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ABSTRACT
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Queueing systems have already a long life (see "Sixty years in

queueing theory", Bhat, Mn. Sc. Vol.15, 6, pp.280) and after the second

world war, queueing theory became not only a basic branch of applied probability

theory, but also one of the classical methods of O.R. From the outset, some

practical problems were treated by queueing systems : e.g., telephone exchange,

job-scheduling, etc, ...; nevertheless, queueing theory is often considered

by some operations research workers as "a fine mathematical model but ...

inapplicable". One of the main reasons of such an opinion certainly is that

queueing theory has examined interesting and sophisticated models in the field

of applied probability, but often disconnected with decision or optimization

problems of 0.R. Although some control problems were early introduced in

queueing models, they always were static or design problems (in which the

system characteristics do not change over time) and clearly this type of

problems did not meet the necessities of the greatest part of the practical

queueing problems.

In the last twenty years, this situation has considerably changed in particular

under the initial impulse, among others, of Naor'school in Israél and research

workers, like Heyman, from Bell Telephone Loboratories in U.S.A. There has

been an increasing interest in the study of dynamic control problems (in which

the system characteristicsare allowed to change over time) and a lot of number

of papers concerning this field have been published in the most famous journals

of O.R.. One of the main reasons of this development surely is the existence

of new practical queueing problems related to the management of great centers,

in sectors like distribution, administration, public services, but especially

to the management of computer centres. Moreover for the future, the present

development of promising research fields, like queueing networks and the

performance evaluation of computer networks, create new large possibilities

for further applications of control models for more complex queueing systems.

(For a stimulating review of such possibilities, see the report "Optimal

control of admission to a queueing system" presented by Stidham Jr. at IFORS

Congress (augustus 84)).
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Several papers have already been published to review this new branch

of queueing theory : Crabill-Gross-Magazine /73,77/ wrote a basic survey and

a classified bibliography; Sobel /74/, Stidham Jr.- Prabhu /74/, Teghem Jr. /82/

presented others surveys; recently, some sections of Heyman-Sobel's book /82,84/,

were devotedto this subject; a forthcoming invited review must soon be published

in the European journal of 0.R. (Teghem Jr. /85/).

According to the classification introduced by Crabill et al., we can distinguish

four main categories of dynamic control models for a queueing system :

I. Control of the number of servers. The servers are removable : they may been

turned on or off in function of the state of the system; the varying number of

active servers must be determined.

Il. Control of the service rate. This category often generalizes the first :

the difference is rather than modifying the number of servers, the service

process can be changed by varying the service rate.

III. Control of the admission of customers. In these problems, either the

arrival rate can be modified, either customers can be refused; in some models

the customers control themself the decision to enter into the system.

IV. Control of the queue discipline. Various papers deal with situations where

the order of service can be determined. Generally, these problems concern either

different classes of customers, either the allocation of customers to different

servers.

In this paper, we only treat the first category; it is expected that we present

soon, in this journal, other tutorial papers to cover the whole set of these

models.
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INTRODUCTION

The two first queueing models with a variable number of servers

appearing in the literature are those of Romani /57/ and Moder-Philipps Jr. /62/;

nevertheless, these papers are descriptive and no cost functions are introduced,

a fortiori no optimization problems are setted. So we can consider that the

real study of this type of problems begins with the paper of Yadin-Naor /63/.

The classical cost Structure related to a removable server consists in three

types of cost :

+ T, a non negative cost per unit time when the server is on, i.e. in activity;

r,(r,) a non negative cost per unit time when the server is off, i.e. has

decided to not be in activity; let us note r=r,-r
a

. R, Ry) a non negative fixed set-up (shut down) cost, incurred each time

 

the server is turning on (off); let us note R=R, +R, the total switching cost

- ha holding cost, or customer waiting cost, per unit time and per customer

present in the system.

The problem consists to determine the optimal operating policies for

the removable servers, i.e. to decide when open or close the service channels.

It is clear that

. too long keeping a server on involves a too high running cost

. too long keeping a server off involves a too high holding cost

. too much times changing the state of the servers involves too high switching

cost.

Thus the optimal policy must correspond to an equilibrium between these three

situations.

The review points, i.e. the points at which the state of the server

can be changed, are

(i) the arrival epochs : the server may be turned on

(ii) the service completion epochs : the server may be turned off.

Note : the hypothesis (ii) can be restrictive : see Heyman /68/, p.369.

