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ABSTRACT

The ordinary least squares regression method is not a reliable tool in regression analysis
without first diagnosing possible outliers present in the data set. The least median of squares
regression technique (Rousseeuw 1984), which is designed to lessen the impact of outlying
observations, is presented and some alternatives are given. The output of a Fortran
implementation of this regression technique, called PROGRESS (Leroy and Rousseeuw
1984), is illustrated with an example. The results can be interpreted by means of graphical
representation of the standardized residuals. It is showed how PROGRESS can be used
as a diagnostic tool in regression analysis.



2 I INTEDDUCTIOH

In a linear model, a response variable y 1s written as a
linear combination of p explanatory variables X1y Xp

yi=x1181 c RN 2 xpiep+ei ) i1=d, s s oy

where ey 1s often assumed to be normally distributed with

mean zero and standard deviation o, Until recently, most

people have been estimating the coefficients el,...,ep almost

exclusively by means of the least squares (LS) method,
defined by
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where the residuals ry equal y4 - xliﬁl T .. XpiBp.

The main advantage of this method lies in the fact that
explicit formulas exist for the estimates, making it the only
feasible method in the pre-computer age. For the same reason,
nowadays many computer programs for LS are avallable, which
explains why this method has been used so often. Moreover,
many mathematicians adore the LS estimator because of its
nice optimality properties under the condition of a normal
error structure. In practical situations however, this
condition is hardly fulfilléd. and the LS regression
technique 1is quite sensitive to the presence of outlying
points. Therefore, 1t is important to have a diagnostic tool
for identifying such points. In +the last decades, several
statisticians have given consideration to robust regression
(see Rousseeuw 1984 for an overview) on the one hand and to
regression diagnostics on the other hand. Both approaches are
closely related by two important common alms, namely
ildentifying outliers and pointing out inadequacies of the
model. The books of Belsley, Kuh and Welsch (1980) and Cook
and VWeisberg (1982) are dedicated to regression diagnostics.
However, most of these methods deal with the effects of
deleting a single point, and often do not succeed in
ldentifying multiple outliers. On the other hand, the robust

regression technique described in this paper does manage to



solve this problem. When the robust and the LS fit differ
substantially, this 1indicates that the data require a
thoughtful analysis,

In order to express in a statistical way the robustness
of a regression technique against outlying observations,
Hampel (1971, 1975) proposed a general asymptotic definition of
the breakdown point e€¥, We will use the finite sample version
of this notion given by Donoho and Huber (1982), name ly

e¥(X,T) = min {m/n ; sup | TCX > | = o
where the X' are obtained by replacing m points of the sample
X (containing n data points) by arbitrary ones. T stands for
a regression estimator. In words, €¥ is the smallest fraction
of contamination that can cause the estimates to take on
arbitrarily large values. For LS regression ¥ equals 1/n
because one bad point is sufficient to carry the LS estimator
over all bounds. Considering the 1limit for n going to
infinity (p fixed), one can establish that LS has ¥ equal to
0%. The best possible value for the breakdown peint is  50%,
because for larger amounts of contaminated data in a sample,
one cannot tell the 'good’ and the 'bad’' observations apart.
The first regression estimator which is equivariant for
linear +transformations on the x4 and which attains a
breakdown point of 50% is the least median of squares (LMS)

estimator (Rousseeuw 1984).

The LMS estimate of 6 corresponds to
minimize median 1ry2 (1.2
8 1
Compared to LS (1.1), +the sum has been replaced by the
median. Preceding improvements towards robustness consisted
of substituting the square by something else, but none of
these led to a high breakdown point.

In the following two sections we will outline the
algorithm weé use for computing the LMS estimator as well as
some other robust regression estimates derived from it.

cection 4 is devoted to an example.



2. ALGORITHM FOR COMPUTING THE LMS ESTIMATES

The special cacse of one-dimensional estimation of
location 1is obtained by putting p=1 and x3=1 for all i in

(1.2). Then the minimization becomes

minimize median (y4 - B2 (2.+..12
n
S i

and the sample reduces to {Yi}i=1,. The LMS estimate is

RSPl §
then equal to the midpoint of the shortest half of the sample
(¥y$424=1,...,n" The shortest half is given by the smallest of
the differences Yy (n)~¥Y(1)r Y<h+1> Y(2)r: 1+ V)" Y{n-h+1)’
where h=[n/21+1 ([ x] means integer part of x>, and y 1) <

< Y(n) are the ordered observations.

