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ON AN OPTIMAL POLICY FOR DIVERTING

TRAFFIC FLOW FROM A CONGESTED AREA

TRAN-QUOC-TE

ABSTRACT

This workinvestigatespolicies for diverting traffic flow from a main way where someflow-
stoppingincident has occurred. The modelchosenfor describing the main way congestion
is basically a queuing model: vehicles that are trapped bythe accident canleavethe jam,
but at a slowerthan normalrate, and the congestion will terminate when the waiting queue
becomes empty.

The new feature introduced is that there exists a branching point in the upstream of the
congested area that gives a controller (either human or automatic) the ability of diverting
a fraction of vehicularflow towards some uncongestioned auxilary way. The objective aimed
is to minimize a cost function that measures 1) the amplitude of the congestion asthe total
numberof vehiclesinvolvedin the jam, the jam duration, and the total vehicle-hours waited,
and 2) diversion costs that may take into account the lengthening in travel time incurred
by diverted drivers.

Traffic diversion policies are analyzed by using a Markov(birth-and-death) model.It is shown
that the best rule leads simply to divert an arriving vehicle if and only if the current queue
length exceeds somegiven upper limit.



INTRODUCTION

Decisional models for vehicular tra

 

fic generally deal

with routing a traffic flow (viewed as either discrete or conti-

nous) in a network [Ol, 02, 03,...], or with synchronizing a

series of traffic lights [04, 05, 06,...]. These models usually

consider normal (i.e. expected) conditions on traffic flow, and

analyze steady-state behavior of traffic systems.

We examine in this work another kind of situations

which, while "accidental", may be nevertheless of some interest :

that concerns rules for diverting a vehicular flow from a main

way where some flow-stopping incident has occurred. Among queuing

models that describe the resulting jam, we retain that of Gaver{ 07]:

as far as traffic is concerned, - and only as far as traffic is

concerned -, a car accident mainly results in a physical obstacle;

the latter limits traffic flow to a slower than normal rate,

because jammed cars get in each others way. The congestion is

considered as completely dissipated when the jam queue length falls

below some non-congestion level. Traffic can then flow freely again.

We introduce a decisional aspect to the problem by

assuming that this stoppage happens in the context deseribed by

map (figure) 1.
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Whenever a car arrives at the branching point, one has

to decide whether this car should be diverted or not. Such a dicho-~

tomic choice, that should use control informations about the current

"state" of the system, must take into account the following two

bjectives : 1) reduction of ineffectiveness of the congestion,

nd 2) reduction of diversion costs.

As measures of the first kind, we consider :

- the jam duration, D,

- the total number of trapped (i.e. non-diverted) cars, N,

- the total vehicle-hours waited, that is the total waiting delay

of trapped cars, W.

Concerning diversion costs, we assume that any diverted

driver incurs the same lengthening in his travel time, hence a

penalty proportional to the total number M of diverted cars.

Optimal diversion policies are those minimizing expecta-

tion of

ce + + N +QD v4 Dal aM Gy

where the y's are given non-negative numbers.
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A STOCHASTIC MODEL FOR CONTROLLING THE JAM DISSIPATION
 

Let n, denote the number of cars present at the jam

at the beginning of the congestion, and n; the non-saturation level

below which traffic can flow freely and the jam is completely

dissipated.

We assume that during this phase vehicles arrive at the

intersection according to a time-stationary Poisson process of

rate A, and that trapped vehicles leave the jam according to a

"death" process of rates {uz }s that is, if the jam queue length

at some time t is i (i >n,), then, independently of the "past

history" :

Pr [O departure during [t,t+tAt] ] = 1 At +o(At),

Pr [1 departure during [t,tt+At] ] =u pat +o(At),

Pr [> 1 depart. during [t,t+At] ] 1 o(At),

for any At > 0. Allowing the departure process to be state-depen-

dent, we can describe situations in which trapped cars get in

each others way, by assuming for example that the sequence tu, /i}

decreases to 0 as i+.

Since arrival and departure processes are markovian and time-statio-

nary, we restrict ourselves to diversion policies specified by :

5 = (8.5 i > m}, (2)

such that :

556 [0,1], ¥i. ¢3),

Use of policy 5 means that, whenever a vehicle arrives at the

intersection while i other ones are present in the jam queue, then

that vehicle is diverted with probability oy (and non-diverted

with probability 1 ~5;).
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For n, >n,, the congestion may be considered as a period

or the first passage of the jam queue length from n; to n2~-1.