The problem is a semi markovian decision process (SMDP) and the two

classical criteria for SMDP, with infinite horizon time, can be introduced :

either the discounted total cost, with a continuous discount factor 8<1, either
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the average cost per unit time. The theory of SMDP can be used to prove the

existence of a non randomized stationary policy for this problem (see the

books "Markovian decision processes" of Mine-Osaki (Elsevier 1970), "Dynamic

programming" of Denardo (Prentice Hall 1982), but a special attention must

be pointed out to the problem of unbounded costs (see Bell /71/, Lippman /73/,

Stidham-Prabhu /74/).

I. A SINGLE REMOVABLE SERVER
 

Generally, the authors consider the problem in an M/G/1/L queue

. L the maximum number of customers present in the system; in the most part

of the studies L will be infinite

. customers arrive according a Poisson process, \ the mean arrival rate

. the service times are independant identically distributed random variable

with distribution function B(.), finite expectation E(S) and finite variance.
~

We denote B(.) the LST of B(.) and p=\.E(S); we suppose p<1 if L==.

1.A. N-Policy

The most part of the studies characterize the state of the system by

the number of customers present and the server applies a N-policy : the state

of the server, on or off, will be fixed in function of the number of customers.

As preliminaries, let us introduce a particular subset of policies, playing a

major part in the following.

Definitions

. A (v,N) policy, with OSv<N<L+1, consists to turn the server on when N customers

are present and turn it off when a service terminates with v customers left in

the system.

. The policy (0,L+1) (or(0,#) if L=~) consists to always close the station.

. The policy (0,0) consists to always open the station.

Let us suppose that the server applies a (v,N) policy. The different steady

states of the system are

- (i,0), with vsi<N : the server is off and there are i customers in the queue

- (i,1), with v+1Si<L+1 : the server is on and there are i customers in the

system.
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We will note

SH (v,N) the steady-state probability that the system is in state (i,k)Pik iy

. py (v,N) the steady-state probability that there are i customers in the system

N-1
: pg (v8) = PyON) the stationary probability that the server is off

, isv

L .. Nj@N) the mean number of customers present in the system

. aX (nN) the mean busy period, i.e. a time interval beginning when the station

is set up and terminating when for the first time thereafter, the number of
customers in the system is equal to v.

x ny) the mean number per unit time of busy cycles, composed of a successive

busy period and idle period (i.e. a time interval during which the server is

off).

Note We shall omit the indice L when L=°

Yadin-Naor /63/ have the first introduced the (0,N) policies in an

infinite capacity, proving in particular that

j N-1N,(O,N) = N.(0,0) + —- (1)

P 9 (0,N) = I-p (2)

and Teghem Jr. /76/ has established a further relation between policies (0,N)

and (0,0)
i1 A

p;(0,N) = 5 = p; (0,0) i<n
j=

(3)
, 1

p,(0,N) =F PA pj_; (0,0) i2N

Loris-Teghem /82/ considered the case of a (v,N) policy for a finite capacity

and obtained, using some results of the theory of regenerative process, that
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1L FF
P:,,N) = ————— vsisN-1

i0 n-v+rah(y 3N)

itt-v

PyaN) = s__0,0)

-E(8)_

v+1SisNe1
‘ E(S) (N-v+aa “(v,N))

iW i )
Py) = #GN)-o Nsi<L
* E(S) (N-v+i\0/(v,N))

L (N-v)E(S)- (1-9) 0" (VN)
Pp (Ye)=

£(S) (N-v+aak (y »N))

a = . . I-V
As the mean idle period is obviously equal to cali we have by an elementary

renewal argument

(v,N)L 1 Ap.or’?
Ob) =Oo (5)

5 ne + aX (v,N) ny
n,

1. The average case for M/G/1/L

For this criterion, the optimal stationnary policy is independant of

the starting state

a)_L=©

Heyman /68/ proves the next property.

Property 1 The optimal policy is either a policy (0,N) with 1<N<», either

the policy (0,0)

If C(N) denotes the average cost when the server applies a (0,N) policy,

we have for 1SN<@.

c(N)=r (0,N)+ry(1-p_9(0,N)) + R.n, (0,N)+h.N(0,N)P06
and using (1), (2) and (5).

