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ABSTRACT

Theordinary least squares regression methodis nota reliable toolin regression analysis
withoutfirst diagnosing possible outliers presentin the data set. The least medianof squares
regression technique (Rousseeuw 1984), which is designed to lessen the impactof outlying
observations, is presented and somealternatives are given. The output of a Fortran
implementation of this regression technique, called PROGRESS (Leroy and Rousseeuw
1984), is illustrated with an example. The results can be interpreted by meansof graphical
representation of the standardized residuals.It is showed how PROGRESScan be used
as a diagnostic tool in regression analysis.



1. INTRODUCTION

In a linear model, a response variable y is written asa

linear combination of p explanatory variables M1 Xp

Ya = ¥1401 +... + pi0p Hey, 1=1,...,n

where e; is often assumed to be normally distributed with

mean zero and standard deviation oc. Until recently, most

people have been estimating the coefficients 81,-++,8, almost

exclusively by means of the least squares (LS) method,

defined by

n

minimize Eoory? Cid)
a
8 1=1

where the residuals ry equal yy -— «146, ™ ey xpidh.

The main advantage of this method lies in the fact that

explicit formulas exist for the estimates, making it the only

feasible method in the pre-computer age. For the same reason

nowadays many computer programs for LS are available, which

explains why this method has been used so often. Moreover

many mathematicians adore the LS estimator because of its

nice optimality properties under the condition of a normal

error structure. In practical situations however, this

condition is hardly fulfilled, and the LS regression

technique is quite sensitive to the presence of outlying

points. Therefore, it is important to have a diagnostic tool

for identifying such points. In the last decades, several

statisticians have given consideration to robust regression

(see Rousseeuw 1984 for an overview) on the one hand and to

regression diagnostics on the other hand. Both approaches are

closely related by two important common aims, namely

identifying outliers and pointing out inadequacies of the

model. The books of Belsley, Kuh and Welsch (1980) and Cook

and Weisberg (1982) are dedicated to regression diagnostics.

However, most of these methods deal with the effects of

deleting a single point, and often do not succeed in

identifying multiple outliers. On the other hand, the robust

regression technique described in this paper does manage to



solve this problem. When the robust and the LS fit differ
substantially, this indicates that the data require a
thoughtful analysis

In order to express in a statistical way the robustness

of a regression technique against outlying observations,

Hampel (1971,1975) proposed a general asymptotic definition of

the breakdown point e*, We will use the finite sample version

of this notion given by Donoho and Huber (1982), namely

e* (x, T) = min {m/n ; sup |r] = 0}

where the X' are obtained by replacing m points of the sample

X (containing n data points) by arbitrary ones. T stands for

a regression estimator. In words, e* is the smallest fraction
of contamination that can cause the estimates to take on

arbitrarily large values. For LS regression e* equals 1/n

because one bad point is sufficient to carry the LS estimator

over all bounds. Considering the limit for n going to

infinity (p fixed), one can establish that LS has «* equal to
0%. The best possible value for the breakdown point is 50%,

because for larger amounts of contaminated data in a sample,

one cannot tell the ’good’ and the 'bad’ observations apart

The first regression estimator which is equivariant for

linear transformations on the xy and which attains a

breakdown point of 50% is the least median of squares (LMS)

estimator (Rousseeuw 1984).

The LMS estimate of @ corresponds to

minimize median ry4? (1.2)

8 i
Compared to LS (1.1), the sum has been replaced by the

median. Preceding improvements towards robustness consisted

of substituting the square by something else, but none of

these led to a high breakdown point.

In the following two sections we will outline the

algorithm wé use for computing the LMS estimator as well as

some other robust regression estimates derived from it.

Section 4 is devoted to an example



2. ALGORITHM FOR COMPUTING THE LMS ESTIMATES

The special case of one-dimensional estimation of

location is obtained by putting p=1 and x4=1 for all i in

(1.2). Then the minimization becomes

minimize median ‘yy - 62 (2.1)
a
8 i

and the sample reduces to (y4)4=1,.. The LMS estimate isweg?

then equal to the midpoint of the shortest half of the sample

(y424=1,...,n The shortest half is given by the smallest of

the differences Yycny-¥(1>+ Ycht1)~¥<2d +++ Von FY cn-ht1>

where h=[n/2]+1 ({x] means integer part of x), and y(1) <

< yc) are the ordered observations.

