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1. Introduction.

This paper presents an alogrithm to solve the most general mathematical

programming problem

S.t.gi(y) < 0 7 = 1,2,..,m

Min . g (9) ¥ = (rs o> In)

The only restriction required is that the functions gi, g be real valued.

The general formulation allows for nonlinear or linear integer programming,

mixed integer programming and general nonconvex continuous variable

programming. The extant algorithms for this most general problem can

usually be viewed as local search procedures. They suffer from two serious

difficulties which can be characterized as the « dimensionality problem »

and the problem of «trapping at local optima». These difficulties are

illustrated by the «local corner search» where each of the 2" adjacent

corners of a current point are evaluated and the best of these is used as

the next current point. The number of function evaluations increases expo-

nentially with the number of variables and the procedure is impossible except

for problems with very few variables. As is well known, this procedure

stabilizes at local optima. Traditionally, convexity is invoked by mathe-
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maticians to eliminate this sort of unpleasantness. As a practical matter

with real problems, convexity is never established. In fact, the essence of

location of facilities problems is precisely the tradeoff between the economies

of scale in production and the transportation cost. (Economies of scale imply

minimization of concave functions).

In a recent paper [4], Falk and Soland have presented a method which

is intended for nonconvex problems where the criterion function is separable.

It employs the general ideas of branch and bound where branching is effected

by repeated partitioning of the domain. Boundsare obtained for the various

partitions replacing the criterion function by its convex support and optimizing

the resulting problem. Falk and Soland have given a proof of convergence.

However, a major drawback of their method is the fact that the subproblems

formed to determine the bound are in general nonconvex optimization pro-

blems. This can be seen by noting that while the subproblem’s criterion

function is convex by construction, the constraints are determined by inter-

secting the sets of points defined by the original constraint set with the

constraints defining the partition. If the original constraint set is nonconvex,

which is the form they support to treat, the resulting feasible region cannot

be guaranteed to be convex. Presumably, the effective scope of application

of their method would be limited to convex constraint sets.

The classical approaches, then, have been essentially « local » or « neigh-

borhood » techniques dependent on derivatives (or finite difference approxi-

mations to derivatives). Only unrealistic assumptions such as « convexity »

or vague arm waving such as «try a representative sample of starting

points» have been advocated to deal with the global problem. (Obtain-

ing a «representative sample of starting points» is feasible with small

generally artificial examples). We feel this sweeps the very quintessence of

many economic problems under the rug. Our central aim here is to present

a new framework for reaching g/obal optimum. The procedure involves

two interconnected mechanisms, a method for structuring the search and a

decision rule for selecting the course of the search.

2. Structuring the Search.

Structuring the search consists of introducing a framework for reducing

the general problem to that of «implicit enumeration » [1] suitable for

machine implementation. In general, given a bounded domain P, it can

be symmetrically partitioned into components P,, P,, ..., P,”. For example
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Technically :

given (i) < y() < sii)

define (i) = (s() — b(A)/2

7) =b) +r)
and introduce the class C of finite maps

o: (1, .., n} > {0, 1}

Now a 1 —1 correspondence can be setup between the components P, of

the partition of P and the class of maps C by defining the upper and lower

bounds of a component in terms of a map

Lo) = 7) — (lL — o (4-7)

Uli, o() = 7) + of)-r

To illustrate these formulas, we can apply them to the two dimensional

unit square. In this event,

0<7 <1 j= 1,2

e.g. b(1) = 0 sQ) =1

b(2) = 0 s(2) = 1

and r(l) = 1/2 r(2) = 1/2

7(1) = 1/2 7Q) = 1/2
Using these quantities :

L(i, o(1)) = 1/2 — (1 — o(1)).1/2

GU atl) = ye + waye
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- L(2, 0 (2) = 1/2 — (@ — 0 (2) 1/2

U (2, (2) = 1/2 + o(2).1/2

The choice of any of the four different maps (o(1), (2)) specifies a

particular rectangle.

4
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For example, consider the map (0, 1), e.g.

o(l) = 0

o(2)= 1

This map specifies rectangle 3

L(1, o(1)) = 0 U(l, (1) = 1/2

L (2, »(2)) = 1/2 U (2, »(2)) = 1

The problem is now reduced to choosing a desirable map ox € C and

further refining the corresponding component until a point is specified to

any predetermined accuracy.