+ niw,(0,0) + 4,RA(1-p)
N 2C(N)=r, + ry(1-p) +
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For policy (0,0) we have

c(0) =r, +h Nn, (0,0)
2

As C(N) is a convex function of N, Heyman /68/ concludes that the optimal

value of N is either N=0, either one of the two integers surrounding the

 

value

220Kj2R(-9) (6)

Remarks

(i) Three papers investigated this problem in the more general GI/G/1

queue. Sobel /69/ obtains sufficient conditions on more general cost

structure for the existence of an optimal (v,N) policy; Heyman-Marshall

/68/ give bounds on the cost function and the optimal policy in the

case of interrarrival distribution with increasing rate. Applying a

method of diffusion approximation, Kimura-Ohno-Mine /80/ characterize

the average cost rate and give some sufficient conditions under which

the optimal operating policy falls into specific forms.

(ii) Talman /79/ gives another proof of the optimality of a (0,N) nolicy.

(iii) Yadin-Naor /63/ have also introduced the notion of set-up time, i.e.

a random interval ellapsed before the service station is really

reactived when such a decision is taken. For an M/M/1 queue, Baker /73/

analyses the consequences of an exponential set-up time on the value N*.

B) L<@

Hersh-Brosh /80/ and Teghem Jr. /84/ have investigated the case L<«;

in their model with limited capacity, the holding cost h is replaced by a

penalty cost c, incurred for every lost customer. When L<», it is not more
L

true that the policy (0, L+1) is never optimal. Using (4) and (5), Teghem Jr. /84/

extends and generalizes the results of Hersh-Brosh /80/ proving the next property :
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Property 2

 

Consider the plane (r = = x R= oh) s it is divided in
c c
L L

(L+2) regions corresponding to the optimality of policy (0,N),

N=0,...,L+1, as showed in figure 1
pl

   x(0,1)

Figure 1 E(S)

Moreover the equations of the frontiers of each region are explicited;

they are also determined by the points of coordinates (ry> RY) with
L-N

1 +A a (0,0)

2.gy
1 +a’ (0,0)

N-1

= 2 Gyr
Ry j=0 Nj

Remarks

(i) The interaction between the optimal operating rule of a removable

server in a finite capacity M/M/1 queue and the optimal behaviour of

customers are simultaneously analysed in Teghem Jr. /77/

(ii) Bidhi Singh /82/ study a M/M/1/L queue, wherein, when the queue length

increases to N(O<N<L), a search for an additional service facility

for the service of a group of units is started; the availability time

of this additional service facility is a random variable, but the

search is dropped when the queue length reduces to some tolerable size v.

The optimal (v,N) policy is investigated for a cost structure (with R=0)

for this additional removable server.
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2. The discounted case for M/G/1

For this criterion, the optimal stationary operating policy depends on

the initial starting state; for easyness, let us suppose that this starting

state is (0,0).

Heyman /68/ and Bell /71/ obtain the property

Property 3 The optimal policy is

either a policy (0,N),

server on at the first time when N customers

and never off again.

Let us note C,(N) and Ce (N) the
8

for policies (0,N) and (0,N).

BA
5

£

ea
8B

Ca (#) =

either a policy (0,N), with OsNs@,

with 1<N<~,consisting to turn the

are present

total discounted case, respectively

It is easy to determine

but the determination of C,(N) and C,(N) is more difficult. Heyman /68/ and

Bell /71/ obtain

c,(N) =

4 v9R, AY + OA + = Ayre)Cy (N)

where

. XK. isN the LST of the distribution of

Ay

the LST of the distribution of

A_\N
= oP for N21

& = Ge) for wet

with eg) determined by the implicit

&g) = B(pta-rd(e))

r i =
(, Ky + hank+ 2 Rya-Bp +R, Ay ey + nan G-K, Bp"

+ HCN)

an idle period

a busy period, determined by

and & = bce)

equation

q@)

. H(N) and H(N) are the terms corresponding to the holding costs.
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Unfortunately, the expression of H(N) and H(N) are more complicated

(see Bell /71/ p.210 and appendix) and, like €(8) ,given by (7), almost

impossible to calculate explicitely. Thus in practice, it is quite difficult

to determine the optimal operating policy by the algorithm provided by Bell /71/.

In order to deal with this difficulty, Kimura /81/ considers a diffusion

approximation model depending only on the first two moments of the distribution

function B(.)and derives approximation formula for C,(N) and Cg (N).

Remarks

(i) Blackburn /72/considers the same model, but with balking and two

different types of reneging (single and batch reneging); for this

case of impatient customers, he generalizes the results of property 3.

