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ABSTRACT

This paperdeals with the optimallocation of post boxesin an urbanorina rural environment.
The problem consists of selecting sites for post boxes which will maximize an appropriate
linear combination of user convenience and postal service efficiency. Several variants of
the problem are considered and appropriate models and algorithms are developed.



1. INTRODUCTION

This paper deals with the optimal location of post boxes in an

urban or in a rural environment. More specifically, we first consi-

der a territory partitioned into n zones; from statistical surveys

on mail volumes, it is possible to determine for every zone k the mi-

nimum number % of required post boxes as well as candidate sites for

these boxes. In a general situation, some of these sites will be cho-

sen a priori as a post box location whereas the remaining sites will

only represent potential locations. The cost associated with a cer-

tain selection of sites may be decomposed into two main components;

(i) the routing cost associated with post box collection operations

by van; (ii) the inconvenience cost incurred by users having to tra-

vel to and from their home or place of employment to the nearest post

box. The problem consists of selecting sites for post boxes which will

minimize an appropriate linear combination of these two costs, subject

to some hypotheses and constraints. Equivalently, the problem may be

posed in terms of maximization of user convenience and of postal ser-

vice efficiency.

Insofar as we seek a selection of sites that will minimize rou-

ting costs, this problem may be viewed as a location-routing problem

(see Laporte et al. [12,14,15] for some examples). It is also a com-

bination of optimal locations of services and of optimal allocations of

users to these services. Hence, it belongs to the family of location-

allocation problems [4,9]. It is in fact a location-allocation-routing

problem. This problem is part of the large class of network optimiza-

tion problems defined by Golden et al. [5] and more specifically, of

the family of problems consisting of optimally locating a path in a

network (since the post box locations will determine the collection rou-

te). Two recent examples of such problems are provided by Current et

al. [1] and by Vandale [18]. Savas [17] studied the most frequent cri-

teria used in such contexts while Labbé [10, chap.4] concentrated on

minisum-max problems. Finally, Halpern's papers [6,7,8] and Lowe's

article [16] deal with multiobjective problems belonging to this fami-

ly.
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We examine, in the following sections, some important cases of
the post box location problem.

2. PROBLEMS WITH PREDEFINED ZONES

Consider a territory subdivided into disjoint zones corresponding
to conveniently chosen administrative units such as postal zones, census
tracts, etc. In a city, these zones will likely be contiguous (see fi-
gure 1) whereas in the country, there will often exist an empty area
between the zones (see figure 2). But from our point of view, these two
situations can be treated in exactly the same way.

The problem is defined over a certain planning horizon normally

consisting of a fraction of a day and in which all post boxes are visi-

ted once by a collection van. It is assumed that the collection route
consists of a single Hamiltonian circuit passing through the post office
which can be identified with one of the prespecified post boxes. Let L
be the set of users: here a user can be thought of as an individual

or as a group of people, for example all inhabitants of the same city

block or of the same stretch of road. Over the planning horizon, user

& €L makes a certain number of trips to the closest post box located
within his zone. Let Ly be the set of users located within zone
k. If a post box is located at site i, it is then convenient to define
qs, as the total distance travelled by user 2 to post box i over the

planning horizon.

Also define:

Sy : the set of potential post box locations in zone ks

Tr : the set of prespecified post box locations in SK
(1, e SK and IT| < %)3

N= S] Us. USiS

M = T) Us. UTAS

45 : the length of a shortest path from site i to site j
(isd €N)s

» : a real number in [0,1].
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FIGURE 1

   





We formulate the problem as an integer linear program: let

xjf €N, i # j) be a binary variable indicating whether the van tra-

vels directly from i to j in the optimal solution (x45 = 1) or not

OG 5
post box is located at site i (G5 = 0) or not (x

= 0); Tet x4 € N-M) be a binary variable indicating whether a

ae 1) in the optimal

solution. Finally, let Yue = 1 if user % is associated with post box i

and Yao = 0 otherwise; in this model, it is sufficient to define Yio

only if i and % belong to the same zone. The problem is then to

(P1) minimize % 2 c.. x., + (1-4) 2 2 dip Yio
iggen S19 €N 2EL
i*j

subject to

(1) a (j € M)
i
i#j

€ 2) a (i € M)

J
j#i

(3) 2. x=] (3 € N-M)
i

( 4) oe xy 1 (7 € N-M)
J

CBT yg (BE Ls kL, vay)
k

( 6) Vig 21> %Gy (ESoe Lys

k=1, ..., n)

