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ABSTRACT

This paper examines a competitive spatial model on a linear market. The two competing
facilities are assumed to have different weights. Based on a gravitational-type attraction

function, the market areas of the twofacilities are determined. Assuming individual optimiza-
tion and allowing sequential relocations,it is shown that no locational Nash equilibrium exists.

Thenfixed and variable relocation costs are introduced. Necessary and sufficient conditions
for both types of relocation costs are derived which guarantee that a stable equilibrium is
reached.



INTRODUCTION

Ever since Hotelling (1929) introduced his spatial model, interest in

competitive location models has flourished. The original Hotelling model

consists of two equally attractive competitors and a linear market, i.e. a

line segment on which both facilities are located. The customers are assumed

to be uniformly distributed along the market and the demand is completely

inelastic with respect to the price. The profit functions for both

competitors are set up and the prices at optimum are derived. These functions

indicate that both facilities best locate as close as possible to each other.

Hotelling applied this result to various situations not all involving the

location of physical facilities such as grocery stores but also locations of

political candidates on a left-right scale, the location of products on a

quality scale, etc. The result which states that under competition,

facilities (whatever they may represent) locate close to each other at

optimum, a situation termed "principle of minimal differentiation" by

Boulding (1966).

The validity of this principle has frequently been challenged.

Chamberlin (1933) observed that on a circular rather than linear market,

clustering of the competitors no longer occurs. Lerner and Singer (1937)

describe equilibrium location patterns for up to eight facilities given a

fixed price. Their analysis was extended by Eaton and Lipsey (1975) who not

only showed that the three-facility case is the only one which does not

converge to an equilibrium but they also derive necessary and sufficient

conditions for the existence of equilibrium of n facilities on a linear

market. Carruthers (1981) generalized Eaton and Lipsey’s results allowing

different prices to be charged by the facilities. In his relocation and



repricing procedure, price undercutting is prohibited. Generalized necessary

and sufficient conditions for equilibrium are presented. Prohibiting price

undercutting is necessary as d’Aspremont, Gabszewicz and Thisse (1979) have

shown that otherwise the only stable solution is one where both facilities

charge zero prices. Even more interesting, the authors show that given a

quadratic (rather than linear) cost function, maximal and not minimal

differentiation follows.

A number of other studies also suggests that the "principle of

minimal differentiation" is by no means as general as originally assumed.

Anderson (1987) uses Stackelberg’s leader-follower concept and arrives at an

equilibrium with one facility at the center and the other close to one of the

ends of the market. Osborne and Pitchik (1987) find a pure equilibrium of the

first-stage location game which locates the facilities close to the quartiles

of the market, i.e. the social optima. Artle and Carruthers’s (1988) land

owner model finds optimal asymmetric locations. De Palma, Ginsburgh and

Thisse (1987) as well as De Palma et al. (1985) introduce heterogeneity in

customers’ tastes. Their respective probabilistic models show that for any

degree of heterogeneity, two facilities will not cluster at the center of the

market.

The purpose of this paper is to show that another Hotelling-type

model whose assumptions are very similar to the original one, does not only

fail to show agglomeration at the center, but it does not result in an

equilibrium at all. This amplifies the suspicion of the sensitivity of

Hotelling’s model to minor changes in the model. Subsequently, fixed and

variable relocation costs are introduced and bounds for these costs are

derived, so that a stable solution will eventually evolve.

 



 

THE MODEL AND ITS PROPERTIES

Suppose that the market is a line segment from 0 to 1 along which

the demand is uniform. Let A and B be two facilities with weights Wa and Wp»

respectively. The interpretation of weights depends on the particular model.

