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ABSTRACT

Silhouettes were developed as a graphical display for nonhierarchical cluster analysis. They

are based on the ratio betweenthe tightness of a cluster and its separation from other clusters.
A possible extension is to represent for each object both these characteristics in a two

dimensional graph.
The same technique can also be used with fuzzy clustering, making use directly of the fuzzy

membership functions to measurethe tightness ofthe links of each objectwith its principal
cluster and its neighbour.
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2*_introduction

Visual representation has always been an important means

of communication. Nowadays many other mathematical tools, such as

analytical formulas and computers, are at the disposal of the

researcher to describe phenomena in a precise way. However,

graphical representation still possesses a very suggestive power

that no other mathematical description is able to provide. The

reason is that a graph yields a global view of the phenomena

together with all the relations between its parts. This is

Clearly an advantage over most formal mathematical models.

No wonder that for cluster analysis, which is sometimes

defined as the art of discovering groups in data, graphical

representation is a much cherished tool. It may even be the main

tool in examples where all objects can be represented in a two-

dimensional space. In multidimensional situations clustering

algorithms are necessary, but graphs are still very helpful to

illustrate the results and to reveal some features which may be

the start for a further investigation.

In hierarchical clustering, dendrograms (see e.g. ref. 1

to 5] represent the relations between the partitions at different

levels, the merging sequence, and the level of each partition.

For nonhierarchical clustering, a representation by means

of silhouettes was recently proposed by Rousseeuw [6].

Silhouettes are based on the ratio between the distances of an

object to its own cluster and to its neighbour cluster.

 



In the present note, silhouettes will be extended in two

directions: a two-dimensional representation for each object

(Section 3) anda modification for fuzzy clusters, either as a

one-dimensional (Section 4) or as a two-dimensional graph

(Section 5). Some further considerations and conclusions are

given in Section 6.

Recalling

Silhouettes were developed by Rousseeuw [6] to evaluate

the quality of a clustering allocation, independently of the

clustering technique that was used. Only two streams of

information are needed: the partition of the objects into a

number of clusters (at least two) and the matrix of proximities

between all objects.

The silhouettes are then defined as follows (we restrict

ourselves to dissimilarities, although one could also use a

collection of similarities between objects):

-let D(i,j) be the dissimilarity between objects i

and j;

-let a(i) be the average dissimilarity of object i,

which has been allocated to cluster A, to all other

objects of the same cluster:

rp(i,4)
a(qi) = j-————

Na-1
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with Jj € A and nea = number of objects in A. It is

assumed that na > 1.

-let d(i,C) be the average dissimilarity of object

i of cluster A to all objects of any cluster C,

different from A; hence

rD(i,i)
da(i,c) = j———-

Ne

with j © C and ne = number of objects in C.

-let b(i) be the minimum over all clusters C of

d(i,C), corresponding to the neighbour cluster B (see

Figure 1).

Fig.1: An illustration of the elements involved in the computa-
tion of a(i), where the object i belongs to cluster A (from [6]).
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-let, for na > 1,

 

 

a(i)
a(i) = 1- if a(i) « b(1)

b(i)

(1)
b(1)

= ~1 if a(i) 2 b(i)
a(i)

for na = 1, s(i) = 0 by convention.

It can be seen that alwaya

-i1 s a(i) < 1. (2)

An a(i) near +1 means that the object i has a small

average dissimilarity to objects of the same cluster and a high

average dissimilarity to the neighbour cluster, and hence to all

other clusters. A value near -1 expresses the opposite.

Having computed s(i) for each object of the data set, it

is now possible to draw the silhouette of each cluster. For each

object of that cluster, one draws a horizontal line with length

proportional to s(i), pointing to the right whenever s(i) is

positive and to the left otherwise (although this last part of

the representation can be deleted as it is of less interest). All

these lines are drawn below each other in decreasing order of

magnitude. Each cluster has its own silhouette, the height of

which is proportional to its number of objects whereas the width

expresses its relative tightness.
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Fig. 2 and 3 illustrate this technique ona set of

objects consisting of two “natural” clusters. In Fig. 2 the

natural clusters have effectively been found by some clustering

technique. Because the clusters are fairly symmetric, so are both

silhouettes. The largeat valuea of a(i) correspond to objecta at
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Fig.2: Silhouettes of basic model: 2 clusters.

 



the extremities of the set; the smallest values characterize

objects near the interface between the clusters. The largest

value is 0.90 for both clusters, and the smallest is 0.52 for the

first cluster and 0.35 for the second. One can also calculate an

average silhouette width for each cluster and for the entire data

set; in our example all these values happen to be 0.79.