The following simple example will illustrate the LMS
estimate. Consider the one-dimensional sample consisting of

the observatilions:

21, 23, 25, 26, 26, 290,

| I ] |

The halves of this sample are indicated by the lines below
the values. The LMS estimate of location is 24.5, because. it
is +the midpoint of the shortest half. The least squares
estimate of location 1s the mean, which equals 70 1in this
sample. Comparing both estimates, 1t appears that 24.5 1s a
better parameter of location for the majority of the data.
The aberrant value 299 has badly affected the mean, whereas

the LMS has completely neglected 1ts presence.

In the general regression model, it is probably not
possible to write down a straightforward formula for the LMS
estimate. For this case we have therefore constructed a
heuristic algorithm which can be outlined in the following
way:

Choose at random p observations out of the n and determine
the unique regression surface through these p points. This
solution gives a trial estimate (©€4°,..., B0 . This

P
procedure is repeated m times and the trial estimate for



which the objective function 1is minimal 1is retained, The
number of replications (m) is determined by requiring that
the probability that at least one of +the m subsamples is
'good’ is at least 95%. A subsample is ’'good’ 1f it consists
of p good observations of the sample, which may contain (in
the most extreme case) up to BO% of bad observations. The
expression for this probabillity is
L= 1 = 1#2)F)m if n/p 1s large.

(This idea was already used by Stahel in 1981 E o
multivariate location.)> When n and p are rather small, all
possible combinations of p points out of n are considered

instead of the repeated random subsamples.

The basic idea of this algorithm 1s 1llustrated in the

artificial two-dimensional example below:

For this case n equals 9 and p equals 2. The algorithm will
handle all pairs of points ocut of the 9. We will restrict the
explanation for only three such combinations, namely (f,g),
(f,h) and (g, h). Let us start with the points f and h. The
regression surface (which is a line here) passing through the

points f and h 1s found by solving the system of equations



o = Byt o Gt

y"' o= 81°%x" + B85°
where (x',y')> and (x",y") are the coordinates of respectively
f and h. The trial estimate 64° and 6,° are +the unknows.
Then, the residuals y; - 81°xy — 65° corresponding with this
line are determined for each point 1 1n the sample, The
median of the squared residuals (which 1is the objective
function) is calculated and compared with the best value
eventually found for previous palrs of points. As a
minimization of the squared residuals has to be performed,
the trial estimate corresponding with the points f and h will
be retained only when 1t leads to a lower objective function
value, Examining the scatterplot above, 1t is easy to find
out that the pailr of points (f,g> will be the 'best’ out of
the three combinaticons consldered. Indeed, the majority of
the observations have a small residual with respect to the
line passing through f and g. Repeating this procedure for
each pair of points will finally yleld the lowest objective

function wvalue,.

When handling a regression model with intercept, the
estimator of location 1s used for finding the constant term.
Once ﬁl"“'ﬁp—l are found, Q s the LMS estimate of

P
location of the sample constituted by

Z4 = Y1 — Kl,iﬁl = o oww = xp-—l,iep—l ' i=l,...,n.

Apart from the regression coefficlents, the scale
parameter o <(r=standard deviation of the ejy) has to be
estimated in a robust way. For +that purpose a preliminary
scale estimate s° 1s calculated. This s8° 1s based on the
value of the objective function, multiplied by a
finite-sample correction factor (which depends on n and on p>

for the case of normal errors:

€° = [min median ry21% x 1.4826 x (1 + 5/(n-p) ) 2.2
A
(<] o

The factor 1.4826 = 1/83 1(3/4) was introduced because
IMHH_[%iI/§_1{3/4} is a consistent estimator of 0 when the
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random variables Fi are distributed like N(O,o0>. From an
empirical study, it appeared that the scale estimator was too
small in normal error situations, especlally for small
samples. Therefore the multiplication with the factor

1 + 5/ {n-p), which has been derived from a simulation study,

was necessary.