If the facilities are shopping centers, they may express floor space, product

variety, and relative price advantage. In a product (re-) design model, the

weights could symbolize the non-quantifyable appeal of a product. Without

loss of generality assume that Wa > We: Distances between any two points i

and j are denoted by days for example dap is the distance between the two

facilities, and dei is the distance of facility B from the right end of the

market. Distances may be measured in either direction, i.e. qi, = aya: A

customer at point i is attracted to the two facilities according to the

attraction functions na = w,/dy
roe r : :

Ai and Pra Wp/da; and he will patronize the

facility he is more attracted to. If some customer-facility distance is

zero, say dei = 0, the customer will patronize facility B. If both facilities

are located at the same point, all customers on the market patronize the

larger facility. The attraction function used here is of the gravitational

type.

A number of geographical studies use similar attraction functions but

assume that customers patronize facilities in proportion to the magnitude of

their attractions. As a result, a facility may used by customers anywhere on

the market. In contrast, our use of the attraction function subdivides the

given market into individual segments or market areas associated with the

facilities. A customer located in the market area of, say, facility A will

then exclusively patronize that facility. Market area models of this type

have been used by Reilly (1929), Huff (1964), and Boots (1980). Note that for

 



large values of r, the level of attraction drops off dramatically if one

moves away from a facility. This indicates that distance is an important

criterion for customers, i.e. the transportation cost are high.

Assume now that initially facility B is located to the left of the

center of the market, i.e. kk, and let A be located to the right of B.dop <

The market areas of the two facilities can then be determined as follows. The

smaller of the two facilities, B, has a market area which extends to the left

so some point x and to the right to some point y. At x and y, customers are

equally attracted to A and B. This situation is displayed in Figure 1.

 

 

Figure 1
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relation is only valid as long as day <d Hence
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Then the market (or Voronoi) area of facility B is
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Note that is relation (3), facility B’s only decision variable is d its
AB’

location is relation to it competitor. In the first case, the coefficient of

dap is positive so that B will choose the largest possible value of dane i.e.

d... In the second case, the coefficient of dap is negative

hence B will keep 4, as small as possible, leading again to
B

d =d,. This leads to

Rule 1: B will locate in the half segment of the market not occupied by A in

such a way that one boundary of V(B) coincides with an end of the market.



The movements of facility A are even easier to describe. Since the

sum of the market areas of A and B is constant (=1), A tries to maximize V(A)

= 1 - VB) =1- (da + any) or, equivalently, minimize dae + apy: In the

first case of relation (3), this is done by setting dap = 0. The second case

can be rewritten as

r
wp
+.

B r r Sap

Wy 7 4B

and this is again minimized by setting dap = 0. This implies

V(B) = 4,

Rule 2: Facility A will always locate as close as possible to B

leaving B with virtually no market area.

Suppose now that the facilities relocate sequentially in some fixed

order. If all facilities have relocated once, one “optimization round" is

over. An example of the sequential relocation process is given in Figure 2

where wat 2, “Bo 1, the intial locations of A and B are 1/8 and 3/4,

respectively, and A is the first facility to relocate.

The respective market shares for facilities A and B at the end of the

iterations are as follows. Iteration 0: (0.6667, 0.3333), Iteration 1:

0.4167, 0.5833), Iteration 2: (0.625, 0.375), Iteration 3: (0.5208, 0.4792),

Iteration 4: (0.5729, 0.4271).
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In order to find general expressions for the movements of A and

B, define ayy as the distance between points i and j at the end of the

k-th iteration. Then rule 1 implies

 

x
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On the other hand, rule two implies that

(k) (k-1)
fon SoB (6)

(k)To further facilitate the discussion, define d as the distance
Be

between facility B and the closer end of the market at the end of iteration

k, i.e.

(k) (k) (k)
dpe = min dop ; dey (7)

Then relations (4) and (5) can be written as

rJw,

SheEe (ae) @)
ay

and relation (6) is written as

as®) (k-1)
Ae dee (9)

Inserting (9) in (8) yields the difference equation

fa
a —B yiglkD) (10)
Be r Bei,



Letting k —~> o, we obtain

r) fay
436 “r r (11)fa, + fa,

A B

In other words, in the long run we will expect B to locate at a

distance from the end of the market which is a function of its proportion of

the total weight. Clearly, A will locate "on top of B" in its next move and B

will then relocate at the same distance from the other end of the market.

