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TRANSPORTATION TECHNIQUE
FOR QUADRATIC FRACTIONAL PROGRAMMING

SP. AGGARWAL *
University of Calgary, Canada

ABSTRACT. — In this paper a transportation technique for a quadratic fractional
programming subject to linear constraints has been provided, In another article it has
been shown that this function is pseudo monotonic which gives local optimum as global
optimum,

Introduction

This paper deals with a special type of problem which occurs in big
business concerns to fill a number of vacancy categories which demand
different capabilities, experiences and trainings. The applicants having
different capabilities, experiences and trainings will have the value depend-
ing upon the jobs in which they are to be employed. It is always the
sincere intention of the concern to assign the applicant categories to vacancy
categories in such a way that the value of the objective function with which
the business concern is dealing with is a maximum. The objective function
considered here is pseudo monotonic |2].

This paper is the outcome of the main results of the paper [2] in which
the author has proved that maximum will occur at the vertex of the feasible
solution set and local maximum is global maximum. The present paper has
been divided into three sections. In section 1, mathematical model is given.
Preliminaries are given in section 2. Section 3 deals with the optimal
conditions.

Section 1
Mathematical Model,

Maximize .

(= 2 Cij Xij + a)f

flx) = (1)
(Z 2 4y + B8P

i=1  j=1

* Research for this article has been financially supported by National Research
Council of Canada under Grant No. A7666.
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subject to
m
ok = by i = LB v 1 (1.2)
i=1
n
Xi; = § = Ry R oy ¥ (1.3)
i=1
X3 = 0 =i . S 7= 125 e (1.4)
where x;; = set of structural variables; these variables represent com-

petitive candidates or activities.

¢i5, di; = set of profit coefficients in the problem and are the
coefficients of the structural variables in the objective function.

Section 2
Preliminaries.

(i) The consistency condition for the existence of the solution to the
problem is

Bk

n
a4 = 3 b
i=1

¥

m u L] o
In case 3 4, < T &, then a ficticious personnel categorry 3 b; — 3 4
i=1

i=1 i=1 i=1

men is added to the problem. When ¥ 4, < ¥ a;, then a ficticious

j=1 i=1

job category containing ¥ 4, — 3 b; jobs is used [3].
i=1 i=1
(ii) These are in all m + # equations in (1.2) and (1.3), out of which
always only m + n—1 are non-redundant i.e. any basis will involve only
m + n—1 variables [4].

(i) The set of feasible solutions is regular and non-empty.

(iv) Initial basic feasible solution can be found by using one of the
well-known methods : North-West Corner Method, Volga's Method and
Inspection Method [6].

(v) Simplex Multipliers. As in [7], we determine the simplex multipliers
pLpE(E=1,2 ., mand g, g% (j =1, 2, .., m) from equations
¢y Pt gt =0 (2.1

) i, j take suffixes of basic variables
diy +p2+ g% =0 (2.2)
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Further let
et = ey + pit 4 gyt (2.3)

5o o i i=1,2,.,m;f = 1,2,.,n
dy' =dy + p* + g (2.4)

It must be noticed that we are dealing with a system of »m + n—1
equations out of m + » equations given in (1.2) and (1.3) as one equation
is always redundant. ‘The choice of the redundant equation is immaterial,
we may set arbitrarily one of the pi or one of the ¢, equal to zero and
solve for the remaining m + #— 1 simplex multipliers. These simplex
multipliers would be unique as the set of equations (1.2) and (1.3) are
independent. We shall make use of these values of the simplex multipliers
in (2.3) and (2.4) to determine ¢;;* and ;' for the non-basic variables.