Vith this scale estimate +the standardized residuals
riy/s? are computed and used to determine a welght wy for the

1-th observation as follows:

1 if |rys/s°| < 2.5
Wi -1‘ (2.3

(0] elsewhere

Then the final scale estimate for the LMS regression is given
by
n n
oeX = [ (L Wy ry2) o/ (L wy - p> 1k,
1=1 i=1

At the classical model, o¢X would be a consistent estimator of

v if the weights Wi are independent of the data (X{,¥1?.

This algorithm has been implemented in FORTRAN and runs
on an IBM PC or compatible computer. We called 1t PROGRESS:
program for robust regression. The output of PROGRESS
consists of results concerning LS and concerning reweighted
LS based on the LMS, which is described below. For both
methods, PROGRESS gives the regression coefficients with

their standard deviations and T-values, their
variance-covariance matrix, an estimate for the scale
parameter o, the determination coefficient (R squared), the

standardized residuals, and residual plots of +two types.
PROGRESS provides also two different options for handling

data sets with missing values.

In order to have other classical regression results,
like F-tests and options for variable selection, one could
run PROGRESS first and then use the welghts provided by the
LMS in a standard package (for example BMDP or SAS). Pursuing



this course, one 1s safeguarded against outliers which may

disturb the ordinary LS regression analysis.

A skilful study of the residuals is an important task of
applied regression analysis. Therefore PROGRESS has a plot
option which permits to obtain for both regression techniques
a plot of the standardized residuals versus the estimated
value of vy, or a plot of the standardized residuals versus
the index of the observation i (this 1is <called an index
plot). A point in the scattergram is represented by a digit.
This digit corresponds +to the number of points having
approximately +the same coordinates. When more than 9 points
colincide, an asterisk 'Xx' is printed on that position,. In
problems with several variables, the residual plots
corresponding to the reweighted LS estimator are very useful
for spotting the outlying observations. If the residual plot
of both the robust and non-robust regression method agree

closely, the LS result can be trusted.

In the residual plot a dotted line is drawn through zero
and a horizontal band on the interval L=2.5,2.8] is marked.
These 1lines facilitate the interpretation of the results.
When the observed y; value equals the estimated vy value,
then the resulting residual becomes zero. Points in the

neighbourhood of this zero line are best fitted by the model.

If the residuals are normally distributed, then one can
expect that roughly ©98% of the standardized residuals will
lie in the interval [-2.5,2.5). In the residual plots of the
reweighted LS, the outliers are far away from this zone. So
observations for which the standardized residual is situated
far from the horizontal confidence band can be identified as
outlying. A warning must be given for this interpretation on
the residual plots corresponding to the LS estimator. A true
outlier does not necessary possess a large LS residual. The
distortion produced by the outlier(s) pushes the otherwise
'good’ observations away from the regression hyperplane., This
effect makes 1t nearly impossible to ldentlify the ’'bad'’
observation(s). This phenomenon is also 1illustrated by the

example in section 4.
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Besides the 1dentification of outliers, the residual
plots contain also very important information - for detecting
common types of model inadequacies. A pattern showing that
the variance of the residuals increases or decreases with
increasing estimated y, points out that it could be
favourable to apply a suitable transformation +to either an
explanatory variable or the response variable. A pattern
resembling a horse-shoe may be caused by nonlinearity. In
this case a transformation on an explanatory or on the
response variable, or an additional sgquared term 1in the
model, or the addition of another explanatory variable may be

reguired,

e e e e e e e R — — s s e —— ———— e N e S —— s i o

several methods exist for improving +the efficiency of

the LMS. Some of these are presented in this section.
3.1 The reweighted least squares regression

The reweighted least squares regression (RLS) technique
consists of minimizing +the sum of +the squared residuals
multiplied by a weight wy

n

minimize I wyry? (3.1).
3 1=1
The welghts wy are determined from the LMS solution as in
equation (2.3) but with the final scale estimate o* 1instead
of a2, In +this way, the result is protected against the
presence of outlying points by means of the weights based on

the robust LMS estimator.

3.2 The one-step M-estimator

An M-estimate is defined as a solution 6 = KO 44,004 « 4B ) t
of the system of equations
n
L oxyy Wrys/ > =0
1=1
The function Y is absolutely continuous with derivative Y’.