(ii) Langen /76/ gives a different form of the costs Ca (N) and CN) -

3. Finite source M/G/1

a) Jaiswal-Simha /72/ consider a server applying a(0,N) policy in a finite

source queue M/G/1 (i.e. each unit stays in the source for a random time

exponentially distributed with parameter d); let us note I the size of the

source. In this model, which can be interpreted as a repair shop for I

machines, the holding cost h is replaced by a reward g per unit time for

each running machine, thus for each customer not present in the queueing

system. These authors treat discounted, as well as undiscounted criterion;

we give here, for instance, the average case.

Let P(N) be the total expected profit per unit time when the server applies

a (0,N) policy; with an evident extension of notation, it is described by

P(N) = g(I-N.(0,N)) - Ren, (0,N) - £yP_g(0N) - ry (1-P_Q(0,N))

when, for this finite source model, these authors obtain

— _ 1 =
N.(0,N) = I - xECsy “| P 9 (05N))

Pg (0.N)
N-1 1
z =

j=0 =j)A

with a specific value of p 9 (9>N) (see formula 22, p.701, Jaiswal-Simha /72/).

1, (0,N) =

Some numerical examples are treated for the determination of the optimal value

of N.
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8) We will introduce in this section a quiet different but interesting model

concerning a simple closed queueing network. Hatoyama /77/ considers a

discrete time maintenance system with I machines and two stations : an

operating and a repair facility. The model is illustrated in figure 2 :

 

 

Operating facility
s=0,1,...,8
 }——* queue <

   
  

———
I-i machines Figure 2

i machines
on=

~_ queue »——| Repair facility
a k=0,1

 

   
  

   

. Operating station : at the beginning of each period, an operating machine

is classified as being in one of S+1 states (s=0,...,S), showing the degree

of deterioration (0 : best state; S : failed state). An operating machine

evolves from state s to state s' in one period , according to a transition

probability Pygt An operating machine can be sent to the repair shop at

any period and is then instantly replaced by a spare unit, if any available.

. Repair station : a machine sent to the repair shop must wait until all the

machines which have already arrived at the repair shop are completely

repaired; moreover, at the beginning of each period, the decision maker

has the option of opening or closing the repair shop. When the repair station

is open and there are i machines, Gy is the probability that j of these

machines are still in the repair system at the end of the period.

At the beginning of a period, the state of the system is thus described

by (i,k; s) with

- i: the number of machines at the repair shop (i=0,...,1)

- k : equal to zero (one) if the repair shop is closed (open)

- s : the state of the machine at the operating station (when i<I).

This author associates with this system the following costs :

. Repair station : fixed switching costs R, and Ros running cost r, per period;
1

a general holding cost H(i,k) per period, depending of the state of the

station.
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+ Operating station : an operating cost a(s) per period for a machine in

state s; a reparing fixed cost c(s) for a machine in state s; a penalty

cost P per period when no operating machine is available.

Hatoyama /77/ derives sufficient conditions on this structure cost

for the existence of an optimal two dimensional control-Limit policy : a

control limit policy

- with respect to operating station 3N.Gb) x) Si ny > VSS ky EE) ae

optimal to leave the operating machine and otherwise to repair it

- with respect to repair station :Y¥(s,k), 4 Tek) rWicl(, it is optimal

to close the repair shop and otherwise to open it.

4. Several classes of customers

a) For the average case, Bell /73/ studies the optimal behaviour of a

removable server in an M/G/1 priority queue, with two types of customers

(k=1,2) having identical service time distribution, but characterized by

different arrival rates MK and holding costs hy Customers of class 1 have

non preemptive priority over customers of class 2 and h,2h,.

Bell /73/ proves the property 4.

Property 4 The optimal policy is either a policy (O,NG,, i,)) consisting

of turning the server off when the system is empty and turning

the server on when i, or ips the number of customers of each

class, reaches or crosses a linear boundary of the form

Cy i, + cy i, + d= 0; either the policy (0,0).

This author establishes that the line cy i, + Cy i,

like in figure 3, between the two lines i, + iy = N,(k=1,2) corresponding to

+ d= 0 is included,

the cases of a same holding cost h for each customer, respectively equal to

h, and hy; moreover its slope is always smaller than -1 and equal to -1 only

when hy=hy-

Figure 3

i, +i,=N
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Let us note that Tijms /74/ extends these results to the case of

different service time distributions for each type of customers and derives,

using some results of the theory of regenerative process, expression for the

average number of customers, of each class, present in the system.

8; In his Ph.D.Ghorayeb /78/ considers the same type of model but without any

assumption concerning the priority and with switching costs, also to move the

server from one class to the other. The operating policy must then determine

not only when to open or to close the station, but also which class of

customers to serve and when to change to the other class. This general problem

seems really difficult and the author introduces some limitative assumptions :

the main one is that there are no arrivals of class 2 when the server is busy.