Technically this can be setup recursively by taking

) = 6@ — e@)/2

() = 6) +

yo

7°

r (i) = 9 (/2

FG = FO — (Lo OM || + oOJH
and again for any may o' at the ¢'stage

Léo'@) = 7H — A —o'()A
UG o() = 7H + oH.

and
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Now specifying a sequence of maps

(o °, oxt, ox?) -)

specifies a sequence of nested intervals for each /

ILwx! ()) UG, os )

such that the limits of L(i, » ‘(/)) monotonically increases with ¢ and

the limite of U(7, wx‘ (?)) monotonically decreases with ¢ and the difference

[U @ox! ()) — L@ ow '())] = (6 (i) — 4(A)/2™ approaches zero as

t increases.

Therefore, a sequence of maps (wx, w 1, ...) defines an n-tuple of

real numbers or a point in R". (Recall the Weirstrauss-Heine development

of the real numbers. Their definition is : « A real number is a nest of inter-

vals (x, , Jn) such that {x,} is monotonic decreasing, and d, = (y, — x,) > 0

asm — cw». See Knopp, [3], Chapter 1). Now for any stipulated accuracy

of the solution y*(/) -+ ¢ take the first positive integer T such that

(57 (4) — OT (/)/2™ < « for all 7 or 2™ > (sT (4) — B(d)/c.

For a choice of 4/0 = T, introduce the class G of meta-maps

2 = {ol, 0%, .., oT} or

6 = {1, 2,..,2x T} > {0, 1}

The choice of a determines a « quantitized » point in the domain of

interest. The problem is reduced to choosing the optimal meta-map

&* = (ws', o %, ., ox"). The algorithm we propose is to smplicitly

enumerate the class 6 of meta-maps. There are of course many other ways

of « quantitizing » the domain suitable for implicit enumeration. The

employment of the present structure and, in particular, the T sub-maps

(o', 0%, «., 0”) to specify is to isolate for easy exploitation the nested
components of the successive partitions identified by the w'. If is these

nested components that allow us to introduce set functionals for decision

ma'ing and a global approach to calculating the optimum independent of

such restrictions as convexity on the original functions.

3. Decision Rules for Directing the Search.

The most common set functional in mathematics is the ordinary integral.

It is our contention that use of this functional instead of resorting to the

derivative or its finite difference counterpart of the « local» procedures

should enable us to utilize global information. Liberating our decision
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process from the myopic local neighborhood processes should render us

insensitive to trapping at local optima and enable us to dispense with

inapplicable mathematical assumptions such as «convexity». The most

elementary use of the integral would be to simply calculate for each com-

ponent (defined by an element »' of the meta-map) the following quantities :

L UG, wt (1)) Ucn, wt (n))

AV (o', g) =| o f g (9) dy,dy
. LG, et ()) L(n, wt (n))

II@

1 UC, wt (1)) U(n, wt (n))

SS (o', g) = =——— f a f & I) dys oe An
. LG, wt (1)) L(n, et (n))

rt (4)

i=1

SGM (o, g) = [(SS(o4 g) — AV? (o, gt?
d(o', g) = AV (o', g) — v. SGM (o', g)

The element of the meta-map »' chosen would be such that

d (ox', g) = min d(o', g)
ated

The decision functional d(w', g) is a simple estimator of the minimum

value of the function g(y) on the associated component of thepartition,
If no knowledge of the underlying distribution is available, the parameter

v in the definition of d (w', g) would have to be determined empirically

or several runs made using various values.

This simple procedure suffers from the same « dimensionality problem »

as the local search procedures. The evaluation of the decision functional

d(o', g) for all possible 2" maps »' would impose an intolerable com-

putational burden (except for artificial mathematical examples). This «di-

mensionality problem» can be eliminated, however, by resorting to an

n-stage sequential decision process. The total map »' would be constructed

in n-steps by sequentially fixing elements of the map. Suppose an arbitrary

set of & out of the possible 7 elements of the domain are fixed. At the

(@ + 1)** step an additional element of the domain, say /,,, is chosen and

hui 2 0 or hor > 1

Now if the order of fixing elements of the domain is completely arbitrary,

there would be 2 (7 —&) possible choices of a couple (/,,,, 0) or (dij: , 1)

at each stage. The total number of functional evaluations would reduce to

ZS 2(0—A) = 234 = net)
k=0 kei
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(This reduction is insignificant for 3 or 4 variables, but with as few as

20 variables we would achieve a reduction from

27° = 1,048,576

to
20-21 = 420.)