11



We use the tangens-hyperbolicus function as defined by
Hampel, Rousseeuw and Ronchetti (1981):

%(x) = x for O < |x| < p
= (A(k—-1>)"%tanhl % (<(k-1)B2 /A%
(e —|x1}laign(x) for p =« |x| < €
= for ¢ < |K|

where p=1.470089, ¢=3.0, k=5.0, A=.680593 and B=.769313.
Let o*=¢81%,...,0,%% be the vector of an initial solution
(we will take here the LMS estimates of 8=(01,...,6)% and o
the corresponding estimate for the scale parameter o.)

Bickel (1975) defined a one-step M-estimate as

ok t ot -1
8 = 8% p —— (%(rl*/w*},.¢.,%Hrn*/w*}}x XX )
By, &
where B(Y,E ) = _j[ Y’{u)dﬁ(u} and X 1is the pxn matrix

containing the explanatory variables,

4, AN EXAMPLE

In order to illustrate the output provided by PROGRESS
we have chosen for the famous 'stackloss data' set presented
by Brownlee (1965). The data describe +the operation of a
plant for +the oxidation of ammonia to nitric acid. The 3
explanatory variables and the response variable can be

described as follows:

X1 rate of operation
¥ cooling water inlet temperature
¥x3 acid concentration

y stack loss
We will use a linear regression model with constant term

(this is obtained by creating a fourth explanatory wvariable

which takes on the value one for all cases).

12



We have selected this example because 1t 1is a set of
real data and it has been examined by a great number of
statisticians (Draper and Smith (1966>, Daniel and Wood
(19715, Andrews (1974), Atkinson (1980) and many others) with
the help of several methods. Summarizing their findings, it
can be said that most people concluded +that observations
1,3,4,21 were outliers, According to some people, observation
2 is reported as an outlier too. Running PROGRESS on this
data set glves rise to the following output:

13
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f ROBUST MULTIFLE LINEAR REGRESSION WITH A CONSTANT. *
AR R R R R R R S R SRS AR R R IEN I I,
NUMEER OF CASES = 21

NUMEER OF COEFFICIENTS (INCLUDING CONSTANT TERM) = 4

THE EXTENSIVE SEARCH ALGORITHM WILL BE USED.
DATA SET = BROWNLEE STACK LOSS DATA

THIS ROBUST MULTIFLE REGRESSION ALGOFITHM 15 BASED ON

THE LEAST MEDIAN OF SOUARES (LMS) METHOD.

(SEE F.ROUSSEEUW (1984),LEAST MEDIAN DF SOUARES REGRESSIONMN
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. 79 871-880]
THIS FFROGRAM HAS BEEN WRITTEN BY A.LERDY AND F.ROULSSEEUW.
FOR FURTHER LNEEEE&TIDN OF COMMENTS, FLEASE CONTACT

VRIJE UNIVERSITEIT ERUSSEL
C.5,0.0. (HMZ03)

FLEINLAAN =

E-10S0 BRUSSELS (KELGIUM)

FFRINT DFTION
FLOT OFTION Z
THERE ARE ND MISSING VALUES.

YOUR DATA RESIDE ON FILE : B:GSTACK.DAT
THE DBSERVATIONS

OFERATION TEMPERATUR ACID CONC. STACKLODSS

I

-
-~
-

n

1 B0, OO0O0 27.0000 BY. 0000 42, QOO0

2 8. 0000 27.0000 8B8. 0000 37 . 0000

3 75,0000 25. 0000 Q0. 0000 37 . 0000

3 62. 0000 24. 0000 B7.0000 28. 0000

b &2, 0000 22. 0000 87.0000 18. 0000

ts &2. 0000 2%. 0000 B7. 0000 1B. 0000

7 &2. 0000 24 . 0000 . 0000 19. 0000

B &2, 0000 248 . 0000 23. 0000 20. 0000

< i = T T L 2%, 0000 B87. 0000 15,0000

10 58. 0000 18. 0000 ED.DOUE i:.gggg
=8. 0000 = 2 () - L

{3 =g OG0 18- 8889 83: 8800 13.0000
13 =8. 0000 18. 0000 82.0000 11. Q000
14 SE. OO0 19. 0000 Q3. Q000 12,0000
15 S0 . 0000 1B. 0000 89. 0000 8. 0000
14 S0. 0000 18. 0000 B&. Q000 7. 0000
17 S0 . 0 19. 0000 7 2. 0000 8. 0000
18 50. 0000 19.0000 75. 0000 8. 0000
19 SO. 0000 20. 0000 BO. 0000 9. 0000
21 S6. 0000 =0, 0000 8z . 0000 15. 0000
21 FTO, 0000 20, 0000 F1.0000 15, 0000