Ghorayeb /78/ proves property 5.

Property 5 There exists an optimal policy represented by figure 4 in the

plane Gy) i,) and such that :

. in area I : if the server is off or on, he remains off or on

. im area Il : if the server is off, he is turned on and he

begins to serve first the customers of class 1

- in area A if the server is on, he continues to serve the

same type of customer

. in area B if the server is on, he always serves customers

of class 1.

 

Figure 4  we

1.B. D-Pokicy

Balachandran /73/ has the first introduce the model in which the state

of the system is the workload i.e. the total amount of work in the system.

The idea is that the customer's service times are different even though they
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may come from the same distribution; yet this type of measure means that

service times must be known immediately, after the customer enters the queue.

A(O,D) policy consists then to turn on the server when the total work to be

done reaches the value D and turn him off when the system is empty. For the

average cost criterion, this author analyses the (0,D) policies for a similar

cost structure as in I.A., except that rj=rj=0 and h is now a holding cost

per unit time per unit work. If C(D) represents the average cost, we have

like in I.A., and with an evident extension of notations,

c(D) = Rn, (0,D) + h W(O,D)

where W(0,D) is the expected work in the system.

Balachandran-Tijms /75/ and Tijms /76/ obtain

D E(M)

w(0,d) = w(0,0) #D- ff —* ax
o BOM)

where M, represents the number of customers present at the opening of the

station if a (0,x) policy is applied and W(0,0) is the average waiting time

inan M/G/1 system with policy (0,0); these authors derive D* the value corres-

ponding to the minimum of C(D)

oes J” way) ax = RAG=0)
6 x h

For the cost C(D), the policy (0,D*) is compared with the policy (0,N*).

For a constant service time, the two policies are obviously equivalent.

Boxma /76/ generalizes results of Balachandran-Tijms and proves the optimality

of the D policy over the N policy. Note that Tijms /77/ gives an expression

of the stationary distribution of the workload, when a policy (0,D) or a

policy (0,N) is applied.

1.C. T-Policy

1, FIFO discipline

Levy-Yechiali /75/ consider an M/G/1 queue, with usual FIFO discipline

U3.



("First in first out"), such that when the server finishes serving a unit and

finds the system empty, he goes away for a length of time called a vacation.

At the end of the vacation, the server returns to the main system and begins

to serve if they are customers. If the server finds the system empty at the

end of a vacation, two models are introduced :

Model _1 : the server waits for the first customer to arrive and then an

ordinary busy period begins

Model_2 : the server immediately takes another vacation and continues in this

manner until he finds at least one waiting unit upon return from a

vacation.

As usual, the server serves the queue as long there is at least one unit in

the system.

F(.) denotes the distribution function of the random vacation T, with finite

mean E(T) and second moment R(T’). The same cost structure than in section

I.A. is introduced, except that Tr) <ty and in fact rer)-r70 represents the

reward per unit time of the server for the work done during the vacation.

By evident extension of notation, the average profit per unit time for

models j=l, 2 respectively, is equal to

PD ay =r (0,7) = rn (0,7) nn (C,0)

Let we note

ECT oe7 = HHECT with fp= Le tar(t)

Levy-Yechiali /75/ obtain

ph) (0,7) = vp(0,7) with p(0,0) = I-p

a) _y ) eth nl?) _ Urfg) Oe)ny, (0,T) =F - my (0,T) with a (0,T) = Twa

0nO? (0,7) = N, (0,0) ven? (0,7) ~ N,(0,0))

dE (T2)
2E(T)

(-p) £5

E(T)

. Q)
with No (0,7) - N, (0,0) =

so that Po,1) = yr(0,7) - B )

These authors conclude that, for a fixed distribution F(.), model 2 is superior
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to model 1 if and only if

2:P) (0,1) > - AC-p)R;
they also determine the expressions of anoptimal value of T (his expected

value) for deterministic (exponential) vacation times.

Note As p. (0,T) is independant of T, there is no need to introduce the cost

xr in model 2.

Heyman /77/ examines model 2; when the server finds the system empty at

the end of a vacation, he considers that a busy period of length zero occurs

and that the cost R is thus incurred; in that case we have

(2) = 252ny, (0,7) = wD

and for deterministic vacation times, the optimal value of T is

/ZRU=oy _
Ah TAR

 

Ts =

This author compares the average cost for this optimal T policy and the optimal

N policy and proves that the latter always does better than the former.

