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ABSTRACT

The problem introducedin this paper regards the location of an obnoxious facility at the
maximum distance from the surrounding urban areas.In particular, if these areaslie close
to each other, along the perimeter of a suitable polygon (convexor not), then the notion
of a “‘rolling circle’’ (which is the basic idea behind the algorithm proposed) can be used,
in order to locate the maximumcircle inscribed in that polygon. Its centerwill be then the
appropriate position for the location of the obnoxious facility.



1. Introduction

The problem that will be tackled in this paper is that of locating the

maximum circle inscribed in a polygon (convex or not). It belongs to a class

of locational problems termed "maximin". This class of problems has a wide ran

ge of applications, mainly in the location of obnoxious facilities -facilities

dangerous for the man and his environment.

Assuming that the perimeter of a given polygon represents the frontier

of some geographical area (an urban area or an environmentally sensitive one)

extending outside the polygon and requiring "protection", we seek to position

the obnoxious facility inside the polygon, as far as possible from the nearest

point of the perimeter.

More realisticly, some remote area may be examined, for the location

of the obnoxious facility (see figure 1). We consider this area to be "confi -

ned" by a number of urban districts lying around it. Representing, then, those

districts by suitable polygons and joining them together with appropriately

chosen straight line segments (beams), we can enclose the remote area inside a

(closed) polygonal line, consisted by beams and district perimeter sections,

in an alternating sequence,

remote area

 [23 urban districts

 

Figute 1, Remote Area and Urban Districts.



One can extend the above problem in the space as follows. A polyhedron

is considered (some polyhedral warehouse) and the maximum sphere, inscribed in

it, is to be located (we may plan to store some dangerous substance, eg. radio-

active substance, and ask for a central location inside the warehouse, as dis-

tant as possible, from its bounding surface).

The algorithm proposed here -we call it NONVEX (NON CONVEX)- can be

easily extended to solve the above problem in the space.

What follows in section 2, is an introduction to the basic ideas  be-

hind the method proposed, ie the notion of the Rolling Circle, of Base and Pi-

lot, Barrier and Active Area. In section 3, we develop the theoretical back-

ground of the method, whereas in section 4 an algorithmic presentation of the

method is given. Finally, in section 5, a generalization of the problem is pro-

posed, while in section 6, the order of the algorithm proposed is examined.

2. Introduction to the Algorithm

2.1, List of Notations

n: the number of vertices of the polygon

x(P), y(P):the x and y coordinates of a point P

P : the polygon

Po: the perimeter of the polygon

V ={vi,V2, en p Val cthe: anti-clockwise ordered set of vertices of the polygon,

where V, is the "westmost" vertex, ie VieV:x(Vi1)<x(V) for any Vey

S ={si, 82, +++,Sp}ithe anti-clockwise ordered set of sides of the polygon,

where s, is the side joining vertices V; and V,

C = C(c,r):the circle with center at point C and radius r

Co= Co(C,r): the circumference of the circle C(C,r)

PiP, denotes the straight line defined by points P; and Py



P,P, denotes the line segment confined by points P; and Py,

P,P, denotes the half-line origined at point P, and passing through point Py

d(Pi,P2) the Euclidean distance, from point P; to Py

2.2 The Notion of the "Rolling Circle"

Consider a point Pie that scans the perimeter of the polygon, starting

from vertex V, and moving anti-clockwise, until it reaches Vi again -P. will be

called thereon Base Tangential Point, or BTP for short.

Associate with BTIP a circle Ces which is the maximum one among the

circles ‘inscribed in the polygon and touching its perimeter at BTP (in case

BTP coincides with a non-convex vertex, the direction of the vector with ori-

gin at BIP and end at C, must be given). Cy will be called thereon Rolling

Circle,, or RC for short. Since BIP is moving in a continuous manner, the tra-

jectory of the RC center is itself a continuous line passing, obviously, thro—

ugh all points at which the optimal circles are centered. As we will prove la-

ter, the trajectory of the RC center is composed by a series of straight- line

and parabola segments. The essential idea, in this paper, is to followthe tra-

jectory of the RC center, in order to locate the center(s) of the maximum cir-

cle(s) inscribed in the polygon.

The main problems encountered with this approach were:

(a) to produce a suitable method of search, overcoming the continuous

nature of the trajectory of the RC center -due to the continuous movement of

BIP.

(b) to find a way to calculate the parameters involved in the equati -

ons describing the various segments of this trajectory.

The proposed method offers efficient and simple answers to the above

problems. We start with the first problem, that is the method of search. We



will show that, limiting appropriately and in a piece-wise manner the movement

of BIP along Poe we can decompose the trajectory of the RC center into simpler

pieces, that are either straight-line segments or parts of a parabola. Both

the above types of trajectory segments can be described through parameters as-

sociated with some simple and well studied equations. This decomposition, based

   esees RC center trajectory

Figure 2. Tangential Points of the Rolling Circle.

on the a-priori knowledge of the trajectory segment parameters (that can be

calculated at the beginning of each segment) allows jumps for BTP -and hence

for the RC center- from any "local" optimal position to the next. Consequently,

in order to transform the continuous search into a discrete one, we only have

to make BIP visit those points of the polygon perimeter, which correspond to

the turning points of the RC center trajectory (there is only a finite number

of such turning points).