MEDIANS =

OFERATION TEMFERATUR ACID CONC. STACKLOSS
5B8. 0000 20. 0000 B7. 0000 135, 0000

DISFERSIDNS =

OFERATION TEMPERATUR ACID CONC. STACKLOSS
5.9204 2.9652 4.4478 S5.9304

THE STANDARDIZED OBSERVATIONS
k OFERATION TEMFERATUR ACID CONC. STACKLOSS

1 3. 7097 2.3607 . 4497 4.5528
2 e 70197 2.3607 . 2248 3.7097
! 2.B8b6 1.686462 +b745 3.7097
4 L4745 1.3430 . D000 2.1%921
be 6745 -6745 - 0000 « 2059
&5 6745 1.0117 - 0000 « B05T
7 46745 1.34%0 1.34%0 .&74AS
B + 6745 1.34%0 1.34%90 .B41
9 Q000 1.0117 - 0000 . 0000
10 - 0000 =.6745 -1.3738 -. 1684
11 . 0000 -.6745 - 4497 -. 1486
12 . 0000 -1.0117 - 2248 —s 2372
13 0000 -.6743 -1.1242 -.&745
14 « 0000 -. 3372 1.3430 = . 3059
15 -1.34%90 -.&743 -.4497 -1.1804
16 -1.34%0 —. 6745 -.2248 =1.34%0
17 =-1.34%90 e o7 4 e alLd -1.1804
18 -1.34%0 e -1.79864 -=1.1804
19 -1.34%0 . 0000 -1.5738 -1.0117
20 —. 3D 2 - 0000 -1.1242 . 0000
21 2.0235 . 0000 .B993 - 0000

SFERARMAN FRANK CORRELATIDN CDEFFICIENTS BETWEEN THE VARIABLES
( STACKLOSS 1S THE DUTFUT VARIABLE)

OFERATION 1.00

TEMFERATUR - 74 1.00

ACID CONC. -3 -36 1.00

STACKLOSS 92 « B3 .30 1.00

PEARSON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
( STACKLOSS 1S THE DUTFUT VARIABLE)

OFERATION 1.00

TEMFERATUR .78 1.00

ACID CONC. .« 50 37 1.00
STACKLOSS « 72 .88 -40 1.00

PERRERARR RN IR SRR AR RN IR RNt RN RN R RN IRt ERORLRIRSELRERERRREISIRRTRTY



EAST SQUARES REGRESSION
ISRERREE SRR S I EESE ST

=i

LN R 8
VARTAEBLE COEFFICIENT STAND. ERROR T - VALUE
DFERATIDON - 715464 -1X484 g. o661
TEMFERATUR 1.29529 « =6B02 3.51957
ACID CONC. i i B « 15629 e AT A N |
CONSTANT -39.91948 11.B%400 3. ONDT2
5UM OF SDUARES - 178.8T000
SCALE ESTIMATE = X.2423548
VARIAKNCE - COVARIANCE MATRIX =
. 18190-01
- oS ID-0] L A ZSAD+00
=.7144D-02 -10480-04 « 2447001
 2BT D0 =.46518D+00 =.1676D+01 - 1415D+03
COEFFICIENT OF DETERMINATION (R SQUARED) = . 21358