Remarks

(i)

|

Meilijson-Yechiali /77/ consider a priority control model in a GI/G/1

queue, in which insertion of idle time is allowed.

(ii) Van der duyn Schouten /78/ introduces a descriptive model with stochastic

vacation time and a finite capacity for the workload and derives several

characteristics : the joint stationary distribution of the workload and

the stage of the server; the average number of overflows per unit time

and the average number of vacations per unit time.

(iii) Note that some queueing problems in which the service station is subject

to breakdown are close of the removable server model.

2. SPT discipline

a) Three papers have been more recently published by Shanthikumar /80°,80°,81/;

note that his results can be applied as well to N-policy that to T-policy, but
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we only present the latter. In the first paper, the author develops a new

and interesting method to analyze some controlled M/G/1 queueing problems,
using properties of the number of up and downcrossings levels in a special

case of regenerative process. He obtains two important basic relations

between the density and the expected number of upcrossings of this regenera-

tive process (see formula 8 and 9, p.817, Stanthikumar /80°/) ; these equations
can be used in many queueing systems,especially with exponential arrivals.

For instance, Stanthikumar /80°/ uses this method to easily derive the results

of Levy-Yechiali /75/ concerning the virtual waiting time distribution for
T-policy.

8) By this method, Shanthikumar /80°/ analyses optimal T-policy (model 2) of

a server in an M/G/1 queue with shortest processing time (SPT) discipline :
at the service completion epochs, the server choosesto serve the customer

with the shortest service time. For this model, let us note W(SPT; T) the

expected waiting time of an arbitrary customer; W(FIFO; T) may be determined

by relation (8) and Little formula.

Shanthikumar /80°/ determines the LST of the waiting time distribution; then

he obtains W(SPT; T) and proves the next conservation identity :

W(FIFO;T) _ W(FIFO;0)
W(SPT; 1) ~ WCSPT;0) vr (10)

In the case of deterministic vacation time, he derives the optimal value of T

TX(SPT) = TX(FIFO) . VE ay

where T*(FIFO) is given by (9) and E is the value of identity (10).

y) Shanthikumar /81/ applies the same procedure for a different, but quite

close, queueing discipline, called SPT within generations.

(SPT-WG) : the customers that arrive during the vacation form the first

generation and their total service time is the lifetime of the generation;

customers arriving during the lifetime of the first generation, if any,

make up the second generation, with its lifetime, and so on; within each

generation, customers are served in the order of the SPT discipline.

This author obtains similar results as (10) and (11), i.e. with obvious

extension of notation
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W(FIFO;T) _ _W(FIFO;0)
Spee OEea ’

W(SPT-WC;T) W(SPT-WG;0) ® va

and

T*(SPT-WG) = T*(FIFO) . VE"

TI. MULTI REMOVABLE SERVERS

The problem of more than one removable server is only investigated in

a few studies. A basic difference is that when the unique server is turned

off, the queue size necessarily must increase, but when one of several servers

is turned off, the queue size may go up and down. Mc Gill /69/ was the first

to examine this problem and established some intuitive properties for the

form of optimal policies, in the case of a general discounted cost GI/G/1

queueing system, but only for a finite horizon. Bell /75/ considers this

problem for an infinite horizon M/M/S model; a classical cost structure is

considered and fixed switching costs are incurred to turn each server on or

off. The state of the system is now denoted (i,k) when there are i customers

and k servers working. This author calls efficient policy, an operating rule

which never allows more working servers that customers present; otherwise the

policy will be called inefficient. He proves that for r sufficiently high

and all others parameters fixed, there exists an efficient policy; otherwise

an optimal policy may turn one or more servers off, even when there are

customers for him to serve, i.e. may be inefficient. Bell /80/ further inves-

tigates this model for S=2 and first shows that a critical number N exists such

that all the servers should be turned on or left on in any state (i,k) with

iN. Generalizing (v,N) policies of section I, he definies a (¥) V9sNy Ny)

policy for which the 4 critical levels denote numbers of customers in the

system when the number of working servers should be adjusted downward to 0,1

and upward to 1,2 respectively. For R=0, obviously an optimal policy adjusts

the number of working servers to min {i,k}, i.e. V,=0, Vo=Ny=1, No=22 =?

If R is allowed to increase from 0, he obtains the following property.