The following simple example will illustrate the LMS

estimate. Consider the one-dimensional sample consisting of

the observations:

21, 23, 25, 26, 26, 299.

* Ls   
 

The halves of this sample are indicated by the lines below

the values. The LMS estimate of location is 24.5, because. it

is the midpoint of the shortest half. The least squares

estimate of location is the mean, which equals 70 in this

sample. Comparing both estimates, it appears that 24.5 isa

better parameter of location for the majority of the data.

The aberrant value 299 has badly affected the mean, whereas

the LMS has completely neglected its presence.

In the general regression model, it is probably not

possible to write down a straightforward formula for the LMS

estimate. For this case we have therefore constructed a

heuristic algorithm which can be outlined in the following

way:

Choose at random p observations out of the n and determine

the unique regression surface through these p points. This

solution gives a trial estimate (Oyen eres B28 « This
P

procedure is repeated m times and the trial estimate for



which the objective function is minimal is retained. The

number of replications (m) is determined by requiring that

the probability that at least one of the m subsamples is

' good’ is at least 95%. A subsample is 'good’ if it consists

of p good observations of the sample, which may contain (in

the most extreme case) up to 50% of bad observations. The

expression for this probability is

1,= hs (i72a>Pym if n/p is large.

(This idea was already used by Stahel in 1981 for

multivariate location.> When n and p are rather small, all

possible combinations of p points out of n are considered
instead of the repeated random subsamples.

The basic idea of this algorithm is illustrated in the

artificial two-dimensional example below

 

  

 

 
 

For this case n equals 9 and p equals 2. The algorithm will

handle all pairs of points out of the 9. We will restrict the

explanation for only three such combinations, namely (f,g),

(f,h) and (g,h). Let us start with the points f and h. The

regression surface (which is a line here) passing through the
points f and h is found by solving the system of equations



y’ = @,°x! + 85°

y” = 07°x" + 65°

where (x',y’) and (x,y) are the coordinates of respectively

f and h. The trial estimate 6,° and 65° are the unknows

Then, the residuals yy - 0,°x; - @2° corresponding with this

line are determined for each point i in the sample. The

median of the squared residuals (which is the objective

function) is calculated and compared with the best value

eventually found for previous pairs of points. As a

minimization of the squared residuals has to be performed,

the trial estimate corresponding with the points f and h will

be retained only when it leads to a lower objective function

value. Examining the scatterplot above, it is easy to find

out that the pair of points (f,g) will be the 'best’ out of

the three combinations considered. Indeed, the majority of

the observations have a small residual with respect to the

line passing through f and g. Repeating this procedure for

each pair of points will finally yield the lowest objective

function value.

When handling a regression model with intercept, the

estimator of location is used for finding the constant term.

Once 6 1,...,6,-1 are found, §, is the LMS estimate of
location of the sample constituted by

Zz, = ya ~ ¥1,48, - 2. - epi6p- , Edy. ane

Apart from the regression coefficients, the scale

parameter eo (o=standard deviation of the e,) has to be

estimated in a robust way. For that purpose a preliminary

scale estimate s® is calculated. This s° is based on the

value of the objective function, multiplied by a

finite-sample correction factor (which depends on n and on p)

for the case of normal errors:

s° = (min median ry?2]% x 1.4826 x (1 + 5/(n-p) >) (Ane)
A
8 i

The factor 1.4826 = 1/8°1(3/4) was introduced because

medy | & i|/7e +374) is a consistent estimator of o when the

8



random variables gy are distributed like N(O,o0). From an

empirical study, it appeared that the scale estimator was too
small in normal error situations, especially for small
samples. Therefore the multiplication with the factor

1 + SY (n-p), which has been derived froma simulation study

was necessary.

With this scale estimate the standardized residuals
ry/s° are computed and used to determine a weight wy for the
i-th observation as follows

1 if [rivse| < 2.5
wy (2.3)

0 elsewhere

Then the final scale estimate for the LMS regression is given

by

n n

ok = CCE wy ry?) 7 CD wy - p> iy,
i=1 i=1"

At the classical model, »X would be a consistent estimator of
o if the weights wy are independent of the data (Xi, ya?

