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ON AN OPTIMAL POLICY FOR DIVERTING
TRAFFIC FLOW FROM A CONGESTED AREA

TRAN-QUOC-TE

ABSTRACT

This work investigates policies for diverting traffic flow from a main way where some flow-
stopping incident has occurred. The model chosen for describing the main way congestion
is basically a queuing model: vehicles that are trapped by the accident can leave the jam,
but at a slower than normal rate, and the congestion will terminate when the waiting queue
becomes empty.

The new feature introduced is that there exists a branching point in the upstream of the
congested area that gives a controller (either human or automatic) the ability of diverting
a fraction of vehicular flow towards some uncongestioned auxilary way. The objective aimed
is to minimize a cost function that measures 1) the amplitude of the congestion as the total
number of vehicles involved in the jam, the jam duration, and the total vehicle-hours waited,
and 2) diversion costs that may take into account the lengthening in travel time incurred
by diverted drivers.

Traffic diversion policies are analyzed by using a Markov (birth-and-death) model. It is shown
that the best rule leads simply to divert an arriving vehicle if and only if the current queue
length exceeds some given upper limit.



INTRODUCTION

Decisional models for vehicular traffic generally deal
with routing a traffic flow (viewed as either discrete or contili-
nous) in a network [O0l, 02, 03,...], or with synchronizing a
series of traffiec lights | 04, 05, 06,...] . These models usually
consider normal (i.e. expected) conditions on traffie flow, and

analyze steady—-state behavior of traffic systems.

We examine in this work another kind of situations
which, while "accidental'", may be nevertheless of some interest :
that concerns rules for diverting a vehicular flow from a main
way where some flow-stopping incident has occurred. Among queulng
models that describe the resulting jam, we retain that of Gaver | 07]:
as far as traffic is concerned, - and only as far as traffic 1s
concerned -, a car accident mainly rTesults in a physical obstacle;
the latter limits traffic flow to a slower than normal rate,
because jammed cars get in each others way. The congestion 1is
considered as completely dissipated when the jam queue length falls

below some non-congestion level. Traffic can then flow freely again.

We introduce a decisional aspect to the problem by
assuming that this stoppage happens in the context described by

map (figure) 1.
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WVhenever a car arrives at the branching point, one has
to decide whether this car should be diverted or not. Such a dicho-
tomic choice, that should use control informations about the current
"state" of the system, must take into account the following two
bjectives : 1) reduction of ineffectiveness of the congestion,

nd 2) reduction of diversion costs.

As measures of the first kind, we consider :
- the jam duration, D,
- the total number of trapped (i.e. non-diverted) cars, N,
- the total vehicle-hours waited, that is the total waiting delay

of trapped cars, W.

Concerning diversion costs, we assume that any diverted
driver incurs the same lengthening in his travel time, hence a

penalty proportional to the total number M of diverted cars.

Optimal diversion policies are those minimizing expecta-
tion of
C = + W + N + M
TdD Y Tn Tog, ! (1)

where the 7's are given non—-negative numbers.
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A STOCHASTIC MODEL FOR CONTROLLING THE JAM DISSIPATION

Let n, denote the number of cars present at the jam
at the beginning of the congestion, and n, the non-saturation level
below which traffic can flow freely and the jam is completely

dissipated.

We assume that during this phase vehicles arrive at the
intersection according to a time-stationary Poisson process of
rate A, and that trapped vehicles leave the jam according to a
"death" process of rates {ui}; that is, if the jam queue length

at some time t is i (i = n,), then, independently of the "past

history"
Pr [ 0O departure during [t,t+At] | = 1-—piﬁt-+o(ﬁt),
Pr [1 departure during [t,t+At] ] = uiﬁt-bm(ﬂt),

Pr [ > 1 depart. during [ t,t+At] | o(At),
for any At = 0. Allowing the departure process to be state-depen-
dent, we can describe situations in which trapped cars get in
each others way, by assuming for example that the sequence {uifi}
decreases to 0O as i = oo,
Since arrival and departure processes are markovian and time-statio-
nary, we restrict ourselves to diversion policies specified by

6 = {6 ;5 i =2 n, }, (2)
such that

Sie[e,ll,vi. (3)
Use of policy & means that, whenever a vehicle arrives at the
intersection while i other ones are present in the jam queue, then

that vehicle is diverted with probability Bi (and non-diverted

with probability 1-6i).
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For n, =2n,, the congestion may be considered as a period
"or the first passage of the jam queue length from n, to n2 — 1.
dence, the jam 1s decomposable into a juxtaposition of ny —n, +1

periods, period i (i = ny,...,n,) being that for the first passage

of the queue from 1 to i-1 cars, see Figure 2.

