PROCESSUS DES PERIODES D'OCCUPATION D'UN MODELE D'ATTENTE DU TYPE M,/M,/1

MANYA NDJADI

Université de Kinshasa, B.P. 190, Kinshasa XI, Zaïre

RESUME

Nous considérons un modèle d'attente du type processus de vie et de mort homogène: $\lambda_n=(n+1)\lambda$ et $\mu_n=n$ μ ; $\lambda>0$, $\mu>0$. Il s'agit d'étudier le processus aléatoire $\{T_k,\,k\geqslant 1\}$. Par définition T_k est la longueur d'un

intervalle de temps qui commence à tout instant où le système contient k clients et finit à l'instant où le système devient vide pour la première fois.

ABSTRACT

We consider a queueing system generated by an homogenous birth and death process of following type:

 $\lambda_n=(n+1)\lambda$ and $\mu_n=n$ μ ; $\lambda>0$, $\mu>0$. We study the randon process $\{T_k,\,k\geqslant 1\}$ where T_k denotes the length of a time interval starting at each instant when the system contains k customers and ending at the instant when the system becomes empty for the first time.

1. Introduction

Les modèles d'attente du type processus de vie et de mort sont représentés, en général, par la notation $\text{M}_n/\text{M}_n/\text{1}$. Cette notation rappelle que les paramètres taux d'arrivée λ_n et taux de service μ_n varient avec l'état du système. C'est une généralisation dynamique du modèle statique M/M/l. Parmi les modèles d'attente du type $\text{M}_n/\text{M}_n/\text{1}$, nous pouvons citer :

Modèle A :
$$(\lambda_n = \lambda$$
 , $\mu_n = n \cdot \mu)$; Modèle B : $(\lambda_n = (n + 1)\lambda$, $\mu_n = n\mu)$; Modèle C : $(\lambda_n = \frac{\lambda}{n+1}$, $\mu_n = \mu)$.

Ce classement alphabétique suit l'ordre croissant des difficultés dans le calcul des probabilités d'état en régime transitoire (R.T.), [4].

Le problème des périodes d'occupation en R.T., qui nous intéresse ici, concerne le Modèle B. Notons que ce Modèle B rappelle un centre de service où un afflux de demandes provoque une réaction compensatoire du serveur. C'est surtout dans ce modèle que s'exprime cette généralisation dynamique du modèle statique M/M/1, $\{1;4\}$.

Le processus des périodes d'occupation en R.T., concerne en général, deux variables aléatoires (V.A.) :

- la longueur d'un intervalle de temps T_k , $(k \ge 1)$, qui commence à tout instant où le système nombre de clients se trouve dans l'état k et finit à l'instant où le système devient vide pour la première fois ;
- le nombre $N(T_k)$ de clients servis durant T_k .

HADIDI, (3), s'est occupé de ce problème mais dans le cas des Modèles A et C uniquement. Il a calculé, pour chacun de ces deux modèles, la transformée de Laplace de la densité de probabilité de la V.A. T_k . D'où l'on peut, en principe, obtenir tous les moments de cette V.A. T_k . Nous montrons que cette méthode de HADIDI peut s'étendre au Modèle B.

2. Equation fonctionnelle régissant le processus des périodes d'occupation dans le modèle B

La fonction $\gamma_{kr}(t)$, $(r\geqslant k\geqslant 1)$, définie par la relation (1), est la densité de probabilité d'une période d'occupation T_k au cours de laquelle r clients sont servis.

Soient $\gamma_{kr}^*(z)$ la transformée de Laplace de $\gamma_{kr}(t)$ et $\Gamma_k^*(x,\,z)$ celle de la fonction génératrice

$$\Gamma_{\mathbf{k}}(\mathbf{x}, \mathbf{t}) = \sum_{k=0}^{\infty} \mathbf{x}^{k+k} \gamma_{\mathbf{k}, \mathbf{k}+k}(\mathbf{t}), |\mathbf{x}| \leq 1.$$
 (2)

En procédant comme HADIDI $\left(3\right)$ pour les Modèles A et C, nous obtenons l'équation fonctionnelle suivante pour le Modèle B :

$$k\lambda\Gamma_{k}^{*}(x,z) = (z + k\lambda + (k - 1)\mu)\Gamma_{k-1}^{*}(x,z)$$

$$- (k - 1)\mu x \Gamma_{k-2}^{*}(x,z)$$
(3)

 $(k \geqslant 2)$.