This algorithm has been implemented in FORTRAN and runs
on an IBM PC or compatible computer. We called it PROGRESS:
program for robust regression. The output of PROGRESS
consists of results concerning LS and concerning reweighted
LS based on the LMS, which is described below. For both
methods, PROGRESS gives the regression coefficients with
their standard deviations and T-values, their
variance-covariance matrix, an estimate for the scale

parameter o, the determination coefficient (R squared), the
standardized residuals, and residual plots of two types.
PROGRESS provides also two different options for handling
data sets with missing values

In order to have other classical regression results,
like F-tests and options for variable selection, one could

run PROGRESS first and then use the weights provided by the
LMS in a standard package (for example BMDP or SAS). Pursuing

9



this course, one ie safeguarded against outliers which may

disturb the ordinary LS regression analysis

A skilful study of the residuals is an important task of

applied regression analysis. Therefore PROGRESS has a plot

option which permits to obtain for both regression techniques

a plot of the standardized residuals versus the estimated

value of y, ora plot of the standardized residuals versus

the index of the observation i «this is called an index

plot). A point in the scattergram is represented by a digit.
This digit corresponds to the number of points having

approximately the same coordinates. When more than 9 points
coincide, an asterisk '*’ is printed on that position. In

problems with several variables, the residual plots

corresponding to the reweighted LS estimator are very useful

for spotting the outlying observations. If the residual plot

of both the robust and non-robust regression method agree

closely, the LS result can be trusted.

In the residual plot a dotted line is drawn through zero

and a horizontal band on the interval CASOpe is marked.

These lines facilitate the interpretation of the results

When the observed yy value equals the estimated Yi value,

then the resulting residual becomes zero. Points in the

neighbourhood of this zero line are best fitted by the model.

If the residuals are normally distributed, then one can

expect that roughly 98% of the standardized residuals will

lie in the interval [-2.5,2.5]. In the residual plots of the

reweighted LS, the outliers are far away from this zone. So

observations for which the standardized residual is situated

far from the horizontal confidence band can be identified as

outlying. A warning must be given for this interpretation on

the residual plots corresponding to the LS estimator. A true

outlier does not necessary possess a large LS residual. The

distortion produced by the outlier(s) pushes the otherwise

‘good’ observations away from the regression hyperplane. This

effect makes it nearly impossible to identify the 'bad

observation(s). This phenomenon is also illustrated by the

example in section 4

10



Besides the identification of outliers, the residual

plots contain also very important information -for detecting

common types of model inadequacies. A pattern showing that

the variance of the residuals increases or decreases with

increasing estimated yy points out that it could be

favourable to apply a suitable transformation to either an

explanatory variable or the response variable. A pattern
resembling a horse-shoe may be caused by nonlinearity. In
this case a transformation on an explanatory or on the
response variable, or an additional squared term in the

model, or the addition of another explanatory variable may be
required.

3. ROBUSTREGRESSIONESTIMATESDERIVEDFROMTHELMSREGRESSION

Several methods exist for improving the efficiency of

the LMS. Some of these are presented in this section.

3.1 The reweighted least squares regression

The reweighted least squares regression (RLS) technique

consists of minimizing the sum of the squared residuals

multiplied by a weight w;

n

minimize ££ wyry2 (3.1).

é ist
The weights wy are determined from the LMS solution as in

equation (2.3) but with the final scale estimate ok instead

of s°. In this way, the result is protected against the
presence of outlying points by means of the weights based on

the robust LMS estimator

3.2 The one-step M-estimator

An M-estimate is defined as a solution @ = (@4,...,0p9*

of the system of equations

n

Roxy POry7 O> = 0

i=l

The function Yis absolutely continuous with derivative yr.