OESERVED ESTIMATED RESIDUAL MO RES/SC
STaAaCrLDSsS STACKLODSS
42, 00000 »B8. 7464574 E.274448 1 1.00
7. 00000 -B.91748 -1.51748 2 -l
7. 00000 XZ2.44447 4. 55553 = 1.40
28. 00000 5 . ke S.&9778 4 1.74
18. 00000 19.71185 -1.7114% i —-. 53
18. 00000 Z21.004%4 -3.00L74 [} -, X
19, OO000 21.38%49 -2.3894% 7 -.74
20, DOO0 21.38949 -1.7B8%4% a8 i
1500000 1B. 14478 =3.14438 9 -.97
14. Q0000 12. 732280 1.26720 10 -y
14. 00000 11.3463570 2.6FTL30 i1 . B1
13, 00000 10, 220354 2. 77944 12 . Bé
11. 00000 12. 42854 -1.4285 13 —-. 44
12. 00000 1205050 —-. 05050 14 —-.02
8. 00io0 5. 63858 Z.%6147 15 i g |
7. 00000 4. 094095 - R0OE05 16 . 2B
B. 00000 7.519%95 -1.5199%5 17 -.47
B. 0000 B.45509 —. 45509 1B =-.14
e alelniely] 9.5982% —. 97824 19 -.18
15, OO000 1Z.58785 1.41215 20 .44
15, Q0000 22.23771 g TR ) | 21 -Z2.23
EROWNLEE STALCK LOSS DATA
-— LEAST S5QUARES ——
RESIDU/SCALE }—+—"-—+-~——+—~-—+-&~—+—~—~+—~-~+——~—+—-~~+—~——+~~—-+—i
1 1
2_ 5 +++++++++++++~i-++++++++++++++++++++4-l-++++++-I--I- Fdd
1 1
I 1
1 |
I i I
+ +
I I
I 1 1
I I
I 1
+ +
I 1 I
I 11 1
I 1 1|
1 1
+ - 1 +
1 i I
I 1
1 1
.0 I---— -k e e ]———————— I
+ 1 +
1 1
I 1 1 | 3
1 1 1 |
I 1 1
#4 +
| 1 1 1
1 |
I I
1 I
+ +
! i
I
1 I
1 I
+ +
I 11
I 1
' |
-2.= 1++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 |
I I
I -+t ]
1 21

INDEX OF THE OBSERVATION

ERRRARAEAR N RANN RN RN AR RN R R AR RN RN AR R R AR R SRR A AR ARN R IR AR RN PR R ENERYENRY
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LEAST MEDIAN OF SQUARLCS REGRESSIDN
SRR R AR R R R R SRR R AR R ]

THE MINIMIZATION OF THE 12TH QUANTILE OF THE SQUARED RESIDUALS IS
DN A TOTAL OF =092 SUBSAMFLES (DF 4 FOINTS DUT DF 21)

92 SUESAMFLES LED TO A SINBULAR SYSTEM OF EQUATIONS.
THE SOLUTION 15 DONLY BASED DN THE GODOD SAMFLES.

MULTIFLE LMS SOLUTION
EERRNENENET LTINS NR RS
VAR IAHLE COEFFICIENT
OFERATION . 71429
TEMFERATUR . 35714
ACID CONC. » QOO00
CONSTANT =34. 50000
FINAL SCALE ESTIHATE = 1.241348
COEFFICIENT OF DETEHHINATIdH = +F7105
DESERVED ESTIMATED RESIDUAL NO RE
STaACKLOSS STACKELOSS
42.00000 32.28%572 9.71428 1
7. 00000 2. Z2B572 4.71428 i
7. 00000 Z8. 00000 9. 00000 3
28. 00000 1B.35714 9.454286 4
18. 00000 17. 54286 . 35714 5
18. 00000 1B. 00000 . QOO00 &
19. 00000 18.35714 54286 7
20, 00000 18.25714 1.64284 8
15. 00000 15.142B4& -. 14284 g
14, Q0000 13.35714 . 64284 10
14, OO0 13.35714 . 54286 11
12X, 00000 13.00000 - OO00O0 12
11. 00000 13.35714 -2.35714 13 =
12, 00000 13.7142% =1.7142% 14 -~
8. 00000 7.642B6 o714 15
7. 00000 7.5428B6 -, 54288 15
8. 00000 8. 00000 « QOOO0 17
8. 00000 B. 00000 . 00000 i8
g.00000 B.35714 L &42846 19
15. 00000 12.64284 2.35714 20
15, 00000 22.642B6 -7 .44284 21 =~
BROWNLEE STACK LDSS DATA
--—-LEAST MEDI AN OF S22 UARE-ZS -
RESIDU/sSCALE e e e e e e S
- 7T0OZE+OL 1 11