Let A be the current position of BTP, in its anti-clockwise movement,

and C(C,r) the associated RC. According to lemma 4 (section 3), the circle ¢

is tanget to Li not only at A, but also at some other points -at least one.

Let B be the one immediately next to A, in an anti-clockwise direction along

Cy (see figure 2). Call this point Pilot Tangential Point, or PTP for short.

Note that the direction of movement of PTP is clockwise along Pa as BTP keeps

moving anti-clockwise. That brings PTP and BTP closer and closer to eachother, un-



til they coincide at some convex vertex of the polygon (see figure 3).

 

Figute 3. BTP and PIP Converging to a Vertex.

At this point, we introduce two of our basic concepts, namely "base"

and "pilot". We call "base" the polygon side where BTP belongs, or, in case

BIP coincides with a non-convex vertex, we restrict the notion of "base" to

that very vertex (we intend to show later, that the characteristics of the ba-

se, as one of the two trajectory modulators -the other is the pilot- change

dramaticly when the base changes from side to vertex or vice-versa).

Consider, next, the straight line AB and the part of Po belonging to

the sub-plane Ri (see figure 2). Note that Ri is the sub-plane confined by AB

and lying to the right of the vector AB (in the direction that BTP is about

to move). It is obvious that C shares no other tangential points with Pi=PoMRi

except A’and B, whereas it may touche Po=Po- Py, at one ore more other points.

As the RC current position changes, its "rolling" is obstructed by no

points of P2. Actually, all these points -including the currently tangential

ones-will be left outside RC, as soon as the position of the RC center changes

(in case A is interior to a polygon side, this happens when BTP leaves A, in

order to continue its anti-clockwise movement, along Py). Then, the only tan-



gential points (for a while) will be BIP and PTP, lying on the current base

and pilot respectively. Hence, the RC will be led in its move by the base and

pilot, for as long as, moving on its current course, it can remain inscribed

in the polygon. The critical moment is when other polygon "elements" (sides or

vertices), located between the current base and pilot, become tangential to

the so called "RC front" (the part of the RC circumference, from BTP to PTP).

Note that both BTP and PTP are considered as belonging to the RC front.

 

eeee RC center trajectory

Figure 4a, A Piece-Wise Linear RC Center Trajectory.

We use the term "tangential element", when referring, either to a ver-

tex of lying on the RC circumference, or to a polygon side being tangent

to RC. Note that, it is possible for both a polygon side and one of its adjoint

vertices, to be, simultaneously, tangential elements (when, in fact, RC is tan-

gent to a side, at one of its adjoint vertices). Whenever any third element,

besides the current base and pilot, colides with the moving front, the course

of the trajectory of the RC center is altered. For this, all such elements are

called "barriers",

The point on the trajectory of the RC center, at which a change of the

trajectory type (or of parameters) occurs, is called "turing point". To be

more specific, at a turning point, the type of trajectory may remain unaltered,



whereas its parameters change (as in figure 4a -from/to straight line, only

slope changes), or else, the type itself is being changed (as is in figure 4b

-from straight line to parabola- at A, and vice-versa at B).

The type and parameters of the trajectory, between two turning points

(or between the old position of the center, at C, and the new position, at the

time of collision of the RC front with the barrier D ~see figure 2) is deter-

mined exclusively by the base and pilot. On the other hand, the turning points

of the trajectory are determined by the type and position of the barriers (a

barrier may be a vertex or an interior point of a side).

 

oeee RC center trajectory

Figure 4b.RC Center Trajectory Composed by Straight Line and Parabola Segments

We will study next, more analyticly, the basic for the algorithm no-

tions of base, pilot, and barrier.

2.3. Determining the Type of Trajectory Between Two Turning Points (the Role

06 Base and Pilot).

The possible combinations for the types of base and pilot (as hosters

of BIP and PTP correspondingly) are:

(i) base is a side and pilot is a side

(ii) base is a side and pilot is a non-convex vertex
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(iii) base is a non-convex vertex and pilot is a side

(iv) base and pilot are both non-convex vertices.

In case (i) (see figure 5a), the center of RC is free to move on the

(interior) dichotomous of the angle formed by the base and pilot sides. While,

in case (ii) (see figure 5b), the center is free to move on the parabola focu-

sed at PIP (the pilot) with the base forming the directrix. In case (iii) (see

figure 5c), there is an infinitude of circles inscribed in the polygon and

tangent to it, at point BTP (which, in this case, is a non-convex vertex). Mo-

srs RC center trajectory

  
base (directrix)

Figure 5a. Base and Pilot Edges: Linear Figure 5b. Base Edge, Pilot Non-
Trajectory. convex Vertex: Parabolic

Trajectory.

re specificly, for each direction, in the angle formed by the normals to the

sides converging to BTP, there is a single maximum inscribed circle, tangent to

  base
(focus) **** RC center trajectory

Figure 5c. Base Nonconvex Vertex, pi- Figure 5d. Base and Pilot Nonconvex Ver-
lot Edge:Parabolic Traje- tices:Linear Trajectory.

ctory. iM
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F at BTP, with its center lying in this direction. Thus, in case (iii), the

RC can hardly be regarded as "rolling", since it is rather "turning" round a

steady point of its circumference, namely the non-convex vertex hosting BIP.