Thus a locational equilibrium will not be achieved, even though the

facilities return to the same two locations step after step, suggesting the

existing of what may be called a "distance equilibrium". Also note that for

Wa o~ Was relation (11) yields af®) = 4s which happens to be the optimal

location in the unweighted Hotelling model with a common price. On the other

hand, for Wy >> Wp. the distance equilibrium locations are very close to the

ends of the market. Most importantly however, even if the weights are just

slightly different, no equilibrium exists. This further challenges the

stability of the principle of minimal differentiation.

Another observation can be made with regard to relation (11). For

a?)
ro—>

’ “Be
approaches %, meaning that facility B achieves its optimal

location, a local monopoly, very close to facility A. This is due to the very

high transportation costs. On the other hand, r —> O means cheap

transportation and the smaller facility must move far away from the bigger

one in order to remain attractive to at least some customers. It should be

mentioned that planning with foresight a la Prescott and Visscher (1977),

where each facility locates exactly once, does always lead to the first entry

paradox; see Ghosh and Buchanan (1988). In other words, the facility that

locates first is always at a disadvantage. For more details of this paradox



on a tree, see Eiselt and Laporte (1991). It is also worth mentioning that

two unequally weighted facilities on a circular market exhibit precisely the

same behavior as those on a linear market. A recent result for equally

weighted facilities in R? was reported by Okabe and Suzuki (1987).

THE MODEL WITH MOVING COSTS

Having established the nonexistence of a Cournot - Nash equilibrium

in our model we now introduce moving or relocation costs. Clearly, if the

costs of relocating a facility outweigh the gain achieved by the relocation,

the facility will simply not move. If this is true for all given facilities,

an equilibrium has been reached. Assume now that the purchases of all

customers on the market amount to one in each iteration. Then the market area

of a facility equals its revenue and, considering relocation costs as the

only cost type, moving costs which are at some point during the relocation

process larger than the gain of the market area of any of the facilities stop

any further movement. In this section we derive relocation costs which are

necessary and sufficient to reach an equilibrium. Two types of costs are

discussed, fixed and variable relocation costs. Fixed relocation costs are

incurred whenever a facility moves, they are independent of the locations

the facility is moved from and to. On the other hand, variable relocation

costs are assumed to increase proportional to the distance a facility moves.

First consider the case of fixed relocation costs. Figure 3 depicts

the locations and market areas of two facilities A and B in iterations (k-1)

and k, k>1l.
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Figure 3 shows that facility A's gain getting into iteration k is

r-v6E-)) (ay = viK-]) py, Facility B's subsequent gain in iteration k is then

v6) (py, A's gain getting into iteration (k+l) will then again be v) (py and

so forth. Thus the sequence of the gains of facilities is

a: Vocay, Bz vO By, a: vO cay, B: vo? (By, a: vO2? (By,

Note that except the very first move by facility A, the gains of the two

facilities in two sequential moves are identical. Thus, if fixed moving costs

(k)
C, were introduced, so that Ce 2V (B) for some k 2 1, neither facility has
f

any reason to move and thus an equilibrium is reached. It is important to

observe that two successive moves, one by A and one by B have to be blocked

in order to stop all further relocations. This can be summarized in the

following

Lemma 1: Fixed relocation costs Ce = vO) (py, k > 1 are sufficient to reach

an equilibrium.



For simplicity of the exposition we will assume that at least one of the

facilities must relocate once. The reason for this assumption is technical as

it eliminates the need to consider various cases of the arbitrary initial

locations. Note that this implies that day = don: so that only the first

a : ; (kK) gh) gf)relation in (3) applies. Using the fact that dap 1 dae dee as well as

relation (9) we obtain

2° fe (k-1)
v6) (py) = ——-B— 1 - a, ) (12)