2.5

1
I
I
+
1
I
1
1
+
1
1
1
1
+
1
1
I
I
+ 1
1

1

1

I

+

0.0

B R & & o St R A A S A R S R P PR

= 6059E+01

e R L T e e e I e L L I Ry

s s e s Sttt [T T SR SRS T S

INDEY OF THE OQOERSERY
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REWEIGHTED LEAST SQUARES BASED DN THE LMS
ERE SR AR RN AT RS ARER AR ERNR AR SRR RN AR R ORGSR
VAR 1ABLE COEFFICIENT STAND. ERROR T - VALUE
ODFERATION . 6B60T 07358 9.Z2477
TEMFERATUR =T L4 - 12872 4_ 40574
ACID CONC. - . 0172 LOB5305 -, 32=15
CONETANT -I5.48B420 I.BOZ02 -7 . 3305
WEIGHTED SUM OF SRUARES = 16.028%7
CORRESFONDING SCALE ESTIMATE = 1.11229
VARIANCE - COVARIAMNCE MATRIX =
o1 4D 02
-.4512D=-02 - 14657D-01
st b B s B, —-.58B2D-03 . 2B14D-02
-, 211801 -.A45B4D-01 = 12445D+00 L 1444D+02
COEFFICIENT OF DETERMINATION (R SRUARED) = . 746288
THERE AFE 164 FOINTS WITH MON-TERDO WEIGHT.
AVERAGE WEIGHT = - 76190
OBSERVED ESTIMATED RESIDUAL ND RES/SC WEIGHT
STACKLOSS STACKLDSS
/2. 00000 33.17970 B.BZ203X0 1 7.93 -0
27 . 00000 e 19495 5.B0305 2 x.42 ]
X7 . 00000 2B.59778 B. {40222 3 Tl .0
28. 00000 1716223 B.83&477 4 7.94 ]
18. 00000 1B.02702 - 2902 = -.03 1.0
1B8. 00000 1B8. 594172 —. 27612 é -. 54 1.0
19. 00000 19.0%973 —-. 05973 7 —. 05 1.0
2000000 19_05973 L F4027 8 . BS 1.0
15. 00000 15.83175 -. 85175 9 — TR 1.0
14, 00000 13.13700 . B&I00 10 .78 1.0
14, 00000 12.98174 1.01B24 11 o 1.0
12, 00000 12.4318% L SEB11 iz - | 1.0
11.00000 1X.10249 -2.1024%9 13 -1.8B%9 1.0
12. 00000 1Z.4798B4 -1.47984 14 -1.XZX 1.0
8. 00000 7.43700 « 30700 15 « A5 1.0
700000 7.54475 -, H4475 i4 -.49 1.0
B. QOG0 B.35334 —. 393534 17 — N 1.0
8. 00000 B. 23260 —. 23260 1B =21 1.0
gL 00000 8.78B244 21754 i9 - 20 1.0
15, Q0000 12.B46451 2.1754% 20 1.92 1.0
15. 00000 22.31454 =7.31454 21 -6.58 5
ERDWNLEE STACK LDSS DATA
--—— REWEIGHTEHD LS { BASED OWN LHMS ) ——=
FRESIDU/SCALE {—+—---+~~-~+f-—-+————+-———+—-~-+*———+~~—*+—~~—+-———+-{
1 I
. AF45E+O1L ; 1 1 1 ;
1 1
¢ I
I I
+ +
1 I
I H
I I
1 I
+ +
: 1
2.5 I+++++++++++++++++++++++++++++++++++++++++++++++++++++%
I
+ 1 +
1 1
1 1
1 1 i 1 1
I 1 1 1
0.0 +-————————— -l ——————————————— == +
1 1 1 1
1 1 1 1 1
1 1
I 1 1
+ +
I 1 |
-2.5 I+++++++++++++++++++++++++++++++++++++++++++++++++++++%
1
1 1
s +
1 I
1 |
1 1
1 1
+ +
1 I
1 1
1 I
1 I
- AS7TEE+O1 + 1 +
: %
I
e s e S E e el et S S s It st |
1 21

INDEX DOF THE OBSERVATION

17



Examining the residual plot of the reweighted LS
confirms that the observations 1,3,4 and 21 are outliers, as
their residuals lie far from the confidence band. Observation
number 2 is an intermediate case because it is Just on  the
verge of the area containing the outliers. However, the
residual plot corresponding to the LS8 fit masks the bad

points.

Concluding this example we would like to emphasize that
it is necessary to compare the standardized residuals of both
the LS and the robust method in each regression analysis,
OUnly the robust technique can be used as a reliable tool for

diagnosing the outliers.
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