Jence, the jam is decomposable into a juxtaposition of n;-n, +1

periods, period i (i = n,,...,n,) being that for the first passage

of the queue from i to i-1 cars, see Figure 2.

Assume a given diversion policy is being used. We denote (1) the

duration of a period i, (11) the total time loss during this period,

(111) the number of cars that join the jam during this period, and

(av) the number of cars diverted during this period, by D;> Wes Nis

and Mi respectively. The total cost incurred during the decongestion

phase is the sum of costs related to each of the above-mentioned

periods :

c = (4)

 

= 74Pi * ras * TAN My (5)

 

are statistically independent of each other, by our markovian ass-—

umptions. We first derive a recursive formula for the joint Laplace

transforms

0 o © © 8 ©

ew©, (dsw,e.y) (6)
izn., d,w2>0, lal,lyl<1,

before investigating properties of optimal policies.

Consider now the evolution of the jam queue at some time

epoch. The next "event" that will occur is either a departure from

the jam or an arrival to the intersection (in the later case, the

arriving car may be diverted or not). Hence, for i*n, :
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( (T,,i17,,0,0), with probability wif OQtHs),

2 < (T},4T],0,1) + (D},Wi,Ni,Mi), with probability BATA),

| (Ty, iT!,1,0) + (Dr wi NU MYSar Gare Mpa Mian) + CDE -ME NE ME)
with probability (1-8 prA/OtH) 5

where the symbol = means equality of distributions, and where, by

our markovian assumptions

- T. + T! = Ty = a random variable distributed exponentially
i i

at
with mean tu)

_ ‘out oNtomMt) & . smear! 5 _
(Dy Wy NES Mi) (D,>Wy5Ni5Mi), and is statistically independ

ent of Ti.

_ (o" we nN" M"0) = (@
wl? atl? aed? it) vger ger? NaareMgaa)> and ts

independent of TY and of

  

  

woyt oye oyy £(DY Wy NE, MY) (D,,W;5N;,M;)-

Hence, using the fact that the Laplace transform of (the distribu-

tion function of) T; is

oi
L

&[e J= tu )/ (bth tH 5), t2o,

the above inductive decomposition of (DoWe .) leads readily to:
i

 

®, (d,w,z,y)
7 ay +6 Ay®, (d,w,z,y) + (1-8 ha ®,| (d,w,2,y)®; (d,w,z,y) on

d+iwu+yA +u,
1

 

This formula links , and ,,,, and allows recursive computation

of v5, ¥ i, provided some e is known

oe Bs « 0, = De oe Dy +, >
j-2 j-1 j j+l j+2
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It will be especially so if some fy =1, that is, if we decide to

divert any vehicle that arrives while the jam size is currently j.

In this case, as one can easily anticipate, 2. no longer depends

on Peete and the above formula reduces to a linear equation in ®,

whose solution is :

©, (d,0,2,y) = Hy / (d+jwtar +H Ay) (8)

Note that, from a practical point of view, there generally exists

a constraint of capacity on the main way that implies automatic

diversion whenever the jam size reaches some oversaturation level.

We now show that, even when such a constraint is not imposed, the

best diversion rule merely consists in diverting an arriving car

if and only if the current queue length reaches some dtiverston

level.

Recall that optimal diversion policies are those

 

aiaiMeaAE Ss

= n2
Cc = z (9)

isn,

Taking partial derivatives of e.> we obtain from (7) :

— 5 \a3
D; {1+ (1-6 )ADHy,

Wi = fit (1-5 AW,} / Hy,

= _ (10)
. = -6.) aiNy {1-6A+ BAN} / Hy,

= =
. = Pon -M, ={6X4 (1-5 AML} JH.

 

( +)
“Subsequently, upper bar denotes mathematical expectation.
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Henceforth, from (5) and (10) :

=8.)(4-5 A
 (

 

= a 11
7 is. *%n 77m * Sa? at)

i
where ch is the cost incurred on the average during period i when

6. = 1:
i

ae : 12ch (rgtin tay) fag (12)

Observe that the G's are "constant", that is, independent of 6;

they are also readily computable from parameters of the problem.

Equation (11) holds for any diversion policy, hence also for an

optimal one; denoting such a policy by 3, and the corresponding

costs by Ci we then have :

= (1-5) ~

2(Ci,
ies

at
From this last equation, it is obvious that :

za Ch Il
rt, 7m * CE (11)

- if (Ci, ty, 7-7) > 0, then we must have oy = 1, while

- if Cy tty 7m) < 0, then 8; = 0.