As a consequence, there is here -as in case (ii)- only one degree of freedom

in the RC movement, the one that confines the course of the RC center, on the

parabola focused at BTP and having as directrix the pilot side. Finally, in

case (iv) (see figure 5d), where base and pilot are both non-convex vertices ,

the RC center moves on the mid-perpendicular of the straight line segment con-

fined by BTP and PTP.

2.4. Determining the Turning Points of the Trajectory (the Role of Barriers)

The types of trajectory described in the previous section, depend only

on the elements of base and pilot. Any third element lying on the path joining

"candidate barrier"BIP and PTP (in the anti-clockwise direction) represents a

for RC, which, in the absence of other barriers, would force the trajectory

to change at some point -call it "candidate turning point". If C is the cur-

rent turning point on the trajectory, then the "candidate barier"that is asso-

ciated with the nearest to C (along the trajectory) candidate turning point,

is the barrier actually forcing the trajectory to turn -we call it "actual bar—

rier".

After the collision of the RC front with the actual barrier, the lat-

ter (if different from the element right adjoint to the base) will automaticly

replace the pilot and keep this place until a new barrier is encountered. The

role of the actual barrier as the new pilot gives a hint of how to locate the

turning points on the trajectory of the RC center.

Suppose that the "current trajectory" of the RC center -ie the traje -

ctory corresponding to the current base and pilot- has already been located,



according to the methodology described in the previous section. Now, for each

candidate barrier, regarded as taking the place of the current pilot (while

the base remains the same), a new trajectory is obtained -by repetitive appli-

cation of the above method. The intersection of the current trajectory with

each new trajectory (corresponding to some candidate barrier) is a "candidate

turning point", whose distance, along the current trajectory, from the last

turning point, can be easily compared to the distance of the rest. Then, the

location of the nearest candidate turning point -which is, actually, the next

turning point- is a trivial process. The following example refers to the pro-

cess of locating the next turning point.

 

A base(directrix) B

****"RC center trajectory

Figute 6. The Next Turning Point.

Current base : side AB

Current pilot : non-convex vertex D

Current trajectory: the part of the parabola "to the right" of the current

turning point C

Candidate barriers: sides BC and CD

Side BC : The trajectory corresponding to AB, as base, and BC, as pilot, is

the dichotomous £1] of the angle formed by the sides BC and AB.

Associated candidate turning point:point T
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Side CD : The trajectory corresponding to AB, as base, and BC, as pilot, is

the dichotomous (2 of the angle formed by the sides CD and AB. Asso~

ciated candidate turning point:point c

Point cu the next turning point -as being the nearest to C

Side CD : the associated "actual barrier"

2.5. Notion of the Active Mea.

Recall that, in order to calculate the candidate turning point corres-

ponding to the Current Candidate Barrier -call it CCB for short-, we disregard

all elements except the base, the pilot, and the specific CCB, leaving the ba-

se and the pilot to modulate the course starting from the current RC position

-denote by Cy this "Current Circle" - and CCB, alone, to confine it.

The RC, at the moment of collision with CCB, defines a "Limiting Cir-

cle" denoted by Cie Moreover, the part of the c, circumference, which lies to

the right of BTP and to the left of PTP, is called c. front -since its defini-

tion is analogous to that of the Cy front. The area, then, confined by the c.

front, the base, the Cy front, and pilot, is called "Active area" and is deno-

ted by Ay (see figure 7). In other words, Ay is the area scanned by the RC

front, in its way from the position of the C front, to that of the C, front.

 

BIP base
active area

Figure 7. The Active Area.



Since the specific CCB determining Ay is encountered by the moving RC

front, before any candidate barrier lying outside Ay the latter are all exclu-

ded from further consideration. On the contrary, any candidate barrier lying

inside Ag is encountered before CCB, by the RC front. Thus, a new c front is

determined, by that barrier, and a smaller active area is obtained, destined

to replace the current Aq:

As for the algorithm proposed, in order to locate the actual barrier

(among all candidate ones), we itteratively reduce Aa each time using, as CCB

the first candidate barrier found inside the current Aq: The iterative scheme

terminates when all candidate barriers have been checked. It is reminded that,

as candidate barriers, are considered all elements of the polygon (sides and

vertices) forming the part of the perimeter lying "to the right" of the base,

between the base and the pilot.

3, Some Theoretical Results

Lemma 1. Any maximum inscribed, in a polygon P, circle -thereondenoted by MIC-

is tangential to Res at two points at least.

Proos

We first prove that any MIC is tangent to Py at one point at least.

Assuming that it shares no (tangential) points with Pye we will be led to a

contradiction.

If C(C,r) is the MIC under consideration (figure 8) and P is the clos—

est to C point of P, then, by assumption, r*=d(P,C)?r. Then circle C* (C,r* )

is inscribed in Pand clearly greater than C(C,r). Hence the latter cannot be

a MIC.

We prove, next, that a MIC, say C(C,r), cannot be tangent to Ps at

exactly one point. Again, assuming that it has one exactly tangential point,

say P, will result to contradiction.

1S:



 

Figure &. Lemma 1. Figure 9. Lemma 1.