L'équation (3) régit tout le processus des périodes d'occupation du Modèle B. Sa résolution en x=l fournit l'expression de $\Gamma_{\bf k}^*(1,z)$; d'où l'on pourra calculer tous les moments de la V.A. $T_{\bf k}$. En effet, $\Gamma_{\bf k}^*(1,z)$ étant la transformée de Laplace de la densité de probabilité $\Gamma_{\bf k}(1,t)$ de $T_{\bf k}$, l'on se souvient alors que

$$m_n^{(k)} = \mathbb{E} (T_k^n) = (-1)^n \frac{d^n \Gamma_k^*(1,z)}{dz^n} \bigg|_{z = 0}$$
 (4)

3. Calcul de l'expression de Γ_k^* (1,z).

En x=1, l'équation (3) donne

$$k\lambda \Gamma_{k}^{*}(1,z) = \left(z + k\lambda + (k-1)\mu\right)\Gamma_{k-1}^{*}(1,z) - (k-1)\mu\Gamma_{k-2}^{*}(1,z).$$
(5)

En réalité, (5) est un système infini d'équations algébriques. D'où une méthode adéquate pour le résoudre est de recourir à la fonction génératrice

$$L(1,z,y) = \sum_{k=1}^{\infty} y^k \Gamma_k^*(1,z), |y| < 1$$
 (au sens strict). (6)

Dès lors, (5) équivaut à l'équation différentielle linéaire en la variable y (on considère z comme paramètre) :

$$\frac{\partial L}{\partial y} + \frac{\mu y - (z+\lambda)}{(1-y)(\lambda-\mu y)} L = \frac{\lambda \Gamma_1^*(1,z) - \mu y}{(1-y)(\lambda-\mu y)} , |y| < 1 ;$$

$$CI : L(1,z,0) = 0.$$
(7)

La solution de (7), compte tenu de CI, est alors :

$$L(1, z, y) = \left((\lambda \mu y) / \lambda \right)^{\alpha} \left(\Gamma_{1}^{*} (1, z) \sum_{n=0}^{\infty} \frac{Q_{n}(\alpha) y^{n}}{n! (\lambda / \mu)^{n}} \right)$$

$$\times \sum_{j=0}^{\infty} \frac{n! H_{j}(\alpha) y^{j+1}}{(n+j+1)! (1-y)^{j+1}}$$

$$-\sum_{n=0}^{\infty} \frac{Q_{n}(\alpha) y^{n+1}}{(n! (\lambda / \mu)^{n+1})} \sum_{j=0}^{\infty} \frac{(n+1)! H_{j}(\alpha) y^{j+1}}{(1-y)^{j+1}}$$
(8)

Les fonctions auxiliaires introduites dans la formule (8) sont ainsi définies :

$$H_{j}(\alpha) = \begin{cases} o & \text{si } j \in \mathbb{N}, \\ 1 & \text{si } j = o, \\ \alpha(\alpha-1)\dots(\alpha-j+1) \text{ si } j \geqslant 1; \end{cases}$$

$$Q_{j}(\alpha) = \begin{cases} 0 & \text{si } j \not\in \mathbb{N}, \\ 1 & \text{si } j = 0 \end{cases}$$

$$(\alpha+1) \dots (\alpha+j) \text{ si } j \geqslant 1;$$

où $\alpha = z/(\lambda-\mu)$.

L'expression de L(1, z, y) ci-dessus se met finalement sous la forme de séries entières en y ; séries qui convergent absolument et uniformément pourvu que $|y| < \frac{\lambda}{u} < 1$.

$$L (1, z, y) = \sum_{v=0}^{\infty} \frac{(-1)^{v} H_{v}(\alpha) y^{v}}{v! (\lambda/\mu)^{v}} \sum_{n=0}^{\infty} \frac{Q_{n}(\alpha)}{n! (\lambda/\mu)^{n+1}}$$

$$\times \{\frac{\lambda}{\mu} \Gamma_{1}^{*} (1, z) \sum_{j=0}^{\infty} \frac{n! H_{j}(\alpha) y^{n+j+1}}{(n+j+1)!} \sum_{r=0}^{\infty} (j+r) y^{r}$$

$$-\sum_{j=0}^{\infty} \frac{(n+1)! H_{j}(\alpha) y^{n+j+2}}{(n+j+2)!} \sum_{r=0}^{\infty} (j+r) y^{r} \}$$

$$= \sum_{j=0}^{\infty} \frac{(n+j+2)!}{(n+j+2)!} \sum_{r=0}^{\infty} (j+r) y^{r} \}$$
(9)