Section 3

We shall determine here the next best basic feasible solution which
improves the value of the objective function. Objective function would be
written in terms of non-basic variables only. The function f(X) is

(_]2 éfuxn + «)
PR =
(= 2 dgxy + B)*

=1 =]

m n m n 1 m

[‘72 2 Xy 2 pH(E xy—a) + 3 g (3 Xy — b)) + of?

i=1 i=1 iEl j=1 i=1

_—

[ 3 diyxiy + 3 p(S vy —a) + 3 7" (
i=1 j=1 = j=1 i=1 i

n m (3-1)
because of 3 x;; = 4, and I x;, = b; whatever may be the values of

j=1 i=1

¥y —b;) + B]*

RE

L)
fut

b Pt gt g

(3.1) can also be put in the form

[

m

2y +pt+ g — 3 pita —3 gi* by + of?
i=1 i=1 =1

b =

1

1

fX) =

m

[2 Z@s +0°+ g8 =y — 3 pi* ai — 3 g by + B2
fet i-1 j=1

=1 3

b=

3.2
pits pi* g5, g% are chosen such that &2)
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¢; + ot + gt = 0y i take suffixes of the basic set

dy +p2+g*=0)ofmtn—1 basic variables.

[ 3 elxy — 2 pitaws — 2 45 by + af?
i=1 j=1

i,1€8

(33)

fX) = = -

| 3 dytxy —Zpia — 24t b+ BP
€S i=1 =1

where S is a set of non-basic variables. Making use of the given basic

feasible solution, the value of the objective function at that basic feasible

solution becomes

— E bt 4 — E g;i* by + af* B [T,]:
Lo (3.4)

m s n , . [T2]2
[ p2a— =2 g b + Bl
i=1 i=1
where N i
T1 = — E P;l dy — E qj] bj + o
T,=—3pta—Z 4%k + B
i=1 j=1

All the non-basic variables are zero at the initial basic feasible solution.
Equation (3.3) can be rewritten as
[ = o %+ T
1,i€s

[ 2 dijl Xij =t T2]2

1,j€8

X =

Now we choose x,, variable to enter the basic set at a value W (> 0) and
%ym |7] variable departs from basic set i.e. becomes non-basic at zero level.

The value of objective function becomes [1] f(X) such that

- T, L
Frgy = L2t ¥

T+ WP
In case f(X) > ?(X) (strictly) {when all basic feasible solutions are non
degenerate} ie.
[Tl + W qul]? {Tl]z
[T, + W, [TF

(3.6)
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we can say that the value of the objective function will improve.
{(3.6) becomes

[V e PP b 2 W 3, [ T2 — [W2 (d,)* + 2T, W & T2 > 0
(denominator of the objective function is posttive always) or
[Te e’ — T o] [WA{T, 6 + Ty dy) + 2T, T)] > 0
pg and d’, refer to the original basic feasible solution, Let
o5 = [Ta 60 — T, 1] [W {T: 6 + Tidp®) + 27T, Ty]
and it can be calculated for non-basic variables if p,', p.?, gt ¢ are

known for the same.

Here ¢, = max ¢;; (¢;; > 0) i.e. we choose the most positive ¢,;
to determine the variable x,, to enter the basis. The variable x,, which
is to leave the basic set and the value of the basic variables in the new
basis can be determined in the same way as in the case of transportation
problem in linear programming,.

In case all ¢;; < 0 we get the optimal solution of the given problem.
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STRESS VS STRENGTH PROBLEM

J. PRASAD

Defence Science Laboratory
Delpi-6, India

ABSTRACT. — TIn this paper, some reliability models are presented for a stress
vs. strength problem. A particular case, in which both stress and strength are normally
distributed, has been discussed. The model has also been illustrated by solving a nume:-
ical example.

Introduction.

Scooman [4] developed some reliability models introducing a new
variable 2z, such that z = y—x, where y and x stand for strength and
stress, respectively. However, it is not always possible to find the combined
effect of y and x i.e. z, specially when they (y and x) have different distribu-
tions.

Lipow [2] also developed a reliability model assuming the distribution
of stress and strength to be normal and trucated normal, respectively. His
approach seems to overestimate the reliability. With these in view, certain
reliability models have been developed to enable to evaluate the reliability
even in the case when stress and strength have different distributions.