In the »-stage sequential process, it is necessary to use a slightly more

sophisticated decision functional. Each choice is now determined by expected

values over all completions of the &-partial map. Given a &-partial map,

ay Ze a warey Bie x Tear 9 oes dy

( ot (4), of (4), 5 Ot (A) of (Aga)s os * (An) )

where the {/,} are an arbitrary ordering of the elements of the domain

and the barred elements are considered fixed, we need to consider its com-

pletion class C,'. This completion class consists of all possible completions

leaving the first & assignments fixed. It is the subset of maps which give

the same assignment for a specific set of & elements of the domain, We

then employ the following expected values over the completion class C;,'

1 UG, @t(1)) U(k, ot (k))

E ,(AV(o', = oe f
oe (AV (0! 8)) 2k TE r(f) Jua,aa) Lk, Bt (k))

Uke+1, 1) U(n, 1)

a f a f By) ayydyn?
L(k+1, 0) L(n, 0)

1 va, sea) Ur,Bt)
E_, (SS(o', = ————— f - f
c, ( 8) 224 TT #(f) naa) Lk, Bt (i)

Ude1, 1) U(n,1)

os f- es f £2 (y) ayy ody
L(k+1, 0) L(n, 0)

These results, of course, rely on the «additivity » of the limits of integration.

Using these more sophisticated quantities we proceed as before by cal-

culating

SGM™(o', g) = [E, (SS(o', g)) — BR, (AV (o', a)"
that is, the standard deviation ‘of g(y) on the components and

4 (o', g) = B,(AV (0, g) — v-SGM®(o', 9)
The decision functional d®(o', g) is evaluated for the 2 (”— &) possible

couples, say (/.,,) > 1 or (qj, 0) and /,,, any « free» element of the

&-partial map. The minimum value of d(w', g) determines the next

couple to be fixed.
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This whole n-stage sequential decision process is then carried out T

times as indicated in Section 1 to yield a « point» in R® which is hope-

fully very close to the global minimum of g(y). In any event, by con-

tinuing and employing a « confidence level implicit enumeration » (see [1]

and [2]) of the whole class G of meta-maps, we should achieve a highly

sophisticated search of the whole domain. The only point to note in

employing the mechanism of the « confidence level enumeration » is that

the recursive definition of the components would require »! to be entirely

fixed before any element of wi*.

4. Additional Observations.

(A) Limiting value.

When the function g(y) is continuous, it might be worth noting that

d™ (ot, g) > gi) ast ow

where y* € R®

is the point defined by the sequence of maps (w °, wx', ...). This follows

immediately from the Mean Value Theorem for Integrals which says :

1
——— (. pA =AREA £ & &()

where y € D.

Applying this result to the terms of d‘) (o', g) yields

EB, AVSa) > 80% ast >

SGM™((o', g) > 0 as t > 0

and hence
d™(a, g) > g(y*) for any v ast > o.

(B) Indefinite Integral.

The evaluation of the integrals employed in the definition of the

decision functional d(o', g) can be carried out in various ways. With

continuous functions, the simplest procedure is to employ the closed form

given by the indefinite integral; for example,

Jndydy = CEH) We — be)
pen= “4, —L).(U. — 1)

(U, +L). (Us + Ly)
4

1

AREA
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(C) Stratified Sampling.

When the function is not known in closed form or the indefinite integral

is not available, it may become necessary to resort to stratified sampling

of the various components of the domain defined by the limits of integra-

tion in the decision functional; for example,

 

 

 

    

 

Yy

We could determine an appropriate sample size &, for each strata S, and

on the basis of this sample calculate estimates

E. (AV (o', g)) and SGM(w', g)

and from these calculate d(o', g). At any decision point, we are strati-

fying a domain of the form :

L(t, of (l)) << UC, of Q))

L(é ot) <j < Ulot &)

LEE+1,0) < jy, < U+L1)

L(n, 0) < bh < U(r, 1)

(It is also possible to apply Analysis of Variance and other more sophis-

ticated statistical techniques in refining the components).

(D) Discrete Variables.

It is, of course, not necessary that the variables be continuous. The

Rieman-Stieltzes Integral is available to deal with discrete variables. Recall

the usual Unit Step Function

0 010) = vee
(y 0)V

N
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and Standard Counting Measure

a(i) = 10%) + 101 — 4)

that would be employed with zero-one discrete variables. (A slight general-

ization would eliminate the reduction to zero-one discrete variables). In

this formulation,

lse Ite

« AREA» = f a f day. do, = 2"
0 oO

and for illustrative purposes, consider the simple linear case

£0) = Say
ist

Take S() = 1+ ce and 4()) = 0

 

   Py,

P,  B,(AV(o4 8) = af f (4: 1 + 4,92) day day

=4{ apda = 4/2

1te Ite

f (4; 1 + a2 Yo) day d a
1/2

P,  B,(AV(og) = 4 f
+e

=4 f- G+ ay)da = 4 + m/2
oO

Hence, as expected, the decision of whether y, — 0 or y, — 1 is determined

by whether 2, < 0 or a4, > 0. This general approach reduces to techniques

expounded in great detail in the paper, « A New Approach to Discrete

Mathematical Programming ». It should be stressed that the Rieman-Stieltzes

Integral Approach developed in this section is perfectly capable of handling
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pure continuous variables, mixed continuous and integer vatiables, or pure

integer variables.