Assume a given diversion policy is being used. We denote (1) the
duration of a period i, (11) the total time loss during this period,
(111) the number of cars that join the jam during this period, and
(1v) the number of cars diverted during this period, by Di’ Wi, Ni‘

and Mi respectively. The total cost incurred during the decongestion

phase is the sum of costs related to each of the above-mentioned

periods
n,
c = .E Ci’ where (4)
i=n,
Ci = 7qP; * "Myt TaMg * Ty (5)

are statistically independent of each other, by our markovian ass-—
umptions. We first derive a recursive formula for the joint Laplace
transforms

"dDi ~wwi N. M
(l)i(d,w,m,y) = f;.[ (< . B « i - ¥ (6)

120, d;,020, |2 ; yl=1,

before investigating properties of optimal policies.

Consider now the evolution of the jam queue at some time
epoch. The next "event" that will occur is either a departure from
the jam or an arrival to the intersection (in the later case, the

arriving car may be diverted or not). Hence, for i=>n; :
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e ig? ,iTi,iﬁ,U), with probability ;rif(h+¢:i),

= L (Ti,iTi,O,l) + (Di,Wi,Ni,H{),‘withprobability ﬁihf(l+ﬂi),

L B N AL " 1 " " 1" " "
\ (Tlslrlslsﬂ) b (D1+13w1+1:N1+1:M1+1) + (Dl’wllml,bil)’

with probability (1—6i)h/(h+yi),

where the symbol = means equality of distributions, and where, by

our markovian assumptions

- Ti = Ti = T; 2 a random variable distributed exponentially

with mean (\+u i)_l’

= L] iy B v 1 é " . r 2 _
(Di’wi’Ni’Mi) (Di’wi’Ni’Mi)’ and 1s statistically independ

ent of T.,
1

_ n " " " x .
(Di+1’wi+1’Ni+1’Mi+1) (Di+1’wi+1’Ni+l’Mi+1}’ and 1is

independent of T; and of

" " n " P 5
(Di’wi’wi’mi) = (Di,wi,Ni,Mi).

Hence, using the fact that the Laplace transform of (the distribu-

tion function of) Ti 18

a7 1
1

& [ e | = (?L+,ui)f(t+h+,ui), t =2 0,
the above inductive decomposition of (Di,wi,Ni,Mi} leads readily to:

. (d,w,x,Y)

) “y +bihy$i(d,w,m,y)+ Cbﬁfhr¢i+1(d,w,m,y)¢i(d,w,x,y) -

d + 1w + A +ﬂi

This formula links ¢i and ¢i+1’ and allows recursive computation

of ¢i, ¥ i, provided some ®. is known
J
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It will be especially so 1f some 5j =1, that i1s, 1f we decide to
divert any vehicle that arrives while the jam size is currently j.
In this case, as one can easily anticipate, ¢j no longer depends
on ¢j+1’ and the above formula reduces to a linear equation in ¥,
whose solution 1s

4ﬁ(dﬁhm,y) = ;{i / (d+ jw + A +uj—hy}. (8)
Note that, from a practical point of view, there generally exists
a constraint of capacity on the main way that implies automatic
diversion whenever the jam size reaches some oversaturation level.
We now show that, even when such a constraint is not imposed, the

best diversion rule merely consists in diverting an arriving car

if and only if the current queue length reaches some diverston

level.

Recall that optimal diversion policies are those

minimizing(+}:
_ nz _
c = Iz c.. (9)
i=1‘l1

Taking partial derivatives of ¢i’ we obtain from (7)

= PN
Di {1+ (1 5i’hni+1} f“i’
W, = {i+ (-8 )aw, }/u,,
B _ (10)
N. = 1-6 .OA + (1-6 . ; .
. { (] ;) ( 1)3N1+1} ful,
'*r‘ _ X " =,
M, {ai + (1 5i):«1~1]._+1},/ui.

(+) : :
Subsequently, upper bar denotes mathematical expectation.
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Henceforth, from (5) and (10)

- b
(1-8 OX _

c = = + g\, (11)
Ci ) (Ci+1-+7n ?m) :
1

where E; ie the cost incurred on the average during period 1 when

o= ' (12
Gi (Td+17w+17m) fui.

Observe that the Eg's are "constant", that is, independent of 0 ;

they are also readily computable from parameters of the problem.

Equation (11) holds for any diversion policy, hence also for an
optimal one; denoting such a policy by 3, and the corresponding

costs by Ei’ we then have

N (=8 .42 _
= - . 11
C. (Copqp 4, W) ¥ 6 (ol

oy

From this last equation, it is obvious that

L

- if (Ei+1—+7n-7m) > 0, then we must have 6i 1, while

- 1f {Ci+l-+7n-7m) < 0, then Si = (.

(This can also be justified by the principle of optimality: a car
that arrives while 1 other ones are present causes a marginal cost

of (P if 1t 1s diverted, and a cost Ci+l_+?n 1f 1t 1s not diverted).