11



We use the tangens-hyperbolicus function as defined by

Hampel, Rousseeuw and Ronchetti (1981)

Yor = x for O < |x| < p

= (ACs-1))¥tanhl %¢Cse-1) B2/A)%

fe ~|* | Isign Gx for p< |x| <¢

=O forc < |*|

where p=1.470089, c=3.0, k=5.0, A=.680593 and B=.769313.
Let o*= (81%, . 52,8,*>t be the vector of an initial solution
(we will take here the LNS estimates of @=(@,,...,0,)% and o*
the corresponding estimate for the scale parameter o.)
Bickel (1975) defined a one-step M-estimate as

 

x t t-1
6 = ot + OY ryFok), POrnFo X CX >

Bw, S)

where BY, & > = J Y? (a) dB ud and X is the pxn matrix

containing the explanatory variables.

4. AN EXAMPLE

In order to illustrate the output provided by PROGRESS

we have chosen for the famous 'stackloss data’ set presented

by Brownlee (1965). The data describe the operation of a

plant for the oxidation of ammonia to nitric acid. The 3

explanatory variables and the response variable can be

described as follows:

xX, \rate of operation

*2Q cooling water inlet temperature

x3 acid concentration

y stack loss

We will use a linear regression model with constant term

(this is obtained by creating a fourth explanatory variable
which takes on the value one for all cases).

12



We have selected this example because it is a set of

real data and it has been examined by a great number of

statisticians (Draper and Smith (1966), Daniel and Wood

(1971), Andrews (1974), Atkinson (1980) and many others) with

the help of several methods. Summarizing their findings, it

can be said that most people concluded that observations

1,3,4,21 were outliers. According to some people, observation

2 is reported as an outlier too. Running PROGRESS on this

data set gives rise to the following output:

13



SRERe eae age aget ease erseetegeetererrseaettsesagseragset$ ROBUST MULTIFLE LINEAR REGRESSION WITH & CONSTANT.SUNORRERAERASAERSRASAOAAAR ANAT A RSNA ER TRAE RRR EERE E

NUMEER OF CASES = 21
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) = 4

THE EXTENSIVE SEARCH ALGORITHM WILL BE USED.
DATA SET = BROWNLEE STACK LOSS DATA

THIS ROBUST MULTIPLE REGRESSION ALGOPITHM 1S BASED ONTHE LEAST MEDIAN OF SQUARES (LMS) METHOD.(SEE F.ROUSSEEUW (1984) ,LEAST MEDIAN OF SQUARES REGRESSION.JOURNAL OF THE AMERICAN’ STATISTICAL ASSOCIATION. 79,871-8805THIS FROGRAM HAS BEEN WRITTEN BY &.LEROY AND F. ROUSSEEUW.FOR FURTHER INFORMATION OR COMMENTS, FLEASE CONTACTA.
VRIJE UNIVERSITEIT BRUSSEL
C.5,0.0. (M205)
FLEINLAAN 2
B-1056 BRUSSELS (BELGIUM)

FRINT OFTION = 2
FLOT OFTION = 2
THERE ARE NO MISSING VALUES.
YOUR DATA RESIDE ON FILE : B:GSTACK. DATTHE OBSERVATIONS

OPERATION TEMPERATUR ACID CONC. STACKLOSS

  

 

    

 

  

1 80.0000 27.0000 "89.0000

~

42.00002 89.0009 370000

=

BB19000. 37 00003 75.0000 25.0000 900000 371 000.a 62.9000 2410000 870000

©

28G0005 62.9000 2270000 8710000

=

781 0000g 620000 3310000 870000

~—-

18100002 62:0000 2410000

=

9310000

=

1960008 $2:0000 2470000 930000 20: 00009 SB20000 2310000

=

870000 151.000010 Se. oc 18-0000 B9.0000 14-00005g. 2000 : :fA BB: 3888 19:8883 13: 000013 58 18. 0000 112.600014 19. 0000 122000015 18.0000 8: 000016 18: 0000 7200001? 19. 0000 8.000018 1920000 8: 000019 50. 20.0000 9.000020 5610066 201000031 70.0000 3010006 1520000

MEDIANS =

OPERATION TEMPERATUR ACID CONC. STACKLOSS
5B.0000 20.0000 87.0000 15.0000

DISPERSIONS =

OPERATION TEMPERATUR ACID CONC. STACKLOSS
5.9304 2.9652 4.4478 5.9304

THE STANDARDIZED OBSERVATIONS.
= OPERATION TEMFERATUR ACID CONC. STACKLOSS

. 2.3607 4497 4.5528
+2248 3.7097
26745, 3.7097
20000 2.1921
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SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN THE VARIABLES( STACKLOSS IS THE DUTPUT VARIABLE)
OPERATION 1.00
TEMFERATUR ‘74 1.00
ACID CONC. +61 136 1.00
STACKLOSS +92 685 =.50 1.00