(E) Constraints.

The ideas developed in this paper can be extended to treat constraints

of the form
&i(y) < 0

by introducing conditional expected values. The simplest way to achieve

this is through the use of a Regression Equation. Instead of using AV (o', g),

this would require employment of :

COV (0, £15 &2

AY (o's Gilga)) = AV U6ge) + ETE bts — AV Go)  

the conditional expected value of the function g. given a value of function

&- In this procedure, it would be necessary to estimate the maximum or

minimum of (g,; — AV (o', g,)) depending on the sign of the covariance

on the components specified by the current &-partial map o'. This could

be done in turn in terms of the variance of g, and its mean. It would

also be necessary to establish an appropriate confidence level that g, (y) < 0

on the component. When the confidence drops to low it is necessary to

« backtrack » in the construction of the meta-map. It should be observed

that « normality » assumptions are not required for this procedure, but in

the event of non-normality, the linear regression equation reduces to a first-

order approximation. Again, these ideas are developed at greater length

in [1].

5. Examples.

The following simple examples will illustrate some of the ideas deve-

loped in this paper.

Example 1 (single variable two minima).

&(y) = 1/49" — 7/6+ 7/49? — y

y = 1/2 f(y) = —37/192 (local minimum)

yel fo) = —1/6 (local maximum)

y= 2 fy) = —1/73 (global minimum)
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f(y)

 

 

Subroutine.

Sum.

S = 1/20 (U5.L’) + 7/24 (Ut — L’) , 7/12 (U® — L) — 1/2 (U2 — Ll)

Sum of Squares.

SS = 1/144 (U® — L*) — 7/96 (U8 — L8) + 161/504 (U7 — L’)

— 55/72 (U* — L’) + 259/240 (U® — L’) — 7/8 (Ut — L4)

+ 1/3 (U® — Ls)

Results.

Run 1 b(l) = 0 s(l) = 3 t= 10

7) = 15

Mr — IT
——) v was employed and, Mr isWhere linear damping »1 = —

Mr
 

the total number of steps and IT is the current step.

Example 2 (two variables).

f(y) = 3 (1 — 2)? + (x2 — 2.5)
Sum.

S = (U, — L,) (Uy? — L,’) — 6 (U2 — L,’)

+ (U; —L,) (1/3 (U2 — Li’) — 5/2 (U2? — L,*) + 18.25 (U, — L,)
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AV SGM d
a) = 0 — .1687 0412 — .2065
a(t) = 2 .0187 4816 — 3859

yD = 2.25

e(l) = 0 — .3005 .0287 — 3208
w(iy = 2 3380 5090 .0410

y) = 1.8750

o(l) = 0 — .2817 .0264 — .2938
o(l) = 1 — 3194 .0165 — 3248

yO) = 2.0625

o(l) = 0 — 3333 .0284 — 3333
o(l) = 1 13332 .0191 — 3332

y) = 1,998     
 

Runs using the straight mean were made on the following domains:

b(1l) = —1 sQjj) =1

b(2) = —5 5(2) = 5

b(i) = —2 s(l) = 2

b(2) = —1 s(2) = 1

(il) = —5 s(t) = 5

b(2) —5 (2) = 5

In all cases the minimum was attained.
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8th INTERNATIONAL SYMPOSIUM ON MATHEMATICAL

PROGRAMMING SPONSORED BY THE MATHEMATICAL

PROGRAMMING SOCIETY

AUGUST 26-31, 1973

STANFORD UNIVERSITY, STANFORD,

CALIFORNIA 94305, USA

MEETING ANNOUNCEMENT

The Mathematical Programming Society announces that the
8th International Symposium on Mathematical Programming

will be held at Stanford University, August 26-31, 1973.

Contributed papers on theoretical, computational, and applicational

aspects of mathematical programming are welcome. Abstracts
should be sent before March 1, 1973 to the Chairman of the
Programm Committee, Professor George B. Dantzig, Department

of Operations Research, Stanford University, Stanford, California
94305, U.S.A.

Further information concerning the Symposium may be obtained

from Professor Richard W. Cottle at the same address.
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