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ABSTRACT

Weconsider a system of two queuesin tandem with a finite intermediary buffer. We examine

the influenceofvariability in service requirement at the second server, on the behaviour

of the system.



Introduction

The queueing model considered here consists of two units in series

with a finite intermediary buffer. Arriving customers enter an infinite

buffer in front of Unit I. After being served at Unit I, a customer enters

a finite buffer in front of Unit II if the buffer is not full; if the buffer

is full, the customer under consideration may not leave Unit I, which thereby

becomes blocked and unable to process waiting customer. At a later time,

Unit I becomes available again, in a manner to be described later.

In many practical situations, e.g. in data communication networks,

the use of an intermediary buffer is dictated by the physical necessity of

decoupling the functioning of Units I and II. In other circumstances, it

may be advantageous to use an intermediary buffer, in order to render each

unit less dependent on random fluctuations in the functioning of the other.

Our purpose in the present note is to examine how the variability

of service requirements at Unit II influences the functioning of Unit I.

The mathematical model and method of analysis are described in the next

section, In Section 2 are defined the parameter values chosen for the numerical

analysis, Some results are presented and discussed in Section 3.

For a survey of the literature on such systems, we refer to the biblio-

graphy in Latouche and Neuts [1], where a similar system is studied.

1. The mathematical modet

We assume that customers arrive in the system according to a Poisson

process with parameter \; the duration of service at Unit I is exponential

with parameter y; the service at Unit II is phase-type (PH) with representation

(a,T); all random variables are independent.

PH distributions form a general class, defined and extensively analysed

in Neuts [2]. In short, a random variable has a PH distribution if it may

be represented as the time until absorption for a Markov process with one

absorbing state. They are characterized by the number m of transient states



(or phases), the stochastic m-vector a that gives the initial probability

distribution on the transient states, and the infinitesimal generator T,

of order m, that determines transitions among the transient states, Erlang,

hyperexponential and Coxian distributions with real, positive parameters, all

are special cases of PH distributions.

Customers who have not yet been served at Unit I are called 1-customers;

customers who have been served at Unit I but not at Unit II are called

2-customers., The intermediary buffer is finite and we denote by M the maximum

number of 2-customers : there are at most M-2 such customers in the buffer,

one being served at Unit II, and one unable to leave Unit I when the buffer

is full.

We assume that when Unit I becomes blocked, it stays so until there

remain K 2-customers in the system, 0<KSM-1!. The case when K=M-] means that

Unit I operates again as soon as one 2-customer finishes its service, thereby

releasing one space in the buffer and allowing the blocking customer to leave

Unit I. The case when K=0 means that the buffer and Unit II must become

completely empty before Unit I may start functioning again.

The quantity M-2 may be thought of as a technological constraint on

the buffer size, while K determines a control policy, to be used e.g. if there

are costs associated to the shutting off and starting up of Unit I.

Under the stated assumptions, the system may be described as a Markov

process on the state space {(n,i,j);n>0, i=0,1,...,M-1,M',(M-1)',...,(K+1)'5

1<j<m}, where n is the number of I-customers, i is indicative of the number

of 2-customers and the state of Unit I (a symbol ' meaning that Unit I is blocked),

and j is the service phase at Unit II. Since n may change by one unit at most,

that Markov process is a quasy-birth-and death process of the type extensively

studied by Neuts [2]. The corresponding analysis is well documented in the

literature and shall not be reproduced here, for lack of space. The interested

reader will find the general theorems in [2].

In Nicolas [3], the theory has been applied to the model at hand, and several

specific results have been obtained. To obtain the stationary probability

distribution, it is necessary to compute a matrix of order N=(2M-K); the

algorithm developed in [3] is such that no other matrix of that order need be

stored.
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2, The numerical analysis

The stochastic process is specified by the following parameters :

- the input rate i,

- the service rate yp at Unit I;

~- the maximum number M of 2-customers;

- the control parameter K;

~ the representation (a,T) of the service distribution at Unit II.

Our purpose is to measure how variability in service requirements at

Unit II influences the bahaviour of the system. A frequently used, global

measure of variability is the ratio C of the standard deviation to the expected

value. We have constructed, for a number of values of C, several PH-distributions

with the same value for C. For each, the expected value equals one, thereby

the unit of time is fixed.

The queueing system is stable if and only if 4 < A___, where isa
max max

non explicit, but easily computed, function of all the other parameters. This

we have firstly examined,

We then have studied, for certain values of A, the queue in front of

Unit I and Unit II and both the stationary probability Ts that Unit I is blocked

and the stationary probability ™ that Unit I becomes blocked at the end of a

service : Ts and ™ give different information since the former is a time-average,

while the later is a customer-average.

3. Numerical results

3.1 The maximal arrival rate. We have systematically observed that it is

an increasing function of K, for fixed uy, M and (a,T), therefore it is

best to set K=M-1 in order to maximize the throughput of the system.

Also, it is a monotonically increasing function of u, for fixed K, M and

(a,T) : see Figures 1 and 2 where different PH-distributions are identified

by their coefficient of variability C. Not surprising, date is bounded

aboved by the minimum of y and (E [service at Unit 111)7!,
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The stationary distribution of the system is similarly affected by the

variability of the PH-distribution (a,T). We display on Figures 3,4 and 5

respectively values of mp ™ and Ms where m,=E (number of i-customers) ,
2

i=1,2, and 1, is the stationary probability that Unit I is blocked.

To compare different systems under “equal load" conditions, one

may either impose the same rate of arrival \, or the same ratio PFAALae

Because of the large differences in a for different distributions

(a,T), one may not confuse the two definitions. Since A is the real systems

parameter, we display m> ™, and m, as functions of X. In order to keep

part of the information that might be contained in p, we have marked each

curve by dots corresponding to the values p=.3,.5,.7 and .9.

We observe on Figure 4 one instance when it is necessary to

properly define the notion of equal load. For a given value of }, m,

clearly increases with the variability of the PH-distribution. For fixed

p=0.9 however, the values of m, for each distribution (highest point on
2

each curve) are nearly equal.

We must emphasize that the behaviour of the system depends on

the whole distribution (a,T), and not on the coefficient C only. Results

not reproduced here indicate the existence of distributions (a,T)) and

(a,T,) such that C but ma)” SQ) ro) “1eh* ™aye Be) #4 ayTee)
for whole ranges of values of A.

The blocking phenomenon may be measured either by the stationary probability

1, that Unit I is blocked at time t, or the stationary probability ™ that

Unit I becomes blocked after serving a I-customer. The former measures the

length of time spent in the blocked state, the latter measures the frequency

of switching from a state where Unit I is available to the state where it

is blocked.
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The variability in (a,T) influences differently 1, and un

(see Figures 5 and 6). For instance, consider the values of tt and ™|>

for C=2.5 and 5 respectively, and A=5. We observe that the queue with

highest variability is blocked during longer periods of time

(nm(C=5)>m, (C=2.5)) but changes less frequently from being available to

being blocked (ry (C=5)<m, (C=2.5)).

This may be interpreted as follows. For the distribution with

cC=5, services at Unit II are typically very short, with an occasional

very long one. When a very long service occurs, Unit I is likely to

become blocked and to remain so for a long time. When that long service

terminates, Unit II will process many customers with a very short

service, during which time Unit I is unlikely to become blocked again.
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Figure 1. Maximum throughput, K=0
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Figure 2. Maximum throughput, K=M-1
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Figure 3. Expected number of 1-customers
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Figure 4. Expected number of 2-customers
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Figure 5. Probability that Unit I is blocked
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Figure 6. Probability that Unit I becomes blocked
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