Let A be the straight line tangent to C at point P (figure 9), while

R, is the (open) sub-plane defined by A and the center C. We define Py=PgaRy

and Py=Po-Py. We will prove that there exists a circle C‘(C',r’), inscribed in

the polygon, with r‘>r. In order to do this, take

ré-min{d(C,x) :x€P,} qd)

and

e*ork=r. (2)

Then

6*70, (3)

since, by assumption, C has no common points with Phe

Let C'(C',r') be a circle that lies on Ry» is tangent to at P, and

has radius r’=r+(6*/2). Clearly, C’ is greater than C. As we will prove, it is

also inscribed in the polygon, or, equivalently, d(C’,x')?r for any xP).

It is evident that

d(C" ,x)7d(C",P) (4)

for any x6P,

If x6P, (figure 9) then, by (1), (2),

d(C,x)?r+6* (5)
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But r+6*=r+(6*/2)+(6%/2)=r/+(6%/2) and, hence, (5) is equivalent to

d(C,x)2r/ +(6*/2) (6)

Considering, now, the triangle cc'x, we get

d(C,x)Sd(C",x)+d(C,C") 7)

Relations (6) and (7) give

d(C’,x)+d(C,C’)2r"+(6*/2)

or

d(C", x)2r'+(6*/2)-d(C,C") (8)

But, by the definition of r’,

d(C,C' =r’ -r=rt+(6*/2)-r=6*/2

and, thus, (8) can be written as

d(C’, x)2x’ +(6*/2)-(6*/2) =r" (9)

for any x€P,

Relations (4) and (9) give

d(C’,x)2r° (10)

for any x6P9

or, equivalently, circle C'(C',r') is inscribed in the polygon. Furthermore,

C’ is greater than C. This contradicts the fact that C is a MIC.

Lemma 2, If C(C,r) is MIC for a polygon P and shares exacty two (tangential )

point with Poe then these points are anti-diametrical and belong, as interior

points, to two parallel sides.

Proog

We prove, first, that the two tangential points, say P; and P,, are anti—

diametrical. Assuming that they are not, we will be led to a contradiction.

If P,; and P, are not anti-diametrical, then the lines Ly Lo» tangent to C

at P,, P,, respectively, are not parallel and, hence, they intersect each

17



other, say at a point A (figure 10). If now P¥*=PNP, where [=PjAP>, then C is

inscribed in P* (since C is inscribed in both P and TI) and is tangent to the
‘

perimeter of P*, at exactly two points, namely P; and P2.

Furthermore, if s* and s* are the sides of P*, where Eo and P lie
2 21

respectively, then it is ubvious that P; and Pg are interior points of these

sides (since the vertices adjoint to sides s* and st are convex).
2

The conclusions, thereon, are related to the following idea: The cir-

cle C can be "inflated" while remaining inscribed in p* and tangent to sides

s* and st » which will be called thereon "base" and "pilot" respectively. Be-

cause its center is free to slide on the dichotomous J of C, until the infla-

ting circumference of I touches the part of Pos say Pre confined by the lines

£, and bo and located opposite to A, with respect to circle C (mote that s*
1 1

and s* don't belong to Py)
2

In mathematical terms, we define:

P. =PALAR, , (1)

where Ry is the subplane confined by Be and containing C, and
2

where Ry is the complement of Ri. During its "inflation", the circle will re-

main inscribed in P* and, hence, in Po. This contradicts the initial assumpti-

on, that C is a MIC.

 

Figure 10. Lemma 2,



More analyticly, if r* is chosen as follows

r* =min{d(C,x) :x€P,},

then

e* =r*-1>0,

since ¢ has no common points with P;. From relations (2) and (3)

a(C,x)>6*+r

for any x6P,. Let us consider, next, the circle c*(cx,r*), centered on the

chotomous 6, at a distance 6*/2 from C, to the direction of inflation. It

immediate that rad(CH, Pe) =d (C#, P#) 4d (P*, P*) =d (C,0*) sin (T/2)+r, where pe

p* are the tangential points of C with & and bos correspondingly, and P*
2

projection of C on CREA. Hence

r#=(6*/2) sin (T'/2)+r

On the other hand, if x6P,, then from triangle CC*x

d(C*,x)>d(C,x)-d(C,C*)=d(C, x) -(6*/2),

and because of (4)

d(C#,x) >6*4r-(6*/2) +r,

But

(G*/2)+r=r* +(6*/2)-+sin ([/2)+(6*/2).(1-sin (T/2))

and, due to (5),

(6*/2)4r=r*+(6*/2)-(1-sin (T/2))

Now, (6) and (7) result in

d(C*, x) ?r*+(6%/2).(1-sin(I'/2)) ?r*

since €*>0 and 1-sin(I'/2)70. Consequently

d(C*,x)?r*

for any x6P). Furthermore, it is obvious that

d(C*,x)?x*

for any xGP,, Considering, finally, the fact that C* is inscribed in an-

gle T, relations (8) and (9) result in

Q)

(3)

(4)

di-

is

and

the

(5)

(6)

@)

(8)

(9)
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a(C¥,x)2r#

for any x6P* and, thus, in

d(C*,x)2r*

for any xEP, which means that C* is inscribed in P. But then, our initial as-

sumption that C¥ is a MIC, is contradicted by r*>r and, hence, the tangential

points Pi and Pg are anti-diametrical points of Coe

We will prove, next, that P; and Py are interior points of two (paral-

lel) sides of P. It is enough to show that neither, of the two points, is a

vertex.

