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ABSTRACT

Silhouettes were developed as a graphical display for nonhierarchical cluster analysis. They
are based on the ratio between the tightness of a cluster and its separation from other clusters.
A possible extension is to represent for each object both these characteristics in a two
dimensional graph.

The same technique can also be used with fuzzy clustering, making use directly of the fuzzy
membership functions to measure the tightness of the links of each object with its principal
cluster and its neighbour.
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1° _Intredyction

Visual representation has always been an important means
of communication. Nowadays many other mathematical tools, such as
analytical formulas and computers, are at the disposal of the
researcher to describe phenomena in a precise way. However,
graphical representation 8till possesses a very suggestive power
that no other mathematical desacription is able to provide. The
reason is that a graph yields a global view of the phenomena
together with all the relations between its partas. This is

clearly an advantage over moet formal mathematical models.

No wonder that for cluster analysis, which is sometimes
defined as the art of discovering groups in data, graphical
representation is a much cherished tool. It may even be the main
tool in examples where all objects can be represented in a two-
dimensional space. In multidimensional situations clustering
algorithms are necessary, but graphs are 8till very helpful to
illustrate the results and to reveal some features which may be

the start for a further investigation.

In hierarchical clustering, dendrograms (see e.g. ref. 1
to 5] represent the relations between the partitions at different

levels, the merging sequence, and the level of each partition.

For nonhierarchical clustering, a representation by means
of silhouettes was recently proposed by Rousseeuw (6].
Silhouettes are based on the ratio between the distances of an

object to its own cluster and to its neighbour cluster.




In the present note, silhouettes will be extended in two
directions: a two-dimensional representation for each object
(Section 3) and a modification for fuzzy clusters, either ag a
one-dimensional (Section 4) or as a two-dimensional graph
(Section 5). Some furthef considerations and conclusions are

given in Section 6.

2° Recallinx sjlhouettes

Silhouettes were developed by Rousseeuw [6] to evaluate
the quality of a clustering alloqation, independently of the
clustering technique that was used. Only two streams of
information are needed: the partition of the objects into a
number of clusters (at least two) and the matrix of proximities

between all objects.

The silhouettes are then defined as follows (we restrict
ourselves to dissimilarities, although one could also use a

collection of similarities between objects):

-let D(i,j) be the dissimilarity between objects i

and j;

-let a{(i) be the average dissimilarity of object 1i,
which has been allocated to cluster A, to all other

objects of the same cluster:

ID(1,3)
a(il) = j-——m—
na-1
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Fig.1:

with J e A and na = number of objects in A. It is

assumed that na > 1.

i

-let d(i,C) be the average dissimilarity of object

of cluster A to all objects of any cluster C,

different from A; hence

ED(i,J)
4¢(i,¢) = j—ru—
Nc

with j € C and nc = number of objects in C.

-let b(i) be the minimum over all clusters C of

d(i,C), corresponding to the neighbour cluster B (see

Figure 1).

An

illustration of the elements involved in the computa-

tion of a(i), where the object i belongas to cluster A (from [6]).




-let, for na » 1,

a(i)
s8(i) = 1- if a(i) ¢ b(i)
b(i)
(1)
b(i)
= -1 if a(i) 2 b(i)
a(i)

for na = 1, 8(i) = 0 by convention.

It can be seen that always

-1 < a(i) < 1. (2)

An 8(1) near +1 means that the object i has a small
average dissimilarity to objects of the same cluaster and a high
average dissimilarity to the neighbour cluster, and hence to all

other clusters. A value near -1 expresses the opposite.

Having computed s(i) for each object of the data set, it
is now possible to draw the ailhouette of each cluster. For each
object of that cluster, one draws a horizohtal 1line with length
proportional to s8(i), pointing to the right whenever s(i) is
positive and to the 1left otherwise (although this last part of
the representation can be deleted as it is of less interest). All
these lines are drawn below each other in decreasing order of
magnitude. Each cluster has its own silhouette, the height of
which is proportional to its number of objecta whereas the width

expresses its relative tightness.

39




40

silhouettes.

Fig. 2

objects consisting of two

natural clusters

technique.

The largeat values

and 3 1illustrate this

have effectively

of

"natural”

been found by some cluastering

a8(i) correspond to objecta at

clusters.

technique

In

Because the clusters are fairly symmetric,

CLU NElQ

N OO DD D DO
PP bR T

2-1-1]

.84

N NN NN DD DD

10
283N Ialao 2

CLUSTER
CLUSTER

1
2 HAB AVERAGE BILHOUETTE

os 0

000000000
0211222233
40280408228

oo ©

HAB AVERAGE SILHOUETTE

FOR THE ENTIRE DATASET,

THE AVERAGE

Fig.2: Silhouettes of basic model:

000000000000001

iaz's'ga577a'a
40280402604

WIDTH .79
WIDTH .79

SILHOUETTE WIDTH 18

290
260

.79

2 clusters.

on a set of

80 are both



the extremities of the set; the smallest values characterize
objects near the interface between the clusters. The largest
value is 0.90 for both clusters, and the smallest is 0.52 for the
first cluster and 0.35 for the second. One can also calculate an
average silhouette width for each cluster and for the entire data

set; in our example all these values happen to be 0.79.

