F wile **)

eefe fh Vay e%8 aw, (s)
-©

where We i= 1,2 are two copies of a Brownian motion and

a positif constant.

Obviously, from proposition 3, Z(t) is an 0.U. process with

Z(0) = x and it is well known that the 0.U. Process reaches with

certainty the exterior of the interval (0,), which implies,

for our problem, that the ruin is certain.

Another proof is the following, let us represent

c(t) by the compounding Brownian motion

 

 

(49) g(t) = xek e Boo*KE — 4) 4 2 wce2*E 4) bd 0
V2k

and let

2kt
v=ze - 4

and

* 2kT
v =e - 1

*
So that v is the first v 2O such that

(20) w/v + T+ Ev FT - 1) + 2 wy) = 0 v>0
¥2k
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or

 

* *

(21) WW) = +B = f(v )

with

a = BE ix eH)
oO

and
2kpe RS

kG

from the fundamental Wald identity in continuous time,

applied to f(v), (see for example SHEPP (12]), it follows

that ¥(X) = 1 a.s.

THE COMPOUND POISSON PROCESS.

Let S(t) be a compound Poisson process; we can write

N(t)
= A.

i(22) s(t)

 

where {A.}. 5 is a sequence of positive independent,
ivii2t

identically distrubuted random variables with a common

distribution function F(.), and {N(t), t 2? 0} is a Poisson

stochastic process, independent of the fA isy » having

parameter d.

Moreover, we assume S(t) independent of (X(t), t 20),

defined in section 3. In the context of classical risk theory

Ay denotes the amount of the zon claim (i = 1,2,..-+)

and N(t) represents the total number of claims

occuring in the time-interval (0,t1.

t kt
foeThus, the Riemann-Stieljes integral d S(t) becomes

N(t) og

(23) £ e iA;
i=

where tyotorrees denote the times at which claims occur.

I3



The surplus process (7) is now
N(t) ;

_ Po, - zkty _ ckt kti =kt
(24) 2(t) = x + EO ee) e az, ¢ A, + oe x,

or equivalently

N(t) :_ kt kt PB kt _ _ kti
(25) Z(t) = efx ee + y Ce 1) + oO, a21 ° Av]

skt pe
=e (x, xX]

where

y 8 kt Pp, dt _
(26) X= xe te (e 1) + OX,

"

x
(27) X&,

 

As before, X, is a gaussian process with independent increments
y k

with E(X.] =x est +2 Gi - 1)
t k

2wy ot Okt _
var[{X,] 2 oR Ce ADs

Consider Z(t) = Z(t) - x

Obviously Z(t) is a process with independent increments,

then we can apply GERBER's result [4] to calculate an upper

bound for ¥(x,t).

In our case, we have

(28) ¥(X,t) < min gure max exp E fe7teCt) y
E O<s<t

a *
Since (X(t), t20) and (X (t), t?0) are independent, (28)

reduces to
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(29) ¥(x,t) < mine ™* max exp{-r(x + 2)(e*® - 1)
kr O<s<t

Zz
a 2ks 2 *

+t i Ce = je" + K (e,s) }

* . *
where K (r,x) is the cumulant generating function of X

From C.G. TAYLOR's paper [13], we have

kt
‘ 2A (te au)=1(30) K(rys) = © LS re

where a(u) denotes the moment generating function associated

with F(.). As in section 4, we can only consider values

of xr such that r > ry(t) with ry(t) being the unique

real and positive solution of

2
(31) =r Ge + Bycek® - 4) # LD(e?kE ye? et * (r,t) = 0.k 4k

Then

. Py, kt(32) ¥(x,t) < min exp[-rx - r(x + £)(e - 1)
kr>r,(t)

tay? CEa fe r ry

Example

if F(x) =1-e* ive.

negative exponential claim size distribution, then we have

* 1 1-
(33) K'(r,t) = £ log (—+—4_}

i—-nrTne

Some numerical results will be given in the future.

15
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Remarks

1) When o = 0 we have a case treated by Taylor in [13]

2) If we take for S(t) a linear combination of a compound

Poisson and Wiener processes (but independent), the whole

analysis, in section 4 and 5 is still valid.
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