(This can also be justified by the principle of optimality: a car

that arrives while i other ones are present causes a marginal cost

of y,, if it is diverted, and a cost C,,, +7, if it is not diverted).

Ignoring the cases where (Cray ty 77) = 0, (in these cases any

value of Ong is optimal),we may say that optimal diversion policies

satisfy a property of all-or-nothing one encounters in other

diversion assignment problems [01].

From (rn), it is obvious that, since the c, are related to an opti-

mal policy while the cl. concern a non-necessarily optimal one :

c. < Ch , ¥ i.i i

Hence : (C| ty 7) <0 implies, a forttort : (Ciyy +1 77 Q) <0
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This leads to the following practical rule

Froposition1.

cl i< - §. =| If Chg <1 _ 7% pe then 8, 0

Another case where a trivial solution to our optimization

problem exists is that Ya Vg < 0. Since Cray > 0, we then have

Proposition2.

- < 5. = i| Tf£ Tm My 0, then 6, 1, ¥ i.

In the remaining part of this section, we shall examine

the case

Va oH, = Oe €13))

Proposition3.

| C; > (ygr ir, +d.) [HG ¥i.

 

Proof.

Cy = min C; (this minimum is taken under the constraints (2,l11,2)

8 er. (1-8 )r 7* eax wee gs _ 1
nae Cia, * aa 7 7% + Cy > by C11)

iG i i
x a0 - By 77) + Cy > by (13)

W (vg tin, tay.) / ey, by (12) ®

Propositions 1 and 3 are now used to establish

Theorem 1.

Assume that the sequence {Gig * £75? Wy) / AGS i >n,} increases

monotonously to infinity with i (hence the sequence {ci} also does).

Let

i, = max {i >C!. <y_ -¥_). (14)
itl m n

Then there exists an optimal diversion policy 5 that satisfies

ug ( 0, for i< tye (15)

6. =
+ 41, for i > ips (16)
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The basic assumption of this theorem can be justified as follows

at any time, the more there are trapped cars, the more they obstruct

each other and the lower is the instantanous flow rate CH 7 0)5

in any way, this auto-obstruction implies that jam dissipation rates

cannot be higher than that of non-congested M/M/* queues (as = ip);

therefore uy never increases more rapidly than i CH /i ro).

Equation (15) is a mere restatement of Proposition l.

For proving (16), we proceed by contradiction and assume that

5, #1, for some j > i,, (17)

for any optimal policy 5. Then we show that

51, BRD 5. (18)k

But, using (11) with i = k, inequations (18) imply

Sieey Pe Vv“% S 0, ¥k j (19)

(otherwise, Chad yt > 0, and ay would be 1). This contradicts

our basic assumption and Proposition 3, since ci 7e gis; 1 :secdy

It remains to establish (18), by induction.

If for some k 2 ijt 5 # 1 for any optimal policy 3, then

= <0.
Cer tp Tm °

But the case Chad AEG, = 0 is to be discarded, since ny may be

chosen equal to 1. Therefore

Seer ty Im < 9° (20)
On the other hand, by definition (14) of iy:

clos >y -7.Cet Tm 7a @y)
Inequalities (20) and (21) imply

il ~
Char > Spar:

Reusing (11) with i = k+l: 8 ee # 1 (otherwise, ead = 1, and we

a = 1would have Cea F Chap
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CONCLUDING REMARKS
 

*

Theorem 1 provides a simple and practical rule for ve-

hicular diversion since one can readily obtain the optimal diver-

ston level from parameters of the congestion, and then use the

policy defined by (15, 16). May be these parameters, and especially

the jam dissipation rates, are not easy to estimate in practice,

and this difficulty may limit the useness of the theorem. However,

the kind of policy it states, — divert above some jam size —, seems

very reasonable under natural conditions of auto-obstruction.

Intuitively, such a result should hold also under more general

hypotheses about arrival and departure processes. Note that the

imbedded decision process owns the following trivial characteristic:

choices must be made at and only at car arrival epochs. Therefore,

even if the arrival process is "general" (that is, a renewal process)

but the departure process is kept markovian, then the diversion

decisional process remains markovian too, meaning that jam size at

arrival times still constitutes the exhaustive information to our

control problem.

Under the above stochastic assumptions, a recursive formula for c.,

in an integral form, is not difficult to obtain. Unfortunately, we

are not able to derive from it a generalisation of Theorem 1.
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