To begin with, it is clear that P, and Pz cannot be convex vertices.

Suppose then, that one of them, say P;, is a non-convex vertex. Based on this

hypothesis, we will end up with a contradiction.

Let Ry be the open sub-plane lying right to P)P) and Ry its complement

(where P)P, belongs). Consider the straight lines, 4h and Lo, tanget to C at

points P; and P2, respectively (figure 11). Since P; and Py are anti-diametri-

cal points (as we have already proved), lines 2, and £, are parallel, defining1 2

a zone, say Z.

 

Figure 11. Lemma 2.
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Let s{, s* be the edges of P¥=POMZ, to which Pi, Pp respectively be-

long and P;, Pp the parts of P* as defined in (1). We, also, define Aas the

nearest to P, point to SHAPOAR, and B as the right adjoint vertex of st. Then

the following are evident.

ri=d(Pi,A)70 (10)

(because we assumed that Py is a non-convex vertex)

d(C,x)?r

for any xeP, (since C(C,r) does not possess common points with Py)

Hence

ra=min{ d(C,x) :x6P, }>0 (11)

Also,

r3=d(P2,B)70 (12)

(because Py is an interior point of edge 82)

Consider, next, the circle C’(C’,r) with center on the mid-perpendicu-

lar of PrP at a distance 6* to the right of C, where

e*=min {ri,r2,r3}/2. (13)

Due to (10), (11), and (12)

6x70 (14)

If, now, P¥ and P} are the tangential points of C’ with £, and Lo,

respectively, then Px is an interior point of PIA, because

d(P1,P4)=d(C,C’ )=6%<r )=d(P1,A)

Hence and by the definition of A,

PEP (15)

Besides, it is obvious that C’ lies strictly to the right of Po, so

d(C’, x)?r (16)

for any x6P,

Next, we will prove that C’ lies strictly to the left of P, (ie not

even touching Pi). That is, d(C',x)>r for any xP).
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Indeed, if x6P, then, from triangle CC’x, we get

d(C’ ,x)?d(C,x)-d(C, C’ )=d (C, x) -6* (7)

Also, if we replace r* with r3; in (4), then we have

d(C,x)>ratr (18)

for any xP)

Relations (17) and (18) give

d(C’ ,x)>r+r 5-6* (19)

But from (13) it is immediate that r376*, or, r3-6*?0, hence (19) re-

sults in

a(C’,x)?xr (20)

for any x6P,

From (15), (16), and (20), it can be concluded that C'’ possesses at

one point, tangential to the perimeter of the polygon (if P2EPy then P, is the

one, otherwise there is none). On the other hand, C’ has radius r and, thus,

it must be a MIC. But, according to lemma 1, a MIC shares at least two tangen-

tial points with Po. By this contradiction, we conclude that none of the tan-

gential points P, and Pz can be a non-convex vertex. This completes the proof

of lemma 2.

Lemma 3. If a MIC of a polygon, say C(C,r), has two common (tangential) points,

Pi and Pz, with the perimeter Po of a polygon P, then, for this polygon:

(i) there exists an infinite number of MIC having, each one of them,

exactly two common (tangential) points with Po and

(ii) there exist at least two MIC, each having at least three common

(tangential) points with Po.

Proog

By lemma 1, points Pi and Pz are anti-diametrical and, hence, the

straight lines, tangent to C at these points correspondingly, 2, and Ly are



parallel. Let Z be the zone they define, PE=PONZ, and Pa=stusk, where s% and
2

s* are the parallel edges of P* on which P, and Py (as defined by (1) in lem-
=

ma 2) lie respectively (figure 12), Then, clearly, (P*=P)UP,UP,).

 

Figure 12. Lemma 3.

We have already proved (lemma 2) that C shares no common points with

P, and Po» whereas it has two common (tangential) points with Ps (points Pi

and P2). It is obvious (see the figure) that if C is forced to "roll" towards

Py (or, alternatively, towards Po) then, before it touches Pp, (or Pods its

center will have traced a non-zero line segment, on the mid-perpendicular 6 of

ss — oy
PiPo, say CB (or AC -if moving towards Po). Consequently, there is an infini-

te number of MIC, each having exactly two tangential points (hence (i) holds).

All those circles have radius r and center on the open interval AB.

In particular, at any one of the ends of this line segment, say B (or

A), the "rolling circle", besides the two common points with P3, will have

at least one common point with P, (or P,), and that will prove (ii).1 2 P

To prove, actually, that these observations are correct, we consider

the geometrical points P, and P2, in the case where the circle is "rolling"

towards P. Whatever the conclusions may be, for this case, will be also valid,
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in an immediate analogy, for the "rolling" towards Poe

To begin with, it is obvious that

d(C’ ,x)2r qa)

for any C/6BC, x6P,

Let Py be the projection of x on PjP) and L=CxP, We define, then,

function £(x)=d(x, 1). It is clear, that the point of Pas say x*, which will

be first touched by the circumference of the "rolling" circle, is that point

of Py which minimises the function f(x). Furthermore, f£(x*)?0, because C(C,r)

has no common points with Ph.