If a partition into three groups is performed (Fig.3),

the first cluster remains unchanged whereas the second is split

up in two parts. The silhouette of the first cluster is very

similar to the one in Figure 2: not only the general shape is

similar, but also the ordering of the objects. The a(i) values

become slightly smaller because b(i), the average dissimilarity

to the objects of the nearest of the other two clusters, is

usually less than the average dissimilarity to the big cluster in

Figure 2. This yields an average silhouette width of 0.75, as

compared with 0.79 in Figure 2.

As for the two "half" clusters, the changes are of course

more striking. Although for each object i the value a(i) is

decreased, at the same time b(i) becomes smaller still, 80

a(i)=1-a(i)/b(i) decreases. This results in an average silhouette

width of 0.50 for cluster 2 and 0.63 for cluster 3, as compared

with 0.79 in Figure 2. The overall average silhouette width of

all three clusters is 0.65, or about 20% less than in the case of

two clusters. Therefore, the overall average silhouette width

gives some indication about the "best" number of clusters.
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FOR THE ENTIRE DATASET, SILHOUETTE WIOTH 18

Fig.3: Silhouettes of basic model: 3 clusters.

Unfolding silhouettes in two dimensions

Silhouettes are
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based on the evaluation of two functione

 



for each object:

the "tightness" a(i)

the “separation” b(i).

Instead of calculating the ratio of these two functions, it is

also possible to simply plot these functions in a two-dimensional

graph, using, say, a(i) for the x-axis and b(i) for the y-axis.

As both a(i) and b(i) are always positive, only the first

- quadrant of the (x,y)-space is used. Looking for the relation

between the s(i) values and the (a,b)-plot, it can be observed

by= 4

1
s(

j)  

 

-1¢s(i) (0

 
s(i)= -4

Fig.4: Relation between separation/tightness and silhouettes.
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that all objects with the same s(i) values lie on a straight

line, starting from the origin and satisfying one of the

following equations:

b(i) = (14+8(1)) ai) if ~1s8(1)<0 (3)

1

b(i) = a(i) if Oss(i)st (4)
1-a(i)

From these equations it can be seen that objects with

s(i)=-1 will be represented by points on the a-axis. Objects with

a(i)=0O correspond to the equation b(i)=a(i), and will be

represented by points on the 45° line. Objects with negative s(i)

will lie below that line, whereas objects with positive s(i) lie

above it. Objects with s(i)=1 end up on the b-axis. These

relations are represented in Fig. 4. It should be observed that a

plot can be drawn for all the objects of a data set as well as

for the objects of each cluster separately.

Fig. 5 and 6 show these plots for the example with two

"natural" clusters discussed in the previous section. Fig. 5 is

very typical of a good clustering allocation. The plots show a

rather narrow concentration of the tightness a(i) and a much

larger dispersion of the separation, with most objects having a

b(i)/a(i) ratio larger than two. The only object with b(i)/a(i)

smaller than two is located near both clusters. It almost forms a

bridge between them, as can be deduced from the fact that a(i)

has one of the largest and b(i) one of the smallest values.

In the three clusters case (Fig.6) things are clearly

different. The first cluster still resembles that of the former

 



case, but the two remaining clusters have much smaller values of

b(i), which in turn are much nearer to the a(i) values. This

could be a first indication that these clusters should not have

been separated.

 

GENERAL PLOT

BsA= 2 BA 1

 

Por o cLustrm: 1 PLOT oF cLusvee: 8

 

Fig.5: Basic model: two-dimensional hard representation of 2

clusters.
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Fig.6: Basic model: two-dimensional hard representation of 3

clusters.
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membership

The goal of fuzzy clustering is to express, for each

object, ita relative membership to each cluster. Most fuzzy

clustering algorithms [see e.g. ref.7] make use of average dis-

similarities. By definition, the sum of membership values of each

object to all clusters always equals one. It is also customary to

consider the nearest hard classification, allocating each object

to the cluster for which its fuzzy membership is largest. There-

fore it is possible to define new “tightness” and “separation”

factors based on membership functions, keeping in mind that the

latter reflect similarity rather than dissimilarity:

a(i) = 2 - u®(i) with u® (i) = u(teo,i) = max u(t,i) (5)
t

b(i) = 1 - u®*(i) with u®*(i) = max u(t,i) (6)

tite

in which the membership functions must satisfy the relations:

u(t,i) 20 for all i and t

Eu(t,i) =i for all i. (7)
t

From (S) and (6) we see that

u®(i) 2 ue’ (i) (8)

and hence we always have

a(i) ¢ b(i) (9)

resulting in 0 < s(i) ¢ 1, excluding the possibility of negative

s(i). Apart from this last aspect, the s(i) behave similarly to

what was seen in section 2. This is confirmed by Fig.7 which

shows the fuzzy silhouette plot of the two-cluster example of

that section: the general shape is very similar to that of Fig.2.
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The only difference is that the

larger than the hard s(i) (which,

fuzzy s(i) are generally a bit

of course, depends very much on

the actual fuzzy algorithm used).
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with

As in the case of the original silhouette, it is also

possible to unfold the fuzzy membership function in a two-

dimensional plot. Compared to section 3, there are two main

differences:

1° due to relation (9) all points will lie above the 45°

line;

2° relation (7) induces a series of constraints which were

absent in the hard approach. As we will see, these depend on

the number of clusters that is considered;

a) for 2 clusters, relation (7) becomes

ue(i)+ue?(i) =

and through (5) and (6) we find

a(i)+b(i) = 1. (10)

This relation means that all objects in a two-cluster

system will be represented on the straight line going

from (1,0) to (0,1) (see Fig.8).

b) for 3 clusters, relation (7) becomes

u®(i) + ue? (i) + u(t,i) = 1

or u®(i) + u®*(i) os 1
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which through (5) and (6) gives

a(i) + b(i) 21 (11)

and as u°*’(i) 2 u(t,i) through (6) we also have

ue(i) + 2u°?(i) 21. (12)

Using (5) and (6) this yields

d-a(i) + 2(1-b(i)) 21

go

b(i) s 1 - & afi). (13)

oo clusters

 

Fig.8: Two-dimensional plot with feasibility regions as function
of number of fuzzy clusters.
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Relations (11) and (12) force all objects in a three-

cluster configuration to remain between two straight

lines atarting from the y-axis at the value b(i)=1 and

with slopes -1 and -4 (see Fig.&8).

c) for k clusters, relation (11) is atill valid whereas

relation (12) becomes

u®(i) + (k-1) u°°(i) 21 (14)

which upon consideration of (5) and (6) becomes

1 - a(i) + (k-1)(1 - b(1)) 2 1

b(i) < 1 - 1/(k-1) afi). (15)

Hence the lower and right hand feasibility limits (11)

and (9) remain unchanged whatever the number of clusters; the

upper limit starts from the point on the b(i) axis with value 1

and has a negative slope proportional to i1/(k-1) (see Fig.8).

This upper limit coincides with the lower limit in the case of

only two clusters (k=2) and tends to an horizontal line for an

infinite number of clustera (k=00). It can further be observed

that whenever points are represented on the lower limit, i.e.

when the sum of a(i) and b(i) is equal to one, these objects have

zero membership to all clusters but the principal one and the

first neighbour; points represented on the upper limit line

corresponding to the number of clusters, indicate that equation

(14) has to be considered with an equality sign and hence that
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TWO-DIMENSIONAL TIGHTNESS/SEPARATION PLOT
* eee 

GENERAL PLOT

BsA

  

PUOT oF tuuercm: 1 PLOT OF CLUE > PLOT OF Cuunren: 2

  
Fig.9: Ruspini’s data: two-dimensional fuzzy representation of 3

clusters.
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the corresponding object, apart from its membership to its

principal cluster, has an equal membership to all the other

clusters.

An example is provided by the Ruspini data [8], which

contain four rather well-separated clusters. A partitioning into

three fuzzy clusters shows two well-characterized clusters and a

third one that is not so tight (Fig. 9). The partition in four

clusters gives an improved image for all clusters, confirming the

existence of four “natural clusters" (Fig.10).

6° Conclusions

Graphical representations are very useful to get a global

impression of a clustering. It was shown how silhouettes could be

extended to a two-dimensional plot, providing some new

information such as a distinction between bridging objects and

outliers.

A similar plot can be constructed from fuzzy membership

functions. There all points remain within a triangle, of which

only the upper boundary is a function of the number of clusters.

Moreover, the position of each object within this triangle tells

a lot about the clustering characteristics.

As seen from the examples, the above graphs can even be

drawn with a plain line printer. This allows the implementation

of these graphical representations in almost any computer

environment.
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Fig.10: Ruspini's data: two-dimensional fuzzy representation of 4
clusters.
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