If a partition into three groups is performed (Fig.3),
the first cluster remains unchanged whereas the second is split
up in two parts. The silhouette of the firat cluster is very
similar to the one in Figure 2: not only the general shape is
similar, but also the ordering of the objects. The s8(i) values
become alightly smaller because b(i), the average dissimilarity
to the objects of the nearést of the other two clusters, is
usually less than the average disasimilarity to the big cluster in
Figure 2. This yielda an average s8silhouette width of 0.75, as

compared with 0.79 in Figure 2.

As for the two "half" clusters, the changes are of course
more striking. Although for each object i the wvalue a(i) is
decreased, at the same time b(i) becomes smaller still, so
a(i)=1-a(i)/b(i) decreases. This results in an average silhouette
width of 0.50 for cluster 2 and 0.63 for cluster 3, as compared
with 0.79 in Figure 2. The overall average silhouette width of
all three clusters is 0.65, or about 20% less than in the case of
two clusters. Therefore, the overall average silhouette width

givea some indication about the "best" number of clusters.
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Fig.3: Silhouettes of basic model: 3 clusters.

Unfolding silhouettea in two dimensions

Silhouettes are based on the evaluation of two functions




for each object:

the "tightness" a(i)

the "separation” b(i).
Instead of calculating the ratio of these two functions, it is
also possible to simply plot these functions in a two-dimensional

graph, using, say, a(l) for the x-axis and b(i) for the y-axis.

As both a(i) and b(i) are always positive, only the first

. quadrant of the (x,y)-space is used. Looking for the relation

between the 8(1i) values and the (a,b)-plot, it can be observed

qh:1

1

s(i)

-Hsiy (o

s(i)= -1

Fig.4: Relation between separation/tightneas and silhouettes.
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that all objects with the same s(i) values lie on a straight
line, starting from the origin and satisfying one of the

following equations:

b(i) = (1+8(i)) a(i) if ~1¢8(i)¢0 (3)
1
b(i) = a(i) if Os¢s(i)«1 (4)
1-8(1i)

From these equations it can be seen that objects with
8(i)=-1 will be represented by points on the a-axis. Objects with
8(i)=0 correspond to the equation b(i)=a(i), and will be
represented by points on the 45° line. Objects with negative s(i)
will lie below that line, whereas objects with positive s(i) 1lie
above it. Objects with 8(i)=1 end up on the b-axis. These
relationé are represented in Fig. 4. It should be observed that a
plot can be drawn for all the objecta of a data set as well as

for the objects of each cluster sBeparately.

Fig. 5 and 6 s8how these plots for the example with two
"natural” clusters discussed in the previous section. Fig. 5 is
very typical of a good clustering allocation. The plots show a
rather narrow concentration of the tightness a(i) and a much
larger dispersion of the separation, with most objects having a
b(i)/a(i) ratio larger than two. The only object with b(i)/a(i)
smaller than two is located near both clusters. It almost forms a
bridge between them, as can be deduced from the fact that a(i)

has one of the largest and b(i) one of the smallest values.

In the three clusters case (Fig.6) things are clearly

different. The first cluster still resembles that of the former




case, but the two remaining clusters have much smaller values of
b(i), which in turn are much nearer to the a(i) values. This

could be a first indication that these clusters should not have

been separated.

TWO-DIMENSIONAL TICHTNESS/SEPARATION PLOT
1 .

GENERAL PLOT

PLOT OF CLumTRS: B
Ao /A .1

Fig.5: Basic model: two-dimensional hard representation of 2
clusters.
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Fig.6: Baamic model: two-dimensional hard representation of 3
clusters.
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4> Usinx fuzxv membership functions

The goal of fuzzy clustering 1is to express, for each
object, its relative membership to each cluster. Most fuzzy
clustering algorithms [see e.g. ref.7] make use of average dis-
similarities. By definition, the sum of membership values of each
object to all clusters always equals one. It is also customary to
consider the nearest hard claasification, allocating each object
to the cluster for which its fuzzy membership is largest. There-
fore it is possible to define new "tightness" and "separation®
factors based on membership functiona, keeping in mind that the

latter reflect similarity rather than dissimilarity:

a(i) = 1 - u°(i) with u®(i) = u(to,i) = max u(t,i) (5)
t
b(i) = 1 - u®*(i) with u®®(1i) = max u(t,i) (6)
tidts

in which the membership functions must satisfy the relations:
u(t,i) 2 0 for all 4 and t
L u(t,i) = 1 for all i. (7)
t