What is left now, is to determine the location of the center, call it

B, at the instance the "rolling" circle touches x* . Indeed, at that instance,

d(B,x*)=r and hence B is the intersection of C,(x*,r) with the bisector 6, Be-

sides, it is clear that CIx*B is a parallelogram and consequently

d(C, B)=d (T,,yx*)=£ (ae) 70

If, now, Pe and Pe are the tangential points of Bp, x) with 4 and Ly

respectively, then Pp lies to the right of PAB:

(because Gx, P2d (x, 12d (x*, 14,)=d(C,B)=d (P,P ) for any x6P1)

Consider, next, a circle C'(C',r) with center C’ eB (there are infini—

tely many such circles). Due to (1) C’ lies strictly to the right of Po (it

possesses no points of Po). We will also prove, that it lies strictly to the

left of Py .

For any x6P,, consider point GGLx, such that d(T, G)=£ Gxt). EE is

obvious, that both G and x lie to the right of point O=P*PSNP.x and, also, that
2

4(0,6,)54 (0,8)
Hence

d(B,G,)<d(B,x) (2)

But



d(C',x)?d(B, x) (3)

Relations (2) and (3) result in

d(C’ ,x)74(B,6) (4)

Now, since lines 4s Los and & are parallel while (L2G,)=d (18,6)

d(C,B), cBcI. turns out to be a parallelogram, and thus

d(B,G,)=d(C, 1, Jar (5)

Finally, (4) and (5) give

d(C" ,x)?r (6)

for any x6P), that is, C’ lies strictly to the left of Py and, hence, it has

exaclty two common points with the Po (which are the two tangential points of

Ps).

To finish, if we consider the circle Oye), then it is evident that

(6) becomes d(B,x)>r for any x6P), because d(B,x*)=r. Hence, cB lies strictly

to the right of Po» and also to the left of Ps while sharing at least one tan—

gential point with Pye Consequently, it shares at least three (tangential) po-

ints with the perimeter Po of the polygon.

Theorem 1, For any polygon, there is a MIC that has at least three common (tan—

gential) points with the perimeter of this polygon.

Proog

Direct consequence of lemma 1 and lemma 3.

Lemma 4, The maximum circle C(C,r), inscribed in a polygon P and tangent to

Po at a point A, possesses -besides A- at least one more tangential point (in

common with Po) a

Prog

Assuming that there are no other tangetial points besides A (figure 13
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Figure 13. Lenma 4,

and proceeding as in the proof of lemma 1, we can calculate a circle C'(C',r')

larger than C and tangent to Po at A. More analyticly, C'6CA’ and r'=r+(6*/2),

where 6*=min{d(C,x):x6P,}-r70, A‘ antidiametrical to A, and P, the part of the

polygon which lies in the subplane R, defined by the tangent 2 (to C at A)

and the center C. The initial assumption is contradicted by the fact that r'>r.

Theorem 2. The center of a circle C(C,r), inscribed in a polygon P, belongs to

the trajectory of the RC center, if and only if, Cy has at least two common

(tangential) points with Po.

Proog

It is clear that, to every point of the trajectory, corresponds a RC

being tangent to Po at, at least, two points (lemma 4). We prove now the re-

verse, that is, if an inscribed circle possesses two or more tangential points

(in common with Py)» then its center lies on the trajectory.

Let A be one of the two tangential points (B the other -figure 14) and

£ the straight line tangent to C at A. Then, point B lies in the interior of

any circle centered on =. larger than C, and tangent to @ at A. But B belongs



 

Figure 14. Theorem 2.

to Po and, hence, it cannot be interior point of an inscribed circle. Thus, C

is the maximum circle, among those inscribed in the polygon and tangent to &

at A. Consequently, its center belongs to the trajectory of the RC center.

Theorem 3. (theorem of the tree-Like trajectory). The trajectory of the RC cen-

ter, in a polygon, consists of segments joined together in a tree-like manner,

ie forming no loops.

Note: The trajectory of the RC center, in a convex polygon, consists

solely of straight line segments, joined together in a tree-like manner.

Proos

We will prove that the trajectory has no loops. According to theorem 2,

for any polygon (convex or not), the RC position, at a given moment of the rol—

ling procedure, is such that there always exist two (or more) tangential po-

ints , on the perimeter of the polygon. In particular, if only two such points

exist, then BTP is one of them and PTP the other.

Let bt and pt be the lines, tangent to the current RC, at BITP and PIP

respectively (figure 15). Then, by definition, the current RC is the maximm

circle, inscribed in the polygon and tangent to bt at BTIP.
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™™ RC center trajectory: Straight line

= " : parabola

Ty oT), T3,T,+ turning points

N:node

Figure 15. Theorem 3.