PEARSON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES(CSTACKLOSS IS THE OUTPUT VARIABLE)

OPERATION 1.00
TEMFERATUR +78 1.00
ACID CONC. +50 39 1.00
STACKLOSS +920 588

=

1401.00
CRORSEASRSRESRSEERER SCRE T OREN TESTE TET ETERS RANA OTE E REET A EATER TERRE EERE EERE



  

  

   

  

  

LEAST SQUARES RE
eee eederane sane

VARIABLE TENT STAND. ERROR T = VALUEOFERATION 1564 + 13486 5.20661TEMFERATUR 9529 +6802 3.51957ACID CONC. 5212 215629 =. 87551CONSTANT 1968 11.85600 73. 35572

SUM OF SQUARES

=

= 178. 82000

SCALE ESTIMATE = 3.24238

VARIANCE - COVARIANCE MATRIX =
1819D-o1
Zesid + 1354D+00
71440. +1048D-04 + 2443D-012 2876+ ~26518D+00 -21676D+01 + 1415D+03

COEFFICIENT OF DETERMINATION (R SQUARED) = - 91358

ORSERVED ESTIMATED RESIDUAL NO RES/SCSTACKLOSS STACKLOSS
42.00000 38. 76536 2464 137200000 28.91748 1748 237200000 32544447 4.55553 =28. 00000 22. 30222 5.69778 4

171165 ~1171165 590694 =3:00694 &138949 ~22 38949 z
+ 38949 -1.38949 8714438 -3.14438 9
73280 1.26720 10
36370 2.63630 11
22054 2.77986

=

12
42656 -1.42 13
05050 = 05: 140 3858 2 15,7.00000 09495 168.0 151995 -1 17B. 45509 z 1B8240000 15982. = 1215. 00000, 58785 i 2015240000 23774 “7. 21    

BROWNLEE STACK LOSS DATA

LEAST SQUARES -~

 

  

  

  

RESIDU/SCALE 7 semeretiot te “ard

1 1BES HEECULLUMee
1 1I I1 1
I 1 I+ +
1 rTI 1 11 I1 1+ +T 1I 11 1I 1 I1 I
+ 1 4: *1 1 I
I i1

oor aon}+ +
I II 1 1 1 Iroa 1 II 1 1+ +1 1 1 I1 11 I1 I+ +1 11 I1 II I+ +
I 11I I

H2.5 detetteeeeetteeeeeteeeetestteeterteeeentetsetseeed
1 11 1
1-+----+4+----+4-. hennatat. pepe,1 21

INDEX OF THE OBSERVATION

HORERSELARAREAEREAAR SSAA AAAS RENE S AT ATER ARLE AKER ER AERARARE SETAE EERE R ARATE
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LEAST MEDIAN OF SQUARES REGRESSION
SORORKASDERGER ASR HST RR ASRS TEER

THE MINIMIZATION OF THE 12TH QUANTILE OF THE SQUARED RESIDUALS IS PERFORMED.
ON A_TOTAL_OF 2092 SUBSAMPLES (OF 4 -FOINTS OUT OF 21)

2 SUESAMFLES LED TO & SINGULAR SYSTEM OF EQUATIONS.
THE SOLUTION 15 ONLY BASED DN THE GOOD SAMPLES.

  

 

  