Property 6 The best efficient policies is such that vy =0, I<vy

Yet, if an inefficient policy is optimal, it may be of

three types
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- leave both servers on at all times (v=Vy=Ny =N5=0)

- leave at least one server at all times (vy) =N,=0)

- decrease the number of servers only in state (0,2) and

turn off both servers (y= 0).

 

Remarks

(i) Magazine /69/ and Huang - Brumelle - Sawaki -Vertinsky /77/ consider

control models under periodic reviews, i.e. the review points are at

equally spaced time intervals.

(ii) Levy-Yechiali /76/ consider T-policies in an M/M/S queueing system and

derives formula for the distribution of the number of busy servers and

the mean number of units in system.

(iii) Winston /78/ examines several removable servers in an exponential

queueing system in which the arrival rate depends on the number of

customers. For state (i,k), a general holding cost h(i) and a

running cost r(k) are introduced, but no switching costs. This author

derives conditions that ensure the optimality of monotone policies

such that the number of working servers is a non decreasing function

of the number of customers in the system.

III. BATCH SERVICE AND RELATED AEREAS
 

III.A. Batch service
 

An interesting problem concerns a removable server who can make a deci-

sion to serve any number of customers in a batch, up to some batch size limit

1sQs*. For this model, Deb /76/ introduces the following cost structure :

. T)sTo>Ry Ry like before

+ h(i) : a general non linear cost for holding i customers during a unit

time

+ c.y a linear cost for serving y customers (we have y=min(i,Q)).

The approach of this author is different in the sense that he establishes the

form of an optimal policy by direct analysis of the infinite horizon
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functional equation of SMDP.

Let us introduce relations (11) and (12) respectively for the discounted and

average criterion :

 

for some n>0, hG@) = hae}: > 7 a2)
v

ni) ~ hG-1) > EEO geisey + en (13)
B(B)Q B(B)

Property 7 [ a) If (12) and (13) hold, respectively for the two criteria,

there exists an optimal policy of the form (v,N)

b) Otherwise the policy (0,~) of turning the server off for

ever is optimal.

Remark

In the particular case R)=R,=0, Deb-Serfozo /72/ proves that for property

7.a), we have v=N-1, i.e. there exists an optimal policy of the type control

limit policy. For this case and moreover with Q=~, Weiss /79,81/ presents

some properties of the cost-function, gives an algorithm for finding the
optimal control limit and determines the waiting time distribution.

Finally, let us note that Weiss-Pliska /82/ introduce a general holding cost

h.G@) depending of time and show that control limit policies may cease to

become optimal.

III.B. Control of a shuttle

Batch service queueing systems are often found in transportation,

since mass transit vehicles are natural batch servers; so a related applica-

tion of model described in III.A. is the optimal dispatching of a shuttle.

Let be a shuttle system consisting of a single carrier with capacity Q,

transporting passengers between two terminals. At each terminal, passengers

arrive according to independant Poisson processes Qj) 5A9) and all arriving

Passengers wait to be transported to other terminals where they exit the

system; B(.) is here the distribution of the interterminal travel times,
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independant of everything and in particular of the load carrier. The system

is reviewed at those points in time when, either the carrier has just

arrived at one of the terminals or when the carrier is waiting at one of the

terminals and a new passenger arrives. The state of the system is denoted

by (ig»4,.5)5 where i are the number of passengers at the two terminals
ot

and 6, equal to zero or one, indicates at which terminal, 0 or 1, is the

carrier. At each review point, it is necessary to decide if the carrier is

dispatched (with min(is,Q) customers) or not. The cost of carrying y

passengers is R + c.y and there is a linear holding cost h.

1. Control at both terminals

Some particular cases have been first considered. Ignall-Kolesar /72/

study the case Q=] and moreover the dispatch decision is made without

knowledge of the queue at other terminal; the paper of Barnett /73/ concerns

deterministic travel times with some restrictions on the values aT and do:

Barnett-Kleitman /78/ show that the result for the control at a single

terminal (see below) is not directly generalized for control at both terminals.

The general model is introduced by Deb /78/. In a first time, he considers

the finite horizon period n and extends then the results for n> ; for the

discounted criterion, he proves the following property.

Property 8 a) If n<Blerp)s then the policy of never dispatching the server

is optimal

b) Otherwise, the optimal control policy is of the form :

Dispatch the carrier iff is2Gs(ij_5)> where Ge.) isa

monotone decreasing control function.

Unfortunately, the explicit determination of the function Gs(.) seems an

unsolved problem.