Par la définition (6), Γ_k^* (1, z) est le coefficient de y^k dans (9). Et en vertu de la convergence absolue, le calcul du terme en y^k se fait comme dans une somme d'un nombre fini de termes. Il en résulte que :

$$\Gamma_{k}^{*} (1, z) = \sum_{\nu=0}^{k-1} \frac{(-1)^{\nu} H_{\nu}(\alpha)}{\nu! (\lambda/\mu)^{\nu}} \Gamma_{1}^{*} (1, z) \sum_{n=0}^{k-\nu-1} \frac{Q_{n}(\alpha)}{n! (\lambda/\mu)^{n}}$$

$$\times \frac{k-n-\nu-1}{\sum_{j=0}^{k-\nu-1}} {k-n-\nu-1 \choose j} \frac{n! H_{j}(\alpha)}{(n+j+1)!}$$

$$- \sum_{\nu=0}^{k-2} \frac{(-1)^{\nu} H_{\nu}(\alpha)}{\nu! (\lambda/\mu)^{\nu}} \sum_{k=0}^{k-\nu-2} \frac{Q_{n}(\alpha)}{n! (\lambda/\mu)^{n+1}}$$

$$\times \sum_{j=0}^{k-n-\nu-2} {k-n-\nu-2 \choose j} \frac{(n+1)! H_{j}(\alpha)}{(n+j+2)!}.$$

On constate que l'expression de $\Gamma_k^*(1,z)$, (k>1), contient encore une constante inconnue, à savoir $\Gamma_1^*(1,z)$. Celle-ci sera toutefois donnée par la formule suivante

$$\Gamma_1^*(1, z) = \frac{(\lambda_0 + z) P_{10}^*(z)}{1 + \lambda_0 P_{10}^*(z)};$$
 (11)

valable pour tout modèle d'attente $M_n/M_n/1$ pour lequel le processus $\{X(t),\ t\geqslant 0\}$ - état du système à l'instant t - est ergodique. Notons que P_{10}^* (z) est la transformée de Laplace de la probabilité $P_{10}(t)=P\left[X\ (t)=0\ |\ X\ (0)=1\right]$.

La démonstration de la formule (11) a été indiquée par HADIDI, (2), mais pour le Modèle A.

Une démonstration plus rigoureuse, basée sur la théorie de renouvellement, a été donnée par NATVIG, [5] , pour le Modèle C..

Cette démonstration de NATVIG se généralise aux autres modèles $M_n/M_n/1$ satisfaisant à l'hypothèse d'ergodicité (4).

L'expression de $P_{10}^*(z)$ dans le cas du Modèle B vaut, après quelques calculs:

$$P_{10}^{*}(z) = \frac{1}{\mu} \sum_{n=0}^{\infty} \frac{(n+1) (\lambda/\mu)^{n}}{(n-\alpha) (n-\alpha+1)};$$

$$\alpha = z/(\lambda-\mu) \quad \text{et } 0 < \frac{\lambda}{\mu} < 1.$$
(12)

Les relations (11) et (12) permettent, enfin, d'éliminer la constante inconnue Γ_1^* (1, z) de la formule (10). Dès lors celle-ci peut servir au calcul des moments de la V.A. T_k .

Calculons-en, par exemple, la moyenne :

$$m_{1}^{(k)} = E (T_{k}) = -\frac{d \Gamma_{k}^{*} (1, z)}{dz} \Big|_{z=0}$$

$$= \frac{1}{\mu - \lambda} \left\{ 1 - \sum_{j=1}^{k-1} \frac{(-1)^{j}}{j k} {k \choose j+1}, (\mu > \lambda); (13a) \right\}$$

$$= \frac{1}{\mu - \lambda} \sum_{r+1}^{1} {k \choose r+1} (\mu > \lambda). \quad (13b)$$

Ces résultats (13a) et(13b) s'obtiennent au prix de longs calculs, fautil le dire. Enfin, le calcul des autres moments, à partir de (10), est une question de routine et de patience!

BIBLIOGRAPHIE.

- CONOLLY, B.W. and CHAN, J.:
 "Generalised birth and death queueing process: recent results".
 Adv. Appl. Prob. vol.9, (1977), pp. 125-140.
- 2. HADIDI, N. and CONOLLY, B.W.: "On the reduction of congestion in queueing system". Statist. Research Report N°6, Institute of Mathematics, University of Oslo (1969).
- 3. HADIDI, N.:
 "Busy period of queues with state dependent arrival and service rates".
 J.Appl. Prob., vol. 11, (1974), pp 842-848.
- 4. MANYA, N.: "Modèles d'attente à interarrivées et durées de service dépendant de l'état du système". Thèse de doctorat en sciences, U.L.B. (1979).
- 5. NATVIG, B.:
 " On a queueing model where potential customers are discouraged by queue length". Scand J. Statist., vol.2, (1975), pp 34-42.