Ignoring the cases where (Ci+l +?n-7m) = 0, (iu these cases any

value of 6. is optimal) we may say that optimal diversion policies
1

satisfy a property of all-or-nothing one encounters 1n other

diversion assignment problems [01].

From (fﬁ), it is obvious that, since the Ci are related to an opti-

mal policy while the CE concern a non-necessarily optimal one

c. < G. , ¥ i.

i : (CL ., ¥y = < 0 implies, a fortiori : (C. -y ) <o.
ence (C y PR Tm} implies, a foritizor: (C1+1_+Tn Tm) 0
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This leads to the following practical rule

Proposition 1.

—_——— e e o E—— o —

If Cc. < - 5. & U
1 £ C1+1 Tm Tn’ then ; 0

Another case where a trivial solution to our optimization

problem exists 1s that Tm - Tn < 0. Since Ei > 0, we then have

+1

Prognsitiﬂn 2.

| 3 Y — 7, <0, thend,6 =1, ¥ i,

1

In the remaining part of this section, we shall examine

the case

Y. =9 2 0. (13)

— S S

Cc. > + 1 + A . L .
| C. (rg*tiv +Ay ) /[ u,, ¥ i
Proof
Ei = min Ei (this minimum is taken under the constraints (2,11,12)
0 (1-8 A _ (1-5 ) )
- . . . L
Héll'l Ci+1 + Iréln ) ('l"n Tm) * Cl , by (11)
i ui i 1
- - e _ )
= if) i (Tm ¥od C > by (13)

- 1 =
(Td +1?w~+17n) / W., by (12)

Propositions 1 and 3 are now used to establish

Theorem 1.

Assume that the sequence {(y iTw-+lTn) / us i > ny } increases

+.
d
monotonously to infinity with 1 (hence the sequence {EE} also does).

Let

. = . T | (:: _ .
i, = max {1-}Gi+1 4 ?n} (14)

Then there exists an optimal diversion policy 8§ that satisfies

r 0, for 1 € i, {15
i d

b, =5

U1, for i > 1 » (16)
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The basic assumption of this theorem can be justified as follows
at any time, the more there are trapped cars, the more they obstruct
each other and the lower 1is the instantanous flow rate (Mi-+0);
in any way, this auto—-obstruction implies that jam dissipation rates
cannot be higher than that of non-congested M/M/® queues (Hi = 1u);
therefore ', never increases more rapidly than 1 {pifi-*ﬂ).
Equation (15) is a mere restatement of Proposition 1.

For proving (16), we proceed by contradiction and assume that

gj # 1, for some j > i, , (17)
for any optimal policy 5 . Then we show that
5 £ 1, ¥ k= j. (18)

k

But, using (11) with 1

Il

k, inequations (18) imply

L]

W

- < :
Cowy TUs ™ P 0, ¥ k ] (19)

(otherwise, C +7Y —v_ > 0, and §, would be 1). This contradicts
k+1 n m k
our basic assumption and Proposition 3, since Ci-+m as i oo,

It remains to establish (18), by induction.

If for some k > i, : & # 1 for any optimal policy E, then

d k
c + - = 0.
Ck+1 TH T .
- N ) _ _ . _ s
But the case Ck+1 Ty = P O 1s to be discarded, since Ek may be
chosen equal to 1. Therefore
C + - % .
Cha1 PV Ty <O $40)
On the other hand, by definition (14) of % ‘
! > -y .
Cke1l T T Ty 21
Inequalities (20) and (21) imply
- —~
Mg . Ck+l'
Reusing (11) with i = k+1 : 5k+1 # 1 (otherwise, 5k+1 = 1, and we
s —. 7
would have Ck+1 = Ck+1)
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CONCLUDING REMARKS

Theorem | provides a simple and practical rule for ve-
hicular diversion since one can readily obtain the optimal diver-
sion level from parameters of the congestion, and then use the
policy defined by (15, 16). May be these parameters, and especially
the jam dissipation rates, are not easy to estimate in practice,
and this difficulty may limit the useness of the theorem. However,
the kind of policy it states, — divert above some jam size —, seems
very reasonable under natural conditions of auto-obstruction.
Intuitively, such a result should hold also under more general
hypotheses about arrival and departure processes. Note that the
imbedded decision process owns the following trivial characteristic :
choices must be made at and only at car arrival epochs. Therefore,
even if the arrival process is '"general" (that is, a renewal process)
but the departure process is kept markovian, then the diversion
decisional process remains markovian too, meaning that jam size at
arrival times still constitutes the exhaustive information to our
control problem.

Under the above stochastic assumptions, a recursive formula for Ei’
in an integral form, is not difficult to obtain. Unfortunately, we

are not able to derive from it a generalisation of Theorem 1.
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