(7) estoy iq 5 Is, | - % (k=1, « W)

kok

8) = xa. = [S| -1 (S CN; S intersects
IJi,56S with some but not

iF all S,'s)
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(9) x,,=0, 1 (i,j € N)

(10) y;,= 051 (i eS, 2 € Lys

Kl eas HY

In the above formulation, constraints (1) to (4) specify the de-

gree of each node i € N: potential sites chosen a priori as post box

locations will have to be entered and left exactly once (constraints (1)

and (2)); constraints (3) and (4) state that other sites will be ente-

red and left 1 - XG 4 times, i.e. they will be visited only if a post box

at 0). Constraints (5) ensure that every user

is assigned to exactly one post box while constraints (6) mean that

is located at site i (x

user & can only be assigned to post box i if site i is used to locate a

post box. Constraints (7) ensure that at least % post boxes are loca-

ted in zone k: since at least 9, - ITI sites will be opened in S, - Ty,

then at most (1s, - IT. 1) - (8% - IT. 1) = sy | - 9, sites will be clo-

sed. Constraints (8) guarantee that the solution consists of a single

Hamiltonian circuit: they prohibit the formation of subtours involving

some but not all S'S: Finally, constraints (9) and (10) specify that

all variables are equal to 0 or 1.

The problem defined by (P1) is NP-complete. This is easily shown

as follows. In the particular case where the second term of the objec-

tive function is dropped, (P1) reduces to a GTSP (generalized travelling

salesman through n sets of nodes [11,13]) which consists of determining

the shortest Hamiltonian circuit passing through every Sy at least %

times. But the GTSP is a generalization of the travelling salesman

problem [2] which is itself NP-complete.

It is therefore unlikely that exact optimal solution to (P1) can

be obtained for problems of realistic dimensions. We suggest the fol-

lowing procedure which exploits the fact that the objective function of

(P1) represents a compromise between short travelling distances for the

postal van and for users. Two extreme cases are in fact obtained by set-

ting X= 0 and X= 1.
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Step1:

Step 3:
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Select a first set of % post box locations in every clus-

ter k. This is done by solving in each case a v-median

problem [3] in S, - T, where v = 5, - IT| and the distan-

ces used are defined by

(11) di, = min {de} (i €S,-T,. 2 €L,)
iz icTUL} ie kok k

This ensures that the total distance travelled by users to

their nearest post box is minimized. Let J be the set of

selected sites in zone k (including those of Ty): For each

user £, compute e his distance to the closest site in Jp.P

For each site i € N, define a weight D5 =0. Set
n

d= U J.
kl

Solve a GTSP with the objective function

(12) % 3 Css Xee + (1-0) OD, (1-x,.)
igen I 1 jen-m 1 OT
idj

Efficient algorithms for the GTSP are described in [11,13].

Let Ip be the set of sites of zone k included in the GTSP
n

solution. Let I= U I. If I = J or if cycling occurs,

k=l

stop. Otherwise, go to step 3.

Update the weights D5 as follows.

(i) Consider in turn all clusters k. Allocate all users

be Ly to the closest site i € I. Ties are broken arbi-

trarily. Let ar be the set of users of Ly allocated to

site i of I.

(ii) Define



(iii) Set J= 1.

Go to step 2.

Remarks

(i)

(ii)

(iii)

If this algorithm is used, the objective function in step 2 can

be simplified by distributing the cost (1-A)D, associated with

site i over its incoming and outgoing arcs. This is done by drop-

ping the second term from the objective and by replacing the cy4's

by

(14) ci, = iy + 4(1-2) (D; + D5)

Computational experience with the GTSP [13] indicates that D,'s

having a large variance tend to produce easier problems since the

optimal site selection then becomes more obvious and leads to smal-

ler search trees if the problem is solved by branch and bound.

One interesting feature of the GTSP is that when C = (c;5) satis-

fies the triangle inequality (i.e. Cay s Ci, + Kg for all

i,j,k € N), then only % sites are used in cluster k in the opti-

mal solution; the "S" sign in constraints (7) can be repla-

ced by an equality sign. And if oe = 1, all variables xij for

which i and j € Sy can then be dropped. Finally, observe that

if C satisfies the triangle inequality, then so does C! = (c},).

A relatively easy special case of (Pl) occurs when C satisfies

the triangle inequality, Ty, = ¢ and RF 1 for all k. Then the

objective function is defined by (12) with

(15) De= & dy (i €S,)
i oeLy ig k

Then (P1) can be solved directly by means of a GTSP algorithm.