MULTIFLE LMS SOLUTION
Soeeeeeereseenrestes

VARIABLE COEFFICIENT
OFERATION = 71429
TEMPERATUR 35714
ACID CONC. 100000
CONSTANT -341 50000

FINAL SCALE ESTIMATE = 1.26134
COEFFICIENT OF DETERMINATION = -97105

OBSERVED ESTIMATED RESIDUAL NO _RES/SCSTACKLOSS STACKLOSS
42.09000 32. 28572 9.71428 1 7.703700000 32:28572 4.71428 2 3:7437106060 28: 60000 9.00000 3 72142B. 00000 18.35714 9. 64286 A 716418200006 1734286 135714 5 1280000 18: 00000 + 06000 & +0019205000 18.35714 164286 7 18aOo 18.35714 1.64286 8 1:3099000 1514286 =114286 9-14190900 13.35714 164286 10 5106000 13.35714 164286 11 5100000 13.00000 100000 12 200290000 13535714 2.35714 13 -1.8700000 13271429 “1171429 14-113600000 7.64286 35714 15 12800000 7.64286 164286 «160-1518.00000 8.00000 590000 17 +008.00000 8.00000 200000 18 2009.00000 8.35714 564286 «19 51190 12.6426 2:35714 20 1.87

22.64286 -7.64286 21 -6:06

BROWNLEE STACK LOSS DATA

~-- LEAST MEDIAN OF SQUARES --~
RESIDU/SCALE -+~---+----+----4----4----4----4----4---- 4== 4ent

I I1 1
+7702E+01 + 4 aa ‘

I 1I 11 1+ +
1 1
1 T
I I
1 1
+ 4 +
1 I|ZS Ltttttt etet ett ttte etteett eteetateetaseattetee]
+ 1 +
1 I
I 1 I
1 1
I I
+ +

O.0 1 1
- I1 I
I 1+ 1 +
i : IHZ.S tttsetteeeset ee tee teetaate teat eestesteseeases eeeel
1 I
+ +
1 1
I I
1 1
1 1
+ +
I T
1 11 1I 1

~.6OS9E+OL + 1+
I 1
1 1
I-4-- -se-l1 21

INDEY OF THE OBSERVGTION



  

 

    

   
 

 

REWEIGHTED LEAST SQUARES BASED ON THE LMSSONGHRSRAER ETOP ARERR AOE TERA E RARER TET ORRD

VARIABLE COEFFICIENT STAND. ERROR
OPERATION - 68609 - 07358TEMPERATUR 756710 712872
ACID CONC. =-01725 + 05305CONSTANT -35 48420 3. B0302

WEIGHTED SUM OF SQUARES = 16.02457

CORRESFONDING SCALE ESTIMATE = 1.11229

- COVARIANCE MATRIX =

1657D-01
38B2D-03 2B14D-02

+ 4284D-01 ~11246D+00 + 1446D+02
TENT OF DETERMINATION (R SQUARED) = + 96288

THERE ARE 16 FOINTS WITH NON-ZERO WEIGHT
AVERAGE WEIGHT = - 76190

OBSERVED ESTIMATED RESIDUAL NO RES/SC
STACKLOSS STACKLOSS

42..00000 33-17970 1
37.00000 33:19695 2
37-00000 28.59778 3

00000 19. 16323 4
G00 18. 02902 5

+ 90000 18259612 &
19.05973 7
19105973 a
15.85175, 9
13.13700 10
12.98174 41
12. 43189 12
13.10249 13
13247584 14
7.49300 15

200 7.54475 16
82 6000: 8.35336 17
8. 00000 8.23260 18
9200000 8.78246 19

15. 00000 12.86451 20
15200000 22231456 21  

BROWNLEE STACK LOSS DATA

--- REWEIGHTED ts

RESIDU/SCALE

+ 794SE+O1

~. 6576E+01

 

ntrennetnentnentnen te

4
FEAETAEAEEEEEEAEEEEEETEETEREEEEEEEEEEEE

Pe
ar

er
er

e
ra
er

er
er
er

se
re
re
re
n
te
re
ar
ee

ae
ra
te
)

 

Pe
te
t
e
e
n
s
b
a
r
t
b
e
e
t
e
e

—4----4---n4-
2

INDEX OF THE OBSERVATION
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WEIGHT

 

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
10
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Examining the residual plot of the reweighted LS
confirms that the observations 1,3,4 and 21 are outliers, as
their residuals lie far from the confidence band. Observation
number 2 is an intermediate case because it is just on the
verge of the area containing the outliers. However, the
residual plot corresponding to the LS fit masks the bad
points.

Concluding this example we would like to emphasize that
it is necessary to compare the standardized residuals of both

the LS and the robust method in each regression analysis.
Only the robust technique can be used as a reliable tool for

diagnosing the outliers.
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