Statement of the problem.

Consider two independent continuous random variables y (0 < y < o)
and x (0 < x € ) representing strength and stress, respectively. It is
assumed that the distributions of y and x are known and their probability
density functions (p.d.fs.) are denoted by f(y) and { (x), respectively. Since
the failures of y occur only due to stress, therefore, it becomes necessary to
measure both the variables in a common unit. Assume further that the
two curves have been plotted on a common graph and P is the proportion
of area common to both curves (fig. 1).

It will be worthwhile to note from the above graph that if there is
any failure in y due to x, it must occur in the overlapped area between the
two curves i.e, P. However, it does not mean that all the components
whose strength falls in this region should be regarded as failures.
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H(x £
STRESS- . STRENGTH
DENSITY DENSITY

DENSITY &(X)AND FOy)

7
&\ I,
PP
STRENGTH —
STRESS F—

Fié. 1 STRESS . STRENGTH MODE |

If p" is the probability of failures of y, the reiability "R’ or the
probability of success is given by

E= L=}, p <P (1)

Thus the value of R depends upon the value of P and P and hence the
present problem isto evaluate these parameters.

Development of the models.

Let N be the total number of identical components, out of which
n lie in the overlapped area, denoted by », ¢ = 1, 2, .., ). Similarly,
let x; (4 = 1, 2, .., ») be the values of stress in the area under considera-
tion. Without loss of generality, we can assume y, < Yr < . < 3y, and
X < xy, < ... < x,, such that

xi =g forall iy (i=1,2.,0n (2)

Now if we choose at random a value ¥; out of n values, viz, y, Voo vos Vas
three possible situations occur, namely
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(@) 95 < x fori, i=j+1,7+2 .,mn

) n>mbotd 4= L% ss f—5 (3)

(i) y; = for j =i

Obviously, y; fails in case (i) and does not fail in case (ii), but in case (iii)
it may or may not fail. In order to take a decision in case (iii), consider
infinite number of such tie cases. Then one can definitely say that in
approximately half of such cases, y will fail. Therefore, the probability
that y; fails when encountered by an equal amount of stress is approximately
0.5. Combining (i) and (iii) together we have (# — j + .5) cases favourable
to y; for failure. The total number of cases, in which y; can encounter
stress x, is #, i.e. all the possible values of x lying in the overlapped area.
Following Weatherburn [5] p. (y;), the probablity that y; fails when en-
countered by stress x is
TN
pon = L2 =12 (@
and p, (y;) the probability that it does not fail ie. the probability of sur-
vival is given by

Elip) & &

n

= 1 — Pl (f = 1, 2,5 1) )

Now, allowing y;, to vary over the overlapped area and attaching a
value 1, to y; if it fails, and 0 if it does not fail, we get

E() = ES (5) ©)

i=1

where #' is the number of failures.

Using relations (4) and (5) in relation (6) we obtain

, “ n—4f+.5 ji—
E(n)~21><—~-ﬂ + 0 X »
j=1
= n/2
= 1/2 X overlapped area (7)

Here p’ and R are given by

p =N
= n/2N (8)
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and
R=1—#s/2N 9

Obviously in the probability sense the ratio 2/N represents the area
given by P under the curves. Therefore

p = B2 (10)
Elﬂd
R=1—-Prn (11)
Evidently, when ¢ (x) and f(3) coincide, # = N, thus
P =R=1/ (12)

In order to evaluate p’ and R, we now proceed to evaluate P the over-
lapped area in the following manner :

Let the curves f(y) and { (x) intersect at a point y, (fig. 1), so that
the overlapped area P is given by

P = Jl £(x) dx -+ f:f(y) dy (13)

Y
Sometimes in practice the components are screened to reject weaker com-
ponents.  This increases the mean strength of the remaining components.
Now, suppose that the distribution of the remaining components is given
by 7 (y), such that

fip=—28 . gk (14)

rm 1 3) dy

where y, is the point of truncation,

Using the relation (14) in relation (13) we have

S roa+ [ twax iy >, (15)
B = f £ A if 30 < 3, (16)
f. | é‘(x) dx if Yo — Y (17)

The models developed above viz. models given in relations (13) through
(17) are most general whatever be the distribution of stress and strength.
However, to increase the practical utility of these models a patticular case
is discussed below.