For this, it suffices to replace the cy

as in (14).

j s by the CF5 s defined
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In the general case, setting a meaningful and easy to interpret

value for \ presents a certain difficulty since the two parts of the

objective function do not represent the same type of costs. One way

to circumvent this difficulty is to first compute zt and Z3 5 where

zy is the value of the optimal solution to the problem
consisting of determining the best sites and the as-
sociated collection route; this problem consists
of minimizing the objective function of (P1) with
=1, under constraints (1) to (4) and (7) to (9);

25 is the value of the optimal solution of the problem
consisting of assigning users to sites; this pro-
blem is obtained from (P1) by setting all X4q's_and

equal to zero and by retaining constraints (5),
(6) and (10); the value of z% can again be obtained
by solving a (9, - IT, |)-median problem for
k=l, .... n.

The objective function of (P1) can then be replaced by

Ban, Kinw 5 8 des Ve
eee ASOT s 12 "18» aL + (a) Pe ety

24 25

This transformation removes the unit of measurement effect: the ex-

pressions in brackets now measure the departure of each component of

the objective function from its optimal value. This provides a useful

interpretation of the final solution. The value of \ is easier to set

since it now reflects more directly the weight attached to the satis-

faction of the postal service objective.

3. PROBLEMS WITHOUT PREDEFINED ZONES

In contexts where predefined zones are not available, it may be

preferable to treat the problem globally rather than arbitrarily defi-

ning zones which might unduly restrict the solution space and thus yield

suboptimal solutions. In such cases, a variety of approaches are avai-

lable.
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The first strategy requires the specification of a number p of

post boxes required on the whole territory. The problem then consists

of (i) solving a p-median problem or a p-center problem (see Erlen-

kotter [3] or Krarup and Pruzan [3] for algorithms relative to these

two problems) and of (ii) determining the optimal route through the

p selected sites: this latter problem is a simple TSP. This approach

is fundamentally user-oriented as the users' requirements are first met

without any consideration for the routing costs which are only treated

as a subsidiary objective.

The second proposed strategy consists of optimizing the rou-

ting costs under the constraint that the distance between a user and

its nearest post box does not exceed a prespecified limit r. The algo-

rithm corresponding to this strategy can be described as follows:

Step 1: Determine, for every user %, the set S, of post boxes whose

distance from 2 does not exceed r. S, may contain a set

T, of already located post boxes. Let d, = max {1,|T,|}-

At the end of this step, we have obtained n distinct but

not necessarily disjoint clusters. Since two different

users may define the same cluster, it follows that n = IL].

Step 2: Solve (P1) with 4 = 1. This problem is a GTSP. Since the

clusters may intersect, the number of post boxes used in

the optimal solution is not obvious, even if the distance

matrix satisfies the triangle inequality. It would there-

fore seem appropriate to replace C by F = (F55)> a matrix

of travelling times, and to consider in the objective the

time f necessary to unload a post box. The objective would

then become

(P2) minimize 3S fee Xen +t 3 F(T - xee) + F IMI
agen ON Genem u
ij

The constraints are those of (P1).
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Step 3: Allocate users to their nearest post box.
 

Apart from constituting a fair compromise between minimizing

user's inconvenience and routing costs, this approach has the advan-

tage that its difficulty reduces to that of a GTSP. This problem is

of course of considerable complexity but it can nevertheless be solved

to optimality for up to about 100 sites [11].

4. EXTENSION

We have assumed, in the preceding sections, that only one van is

used to empty the post boxes. In general, this is not so in practice

since it is usually infeasible for a single van to cover the whole of

the territory within a reasonable time. Usually, the operations are

carried out by a fleet of vehicles based at a central depot (for exam-

ple, a sorting office). These vans are then dispatched in order to mi-

nimize the sum of their fixed and running costs, while ensuring that

their capacity is never exceeded and that the length of any route is

at most equal to a given limit. In order to avoid a suboptimal solu-

tion, the allocation of vans to post boxes must be made simultaneously

with the routing and the determination of the best post office sites.

These additional constraints considerably amplify the difficul-

ty of the problem but, at the same time, bring the model closer to rea-

lity. While the computational difficulty of this extended model far

exceeds that of the original one, preliminary results indicate that re-

latively large problems can still be solved to optimality. These re-

sults will be reported in a subsequent paper.
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