2. Control at one terminal

Ignall-Kolesar /74/ examine the particular problem of the control at
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a single terminal - said zero ~ and for an infinite capacity shuttle with

deterministic travel times. Thev prove the following property :

Property 9 There exists an optimal control limit policy of the form :

Dispatch the carrier iff ig +i)

Weiss /81/ presei..c a method for computing the control limit N, compares

2N.

this policy with the more traditional policy of scheduled periodic service

and last, proves a conjecture of Ignall-Kolesar /74/ regarding the case when

the dispatcher does not know the number of passengers at terminal 1 : there

exists an optimal control policy concerning ig plus the expected number of

passengers at terminal 1.

Remarks

(i): Osuna-Newell /72/ and Asgharzadeh-Newell /78/ consider a particular

model of multiple vehicle system.

(ii) Teghem Jr. /82/ consider a double shuttle system, like a ropeway,

transporting passengers simultaneously from one terminal to the

other in the two opposite directions.

TI1.C. Chearing systems

Stochastic clearing systems are first analysed by Stidham Jr. /74/

and optimized by the same author in 77.

The cumulative input to such a system is described by a non decreasing

stochastic process {¥(t), t20}, with Y(0)=0; output occurs intermittently in

the form of clearing operations, which instantaneously remove all the

quantity in the system. This author considers that clearing occurs whenever

the cumulative input since the last clearing instant exceeds a critical

level q. Let us introduce some definitions and notations.

# F sf J 2 th c* Xi time until first clearing; xX time between (n-1) and nee clearings

(n> 1)
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» R(t) = max{n|S_ < t} , the number of clearings in [0,t]

- V(t) = X(t) - Y(Sp (py) » the net quantity in the system

- T(y) = inf {t]y(t)>y} , the first entrance time into the set (y,~)

+ Wy) = E(T(y)), the sojourn measure of the set [0,y].

With

Assumption1 {V(t),t20} is a regenerative process with respect to the

renewal sequence Xx» nl.

Stidham Jr. /74/ obtains the stationary distribution of {V(t),t20}

it is completely defined by knowledge of W(y), Vy<q and is different that the

stationary distribution uniform between O and q.

Stidham Jr. /77/ introduces the following costs

a positive cost R - independant of q - whenever a clearing takes place

+ a general holding cost h(x) 2 0, incurred while V(t)=x

 

 

and

h is continuous and - h is unimodal with mode Xo

€(-~,©), Let we note h'(x) = h(xo*®)

The average cost C(q) is given by

R+ LT hi Oex,) awe)
C(q) =

W(q)

and this author proves.

Property 10 Let abe a solution to the equation Z° W(x) dh! (x-x0) = R (14)

Then q minimizes C(q) among all q>0, _ that caso

(If there is no solution to (14), then q=”) .

Rather than "N-policy", Nishimura /79/ considers T-policy in this model.

He first obtains an optimal clearing interval t among the set of non negative

random variables with finite mean (see theorem 3.3., p.101, Nishimura /79/)
and then proves that if h(x) is continuous and monotone non decreasing in

~,
x20, then ve T(q).
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These two authors Stidham Jr. /77/ and Nishimura /79/ generalize

their results to a general clearing system in which the effect of a

clearing operation is that the quantity in the system is restored to a

level v rather than 0.

Last, let us note that Whitt /81/ further investigates the compa-

rison between the stationary distribution of V(t) and the uniform distri-

bution and Stidham-Serfozo /78/ introduce more general clearing systems in

which, in particular, the quantities cleared are random variables.

CONCLUSTON

We have here examine some ot the principal papers related to remo-

vable servers; yet we have of course no claim to be exhaustive. It is

important to remark that there is no major difficulty to classify in

categories the different papers because, unfortunately, very few studies

consider the optimization of more than one parameter. It seems us important

in the future to analyze the interactions between several different optimi-

zation problems. We invite the reader, interested by further comments on the

prospects of the field of optimal control queueing problems, to refer to the

forthcoming paper of Teghem Jr. /85/.

To conclude, we want to turn the attention of the reader on the

possibility to determine an optimal policy of very complex optimal control

problems - for which it can not be expected that the optimal policy has

simple form - by using numerical algorithms issued of the SMDP theory.

A good example of this technic is given by the paper of K.Ohno-K.Ichiki /84/

("An optimal control problem of a C-stage tandem queueing system" Technical

report—Department 01 susvimaciuu prucessing auu Management Sciences, Faculty

of Science, Konan University, Kobe, Japan). It is important to not forget

this type of approach to resolve complex practical problems.
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