12 Revue de Statistigue — Tijdschrift voor Statistiek 12 (2) 1972

Particular case.

Let both stress and strength be normally distributed, such that

(o) = e~ — (LT 0<y< o (19)
V2w 2 o1
and
E(x) = _1 exp{_i(y—i)z} 0< x < o (19)
\/211'0‘2 2 [o 21

where gy, and oy (/= 1, 2) are mean and standard deviation, respectively.
Since f(y) and £ (x) intersect at y,, setting x = y = jy, in relations (18)
and (19) and equating them we have

K 9® + K 3o + K, =0 (20)
where = .
gy — O3
By gt
oy gy
2 2
M1 027 — Uz 071
K, =2 { —F Ty
G’l'ﬁ [£253
and

K, = {#22 ot — ,'ah2 0'22}/”12 ot + 2 10gc {0'2/0'1}
If o, = 02, K, — 0; so that y, is given by
Yo = —Ky/Ks

e e} e
= —— 21
: 21)
If K, # 0, equation (20) gives two values of y,. Since both stress

and strength vary from 0 to oo, only positive value of y, would be admissible.

Numerical example (*).

Consider the case of an empty solid propellant rocket motor which
undergoes a proof pressure test by being pressurised usually with water to a
given level of pressure, ;. The cases which rupture as a result of this
test are discarded, thereby increasing the average burst strength, of the
remaining group which are then loaded with propellant and ultimately either
test fired for motor lot acceptance or for operational use.

(*) Extracted from [2].
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It is known that the peak rocket motor operating pressure x is normally
distributed with mean u, = 500 psi and ¢, = 100 psi. The proof pres-
sure test on the case is to pressurise it to y, = G600 psi, when it is known
that the mean case strength (pressure at which the case ruptures) is normally

distributed with mean y, = 700 psi, and ¢, = 100 psi.

Evidently, the distribution of strength is truncated at y, = 600 psi.
On the assumption that the proof pressure test does not affect the strength
of cases which are accepted for use, the point of intersection can be obtained

by using the formula (21). Thus

Ha += M2 5
Yo = —— SINCE gy, = oy
2
= 600 psi.
Since y, = y,, P is given by
% 1 1 x — 300
P = j —— —) }dx
¥ '\/2 T AT 2 IOU
= .1587

and
R = 1 — P/‘Z — .92065

The application of the models developed by Shooman [4] becomes dif-
ficult in this situation whereas according to Lipow [2] the value of R is
9683 which overestimates the reliability by 5.2 per cent as evaluated with
the help of the model developed in this paper.
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EXACT INVESTIGATION OF ALL EFFECTS FOR EXTENSIONS
OF ONE-WAY ANOVA MODEL WITH FIXED EFFECTS

John E. WALSH
Southern Methodisi University, Dallas, U.5.A.

ADSTRACT. — Consider the standard one-way analysis of variance model with
fixed effects. The customary assumptions of zero mean, no correlation, and equal variance
are made for the random «error» terms in this balanced model. The usual pormality
assumption is also made when tests or confidence regions are desired. Extensions are
made of this one-way model by addition of further « error » terms of one or two kinds.
The extended wmodels apply to much more general situations than does the standard
model. However, exact procedures are obtained for investigating all the effects that
appear in the standatd model, and for investigating subsets of these effects. The
generality level of an extension depends on what effects are investigatad, Fot several
extensions, the customary results for the standard model remain applicable. Some pro-
cedures differing from the customary ones ate used for the other extensions. An applica-
tion of the standard model to rejection of outlying observations is described and shown
to be usable for some extensions.