From (S5) and (6) we see that

u®(i) 2 u°*(i) (8)
and hence we always have

a(i) ¢ b(i) (9)
resulting in O < 8(i) ¢ 1, excluding the possibility of negative
s8(i). Apart from this last aspect, the s(i) behave similarly to
what was seen in section 2. This is confirmed by Fig.7 which
shows the fuzzy silhouette plot of the two-cluster example of

that section: the general shape is very similar to that of Fig.2.
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The only difference is

larger than the hard s(i) (which,

that the

the actual fuzzy algorithm used).

fuzzy 8(i) are generally a bit

of course, depends very much on
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Fig.?7: Fuzzy silhouettes of basic model: 2 clusters.




3° A two-dimensional plot with fuzzv membership functions
As in the case of the original silhouette, it is also

possible to unfold the fuzzy membership function in a two-

dimensional plot. Compared to s8ection 3, there are two main

differences:

1° due to relation (9) all pointe will 1lie above the 45°

line;

2° relation (7) inducee a series of constraints which were

absent in the hard approach. As we will see, these depend on

the number of clusters that is considered;

a) for 2 clusters, relation (7) becomes

u®(i)+u®®(i) = 1

and through (5) and (6) we find

a(i)+b(i) = 1. (10)

This relation means that all objects in a two-cluster

system will be represented on the straight line going

from (1,0) to (0,1) (see Fig.8).

b) for 3 clustera, relation (7) becomes

u®(i) + u®®(i) + u(t,i) =1

or u®(i) + u°°(i) s 1
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which through (5) and (6) gives

a(i) + b(i) 2 1 (11)

and as u®®(i) 2 u(t,i) through (6) we alaso have

u® (i) + 2u®*°(i) 2 1. (12)

Using (5) and (6) this yields

1-a(i) + 2(1-b(i)) 21

b(i) ¢ 1 - % a(i). (13)

oo clusters

Fig.8: Two-dimensional plot with feasibility regions as function
of number of fuzzy clusters.




Relationa (11) and (12) force all objects in a three-
cluster configuration to remain between two straight
lines atarting from the y-axis at the value b(i)=1 and

with slopes -1 and -% (msee Fig.8).

c) for k clustera, relation (11) is atill valid whereas

relation (12) becomes

u°(i) + (k-1) u®°°(i) 2 1 (14)

which upon consideration of (5) and (6) becomes

1 - a(i) + (k-1)(1 - b(i)) 2 1

80

b(i) ¢ 1 - 1/(k-1) a(i). (15)

Hence the 1lower and right hand feasibility limits (11)
and (9) remain unchanged whatever the number of clusters; the
upper limit starts from the point on the b(i) axis with value 1
and has a negative slope proportional to 1/(k-1) (see Fig.8).
This upper 1limit coincides with the 1lower 1limit in the case of
only two clusters (k=2) and tends to an horizontal line for an
infinite number of clusters (k=00). It can further be observed
that whenever points are represented on the lower 1limit, i.e.
when the sum of a(i) and b(i) is equal to one, these objects have
zero membership to all clusters but the principal one and the
first neighbour; pointa represented on the upper limit line
corresponding to the number of clustera, indicate that equation

(14) haa to be considered with an equality sign and hence that
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Fig.9: Ruspini
clusters.

8 data: two-dimensional fuzzy representation of 3
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the corresponding object, apart from its membership to its
principal cluster, has an equal membership to all the other

clusters.

An example is provided by the Ruspini data [8], which
contain four rather well-separated clusters. A partitioning into
three fuzzy clusters shows two well-characterized clusters and a
third one that is not so tight (Fig. 9). The partition in four
cluaters gives an improved image for all clusters, confirming the

existence of four "natural clusters” (Fig.10).

6° _Conclusions

Graphical representations are very useful to get a global
impression of a clustering. It was shown how silhouettes could be
extended to a two-dimensional plot, providing some new
information such as a distinction between bridging objects and

outliers.

A similar plot can be constructed from fuzzy membership
functiona. There all points remain within a triangle, of which
only the upper boundary is a function of the number of clusters.
Moreover, the position of each object within this triangle tells

a lot about the cluastering characteristics.

A8 seen from the examples, the above graphs can even be
drawn with a plain line printer. This allows the implementation
of these graphical representations in almost any computer

environment.
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Fig.10: Ruspini's data: two-dimensional fuzzy representation of 4
clusters.
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