On the other hand (theorem 2 again), the very same RC is the maximum

inscribed circle, among those tangent to pt at PTP. Considering, now, that RC

is continuously "rolling" anti-clockwise, on the perimeter of the polygon, we

easily realize that, either BTP is also moving anti-clockwise (if the base is

a side), or RC is "turning" clockwise round a steady BTP (if the base is a non

-convex vertex, in which case, base and BTP coincide). In either case, the cur—

rent RC is "rolling" clockwise, in reference to the pilot, ie either PTP is

moving clockwise (if the pilot is a side), or RC is turning anti-clockwise ro-

und a steady PTP (if the pilot is a non-convex vertex, in which case, pilot

and PTP coincide). But, since every point of Po will eventually become a BTP,

so will the current PTP, This means that, during the rolling procedure, the

RC center will pass again from its current position, following the same track,

but this t ime moving in the opposite direction: that s because the RC movement beco~
mes anti-clockwise (in refernce to the current pilot) at some phase of the rolling
procedure,

The above statement is true for every interior point of the trajectory

which is not a knot. Whenever the RC center reaches a knot, it is forced, by

the anti-clockwise RC movement, to follow the rightmost branch on its course



(and also, to turn back, whenever it reaches a terminal point). So, if there

was a loop, somewhere in the trajectory, then the RC center would be condemned

totrace this loop only one way (either clockwise, or anti-clockwise, but not

both). Thus, we would get a contradiction to the statement, that every segment

of the trajectory is traced both ways.

In reference to the note, now, if the polygon is convex, then both the

base and the pilot are always sides, and it has been shown that the parts of

the trajectory, corresponding to such pairs, are all straight line segments.

4, The Algorithm

The algorithm requires an anti-clockwise enumeration of the set of ver

tices V=lV1,V25.+-5V,} and sides S={s1,82,...,8)} of the polygon, considering,

as first vertex (Vi) of V, the westmost one (VU, ={vertex VAG2x (V*)<x(V) for

every veV}) and, as first side (si) of S, the right-adjoint to Vi side of the

polygon.

Since sides as well as vertices may act as bases or pilots, in the for-

mation of the trajectory of the RC center (a subject analyticly tackled in se-

ction 2.3), for simplification purposes we will not treat them differently in

the algorithm. Instead, we introduce the notion of the polygon "element" (being

side or vertex, according to the position of BTP or PTP, along the perimeter

of the polygon), as the current assignment to the base or the pilot. So > we

define the set of elements of the polygon E=(er(=Vi),e2(=81),+-+5ey,4 GV,),

e,, (=s,) and the subsequent ordering ese, to mean that element e, lies "to

the right" of e,, along the perimeter of the polygon.

The algorithm takes advantage of the tree-like structure of the RC-cen—

ter trajectory (see theorem 3), proceeding (actually jumping) from one turning

point of this trajectory to the next, and checking each time if the new  tur-
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ning point is a node, that is, if it is a junction where two or more branches

(and subsequent sub-trees) are emanating from. Note that this happens whenever

the number of tangential points on the RC front (which is tangent to the peri-

meter of the polygon) are more than two, or equivalently, when the RC front

collides with one or more barriers, not adjacent to the current base or pilot.

Note, also, that V,, is considered as the root node of the tree (that is, of

the RC-center trajectory, whereas "father-of-node" and "son-of-node" are used

to describe the relation between two successive nodes.

In respect, now, with the set (Ep) of the tangential elements (tangent

to the RC front), any two successive elements in EL, define a "gate" leading

to some part of the polygon, where a sub-tree of the RC-center trajectory is

unfolded. Consider the example shown in figure 16. At the node N (of the tree

-like trajectory), the RC front has three tangential elements, two of them

being the current base and pilot, and the third (side AD) acting as barrier.

The element of base and the barrier AD, together, define the first gate through

which the search will be performed,whereas the barrier with the pilot define

the second gate.

ROOT NODE

 

Figure 16. Theorem 3,
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The scanning of sub-trees emanating from a particular junction (node

n) will continue, until all the respective gates have explored. Then, as next

node, the father-of-n, will be considered (new n-father-of-n.). The explorati—

on, now, continues from on older position, with the remaining gates and subs-

equent sub-trees that have not yet been explored (corresponding to barriers

which are still "active"). Furthermore, whenever the turning point Le coinci -

des with a convex vertex (reaches a terminal node of the tree -as is point c

in figure 16), then the algorithm performs an inflection at this point, that

is, sends T, back to the position of the preceding node, because the path lea-

ding from that node to the terminal one (path N*C in figure 16) is considered

as already scanned, and the associated gate as being non-active.

Finally, with respect to the updating process of the current best cir-

cle Cnax it is reminded that there always exists aMIC having three ormore  tan-

gential points (see theorem1).This condition can be satisfied only at the nodes

of the RC-center trajectory (because any turning point, which is not a node,

corresponds to a phase of the rolling procedure, where exactly two tangential

points exist). This suggests that the updating process should be applied, so-

lely, at the nodes of the tree-like trajectory.

The algorithm NONVEX

Step. 1:"Initialization of the Algorithm"

S ={81,82,++.,8)4: the set of sides of the polygon

Vv =(V1,V2,--.5V} ithe set of vertices of the polygon

E =Ce1,e2,.+.,e), }:the set of elements of the polygon

base =S)> pilot =s,

max? Cmax=V 1» Tax 0) + the current best circle

=C a ‘Cc, — : the current circle

3)



n, =Vi

mStep. 2:

2a:

2b:

ce

2d:

2e:

2:

32

: the current turning point

the current node (root node)

Calculation of the next turning point"

E*={eGE: base < e < pilot}

set status-of-e ="active" ¥ e¢E*

4 =TRAJ (base, pilot) :TRAJ is the routine calculating the trajecto-—

ry modulated by the current base and pilot

(section 2.3)

search for an "active" element eéE*

if no such element exists then go to step 2f

4, = TRAJ (base, e) ithe candidate trajectory corresponding to

the candidate barrier e (section 2.4)