Introduction.

The balanced fixed effects model for one-way analysis of variance is
e e e 1)

where j = 1, .., J and £ = 1, .., K, with ], K > 2. Here, y;, 1s an
observed random variable, , is a parameter, q; 13 2 parameter such that
o + . + @ = 0, and ¢, is an unobserved random variable. The ey,
are assumed to be uncorrelated with zero expectation and the same positive
variance o*. They are also assumed to be from a normal distribution when
something other than a point estimate is desired.

Model (1) provides a basis for investigating u, ¢ and the a by
point estimates, significance tests, and confidence regions. Moreover, as
shown next, it furnishes a basis for deciding on rejection of outlying observa-
tions. An ‘attractive feature is that significance levels, confidence coeffi-
cients, unbiasedness of estimates, etc. are determined exactly.

* Research partially supported by Air Force Contract AFOSR F33615-71-C-1178 and
hy Mobil Research and Development Corporation. Also associated with ONR Contract
N00014-68-A-0515 and NASA Grant NGR 44-007-028 and Dept. of Labor Grant
31-46-70-06.
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Now, consider the outline of a basis for rejection of outlying observa-
tions when model (1) holds. Suppose that yye is selected to be investigated
as a possible outlier (without information about the observed values).
That is, the possibility that e does not have the same distribution a3
the other e, is investigated. First, without knowledge of the observation
values, divide the observations with this value of j into sets of size two,
and zero or one set of size three (with y;. not in a set of size three).
Any set of size three is converted to a set of size two, by adding two of
its observations and dividing this sum by /2 (to yield one « observation »).
The resulting « observation » is denoted by yj, Where £ is the smaller of
the values for £ in the two observations summed. For each set (now all
of size two), a statistic of the type

Vi Jikz)
is formed, where % (1) = &% for the set containing ;. The resulting
statistics are uncorrelated with zero mean and the same variance. Using
the normality assumption, the statistic containing jyje can be investigated
by a procedure for examining whether a specified (chosen without informa-
tion about the observation values) observation, supposedly in a sample from
a normal population with zero mean, is an outlier,

This paper gives seven extensions of the standard model (1). An
extension is made by adding more « error» terms, of one or two kinds, to
the standard model for y;,,. An extension occurs such that p, o* and ene
or more of the ; can all be investigated by exact procedures. Some of
the statistics for these investigations differ from those customarily used
for model {1). Other extensions are developed for investigating o, for
investigating » and ¢, and for investigating o* and one or more of the
;. Only the customary results need be used for some of these extensions
but some different procedures occur for the others. These extensions are
based on an approach given in [1].

The extended models are usable for much more general situations than
is the standard model. However, some extended models are much more
generally applicable than others. The level of generality for an extended
model depends on what is investigated, For example, the extended model
for investigating all the types of effects is less.generally applicable than
models for investigating subsets of the types of effects (when there is no
restriction on the eligibile procedures). Also, the generality level of an
extended model depends on whether, or not, all the investigation procedures
are to be those customarily used for model (1). The generality level de-
‘creases when the eligible procedures are limited to the customary ones.
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The extensions of model (1) are stated and discussed in the pext
section, Investigation procedures for use with these various extensions are
outlined . the final section.

Extended models.

Seven extensions of model {1} are given. These depend on which
effects are to be investigated and on whether the statistical procedurss are
restricted to those customarily used for model (1).