Be
ON + "he,

In the following we will derive some results concerning the

(k)distance dg,’ which will enable us, by virtue of lemma and relation (12), to

derive bounds for the relocation costs. For that purpose suppose that

(k-1) (~)dae < dy" (13)

i.e. in iteration (k-1), facility B is located closer to the end of the

market than at the distance equilibrium. Then

xr xr
afk). Lvs Sas

- d. due to (10)
Be Thal r ha Be
  

  

Vv due to (11) and (13)

or simply a = &”) . In other words, if facility B is farther away from to

the end of the market in iteration (k-1) compared with the distance

equilibrium, then it will be farther away from to an end of the market in

iteration k. This implies
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But more can be said about the process with which the facilities approach the

distance equilibrium. The ratio of the absolute deviation in the k-th

iteration of the location from the distance equilibrium in relation to the

absolute deviation of the location in the (k-l)st iteration is
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As an example, for W/W, = * and r = 1, the deviation of the locations from

the long-term distance equilibrium are cut in half in each iteration. Notice

that the larger the difference between the two weights, the faster the

convergence of the process. For Wp= Wa, a case very similar to the original

unweighted Hotelling case, the convergence will be very slow.

; . . . k
An example of the convergence process is given in Figure 4, where B

denotes the location of facility B at the end of iteration k with BY being

the distance equilibrium.
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Figure 4



The above discussion implies that

(0) (2) (4) (») (5) (3) (1)
den s dpe = dpe S...8 dee S...8 dpe s dpe s dae (15)

which, by virtue of relation (12), leads immediately to

vy)cay = vO (By = VO Ww) & 00. = VORB) = oe VO By = vOBy (16)

Relation (16), coupled with lemma 1, leads to

Theorem 1; Fixed relocation costs of

Ce = vy?) (py

are necessary and sufficient to achieve a locational Nash equilibrium for two

facilities with different weights given that at least one relocation is

required.

Consider now variable relocation costs, in particular relocation

costs, costs which are proportional to the distance moved in one step. Again,

(k)
the gain of facility A when starting iteration (k+l),is V (B), which is

also B's gain in iteration k. The distance moved by B in iteration k is

© Gk L) gk)
a. Be Be

) as can be visualized in Figure 3. Note that facility A

moves the very same distance when getting into iteration (k+l). Thus with

relocation costs proportional to the distance moved, we obtain for both

facilities gains of vO(py and costs of co(age)? - afk), Then we can

state

Lemma_3: For given variable moving costs Cy an equilibrium will be reached

(k) (k-1)if there exists some k>l, so that V Be (k)(B) - ¢, (1-d - dp) £0.

 



Using relations (10) and (12), the sufficient condition in lemma 3

can be rewritten as

r
2 [4WR

> ———___42—
v

xf 2 rf 2
“A “B

Note that the terms ack) have cancelled out and thus the bound on the

C. (17)

variable relocation costs is independent of the location of B. Actually, all

(gain)/(distance) ratios equal the right-hand side of relation (17). Thus we

can state

Theorem 2: Variable moving costs of

xr xr
2 fa, fp

2 2fF. xf2
are necessary and sufficient to reach a locational (Nash) equilibrium for two

facilities with different weights given that at least one relocation is

required.

Any variable relocation costs equalling or exceeding those specified

in theorem 2 will stifle all movements immediately after facilities A and B

have moved exactly once each. Note that for increasing w/w ratios the bound

on C. decreases. This implies that for w, = i.e. a situation close to theA” “Bp
original Hotelling case, the variable moving costs have to be very high if an

equilibrium is ever to be reached. This indicates again the potential

instability of the Hotelling model for small changes of the weights.

 



CONCLUSION

In this paper a competitive spatial model is described. It is an

extension of the famous Hotelling problem with two facilities on a linear

market. In the model under consideration customers are attracted to the

facilities not only on the basis of distance but also on the weight of the

facilities. It is shown that for two competing facilities on a linear market

no Nash equilibrium exists. It is then proved that the successive locations

approach two fixed points which have the same distance from the end points of

the market. Then fixed and proportional moving costs are introduced and

necessary and sufficient conditions for these costs are derived, so that the

locational pattern reaches an equilibrium.
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