T* tt ithe candidate turning point corresponding to

candidate barrier e

Cp :(C, =T*, rv =d(T*, e)), the limiting circle (see sections 2.4,2.5)
& oe? Ee c

Ay = ACT (base, pilot, c, front, Cy front):ACT is the routine calcula

ting the active area (se -

ection 2.5)

search for an "active" element e6E*

if no suchelement exists then go to step 2f

else if eA) then set status-of-e = "non-active"

and go back to step 2e

else go to step 2d

update C. and T,

Cy = Co, ag



Step. 3:"Check for Terminal Nodes"

is the last node fromIf T, is terminal then set T, =n (*
c c c ce

and go to step 5b \which Ty, is emanating

Step. 4:"Calculation of Tangential Elements of Current RC Front and for a Jun-

ction"

4a: calculate the set EY of tangential elements of C front

4b: if |Er\? 2 then ay is a junction (and hence a node) so, update cur -

rent best circleyif r ?rc “max

al he =nd go to step 5|then set C c

else go to step 2

Step. 5:"Search of the Subtree Emanating from the Current Node"

5a: set son-of-n, = T
Cc %:

5b: order the tangential elements of Ey in an anti-clockwise manner,

long the circumference of Cy starting from the element of base and

ending with the element of pilot

Ey = fe =element of base, e: . pees
njindex(1) nindex(2)

mS Ha ®nindex (max n,) eLement of pilot}

where nindex (i) is the index of the qth tangential element (with res

pect to node n) in the original set E.

set if,)=0 ithe index of the element of base, leading to the

next gate to be explored.

Se: ifm, )=if@,)+1

if if, =max 1, then n=father-of-n, tall gates emanating from

T =n n_ have been explored and
iG 6 &
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and go to step 5c . thus we go back to the

father-of-n,

else set base = pilot =e. © : a. » .n,index(i(n,)) nindex(i(n, +1)

iexplore the if@,.)

gate of node ny

If pilot = V or snail then go to step 6
n-1

else go to step 2

Step. 6: "Terminate".

5. Proposed Generalization of the Problem

The analytic location of the RC center trajectory, in the proposed me-

thod, can offer the means for tackling the following generalized problem. In-

stead of having to locate the maximum circle(s) inscribed in a polygon (that

is, to locate the obnoxious facility, as far as possible from the perimeter of

the polygon), we ask for a location to be at a distance greater or equal to

a given threshold security level s.

Problem NONVEX(s): find c@P : min{d(c,x):xéP J2s

A simple method to solve this problem is to follow the course of the

RC center trajectory, until we reach a point c satisfying the above inequality.

Consider now the general problem introduced in section 1. In this pro-

plem, call it G-NONVEX, we have a (closed) polygonal frontier-line surrounding

a number of areas, characterized either "protected" or "restricted", which

all have polygonal perimeters. By the term "protected", we mean an area, not

only forbidden to build inside an obnoxious facility, but for which care should

"be taken, to locate the facility as far as possible from its perimeter.By "re-

sticted", on the other hand, we mean simply an area forbidden to build inside it
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the obnoxious facility. The area outside the polygonal frontier-line is consi-

dered restricted and may also contain protected areas.

Given the above geometrical structure, we ask for the maximum circle

centered inside a "free" area (an area, lying inside the frontier-line, which

is neither protected nor restricted) and intersecting none of the protected a-

reas. (J free areas

OOD restricted areas

protected areas

 

Figure 17, The General Problem.

Working currently on this problem, we have focused our effort on gene-

ralizing appropriately the basic concepts of the NONVEX algorithm and applying

them on the G-NONVEX problem. The central idea is to use the notion of a local

-maximum circle following a feasible course (ie intersecting no protected are-

as), while "rolling" around the perimeter of protected areas. There are indica

tions that, in this case, the trajectory of the rolling circle defines a net -

work, possibly including loops.

6. The order of the Algorithm Proposed.

Denote by m the number of non-convex vertices of the polygon. A turning

point (which is not a node) appears on the trajectory of the RC center, when-
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ever BIP (the base tangential point) or PIP (the pilot tangential point) come

to, or leave from a non-convex vertex. Particularly, in the case BTP (or PTP)

acts as a focus to the formation of a parabolic part of the trajectory, there

are two turning points associated with that non-convex vertex: one at the be-

ginning of the parbolic "rotation" and another at the end. Thus, the number of

turning points (other than nodes), appearing on the trajectory of the RC cen-

ter, cannot exceed 2m. On the other hand, it is well known that the number of

nodes in a tree is less than the number of terminal points (here corresponding

to convex vertices of the polygon). Hence, the number of nodes in the tree-li-

ke trajectory of the RC center cannot exceed n-m (the number of convex verti —

ces), where n is the total number of vertices of the polygon. That brings the

total number of turning points, including the nodes of the tree, to less than

2m+(n-m)<2n.Finally, each of these turning points can be associated with no

more than n candidate turning points (corresponding to different candidate bar

riers) and, consequently, 2n? is the total number of the operations required

in the worst case. That is, the order of the algorithm proposed is O(n’).
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