First, consider the extended model when p, ¢ and one or more of
the «; are all to be investigated. Limitation to the results customarily used
does not apply to this case. 'The model is

Yix = p F oy + oot €k V4]

where u, «;, and e, have the same properties as for model {1). The
additional random variables ¢, , ..., ¢g must sum to zero but otherwise can
have an arbitrary joint distribution. Also, &'y, .., €y can have any allow-
able dependences with the e;, (the dependence can be different for each
combination of an ¢’ with an e;;). The values of the ¢, are contributions
imposed on the cbservations by the experimental circumstances, with different
255, possibly having different influence on the random valoes that occur for
€y ey €

Second, censider the case where the eligible procedures are not restricted
and investigation of ¢® and one or more of the «; is to occur.  The extended
model for this case is

Fix = g+ ooy e+ oaX (3)

where, as throughout the remaining material, u, «;, and e, have the same
properties as in model (1). The additional randem variables %, .., ex*
do not necessarily sum to zero and can have an atbitrary joint distribution.
Also, they can have any permissible dependences with the e;, . Model (3)
is an extension of model (2).

Third, consider the case where the procedures are restricted to these
custornarily used for model (1) and investigation of ¢® and one or more of
the @; is to occur. The extension for this case is

Yk = p T oay + e + € (4)

where ¢ can have an atbitrary distribution and any permissible dependences
with the ey, (the dependence can be different for each e;). This is the
least general of the extensions considered and, for K > 2, is much less
general than model (2).
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Fourth, consider the case where the eligible procedures are not limited
and both p, and ¢ are investigated. The extended model is

Y = p +oay +oen + oo £ e’y {5)

where ¢, & ... 4 ¢y — 0 and ¢, + ... -+ ¢, = O but otherwise the
additional randem variables can have an arbitrary joint distribution. Also
they can have any allovx_fa.ble dependences with the ;.. Model {5), which
extends models (2} and {4), has a high level of generality.

Fifth, consider the case whete the procedures are restricted to the
customary ones for model (1) and investigation of both p and o? occurs.
The extension is

Jik = p T o oo o€ (6}
where &', + .. + €'; — 0 but otherwise these random variables can have
an arbitrary joint distribution. Also, ¢y, .., ¢’y can have any permis-

sible dependences with the ¢;,,. Model (5} also is a substantial extension
of maodel (6).

Only ¢¢ is investigated for the final two extensions. When the eligible
procedures are not restricted, the extension is

Vi = p o+ ooy + e + &% + gy %% . (7)

where the additional ] + K random variables can have an arbitrary joint
distribution.  Also, they can have allowable dependences with the e;..  This
is the most general model considered and is an extension of model (5).

Finally, suppose that the procedures are limited to those customarily
used and o® is investigated. The extended model is

Y = p toay +oep o™ {8)

where ¢, %% e;** can have an arbitrary joint distribution, and any allow-

able dependences with the e;, . Model (8) has substantially less generality
than model (7} but is the most general extension given that is usable with

the method for rejection of outliers (as is easily seen).

As noted in the discussions of the extensions, the generality of a model
is strongly reduced when the eligible procedures ate limited te'those custom-
arily used for model (1}. Actually, the only statistic encountered that is
not customarily used for model (1) is the statistic for investigating ¢®. This
statistic also occurs in tests and confidence intervals for investigating the
other effects.
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Basis for investigaiions.

‘The forms of the statistics used for an investigation identify the extended
model that is appropeiate for this investigation, That s, the extension should
be as general as possible, subject to all statistics used being such that the
additional random variables for the extension do not occur {cancel out or
sum out).

This section states the statistics considered for possible use along with
the effects they investigate, the extended model(s} for which the additional
terms do not occur, and pertinent properties. For a given investigation,
at least one statistic is introduced for each type of effect (p, o one or
more of the o) that is to be investagted. A statistic for investigating o*
is always included, since this statistic occurs in the tests and confidence
intervals for any type of effect, and also occurs in estimates of varfances
for point estimates of effects.

Some of the more elementary probability properties of the statistics are
stated without verification. However, proofs are easily obtained from con-
siderations such as those given in [2]. Also, the customary results are obtained
from material in [2].

Some further notation is introduced for stating the statistics that are
considered for possible use.

K b
Y. = 2 /K Ve T 2 Y]
L=1 i=1
1K R
y. = 2 B /K = g, oy = Ji. —
i=1 k=1
N I X
S0 =2 et /(] — 1), g =22 b — /K =1
i=1 =1 k=1
I K
it = 3 (i ¥5. — o+ . A — DK —1)
izt k=1
Fa = Ks2/5% Fon = K2/ 5,®

The statistic s is the customary unbiased estimate of o® for model (1)
and 15 free of the additional random terms for extended models (4), (6),
and (8). The statistic 5> is an unbiased estimate of o? and is free of
the additional random terms for all the extended models. With models (4),
(6), (8) and notmality, J(K — 1) 52/¢* has a *-distribution with J (K — 1)
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degrees of freedom. For all the models and normality, {J — 1) (K — 1) 552/6?
has a y*-distribution with (J-— 1) (K-— 1} degrees of freedom.

The statistic v,* is free of the additional random terms for models (2),
(3}, and {4). When the nozmality assumption alse holds for the &,
and any of meodels (2), {3), or (4) applies, the statistic F,;; has an F-distribu-
tion with J — 1 and (J-— 1} {K — 1) degrees of freedom under the null
hypothesis that the «; are all zero. This is readily verified by showing
that the y;, -— 7 are uncorrelated with the y,, — 3. — ¥ + y., and
that, under the null hypothesis, K (] — 1) 5,*/0* has a y*-distribution with
} — 1 degrees of freedom and (J — 1) (K — 1) 5,%/* has a x*-distribution
with (J — 1) (K-—1) degrees of freedom. For normality, the o; all zero,
and model (4), the statistic F,; has an F-distribution with ] — 1 and J (K — 1}
degrees of freedom (the customary result when model (1) applies).

The stahistic .;j is the customary unbiased estimate of o; for model (1)
and is free of the additional random terms for models (2), (3), and (4).
For these extended models, {J — 1) sy?/JK is an unbiased estimate of

M
the variance of «; and, when the normality assumption also holds for the

¢;x. 1s independent of «; (since the y,, — y_ are uncorrelated with the
Yie — ¥, — ¥x + %), The statistic (] — 1) 53%/JK is an unbiased estimate
M

of the variance of «; when model (4) applies and, if the normality assump-
tion also holds, is independent of :u] (the customary results when model

(1) applies). 'The distribution of o, is normal with mean p and variance

(J— 1} o?/]JK when the normality assumption applies and any of models
{2), {3), or (4) holds. These properties can be used to construct #-statistics
for investigating linear combinations of the a .

Finally, ,: is the customary unbiased estimate of ;. for model (1) and
15 free of the additional random terms for models (2), (5), and (6). For
these extended models, s;,%/JK is an unbiased estimate of the variance of

; and, when the normality assumption also holds for the e, is independent
of ; (since y, is uncorrelated with the y, — y; — 3. + 7). The
statistic #y?/JK is an unbiased estimate of the variance of ;, when model {6)
holds and, if the normality assumption also applies, is independent of ;

{the customary model (1} results). The distribution of ; is normal with

mean p and variance ¢°/JK when the normality assumption holds and any
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of models (2), (5), (6) applies. These properties can be used to construct
a t-statistic for investigating p.
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AN ALGORITHM FOR NONCONVEX PROGRAMMING *

G. GRAVES and A. WHINSTON
Krannert School
Purdue University
Lafayette Indiana

1. Introduction.

This paper presents an alogrithm to solve the most general mathematical
programming problem

S.t.g'(y) <0 = W
Min . ¢ (y) ¥ = (s o )

The only restriction required is that the functions g', g be real valued.
The general formulation allows for nonlinear or linear integer programming,
mixed integer programming and general nonconvex continuous variable
programming. The extant algorithms for this most general problem can
usually be viewed as local search procedures. They suffer from two serious
difficulties which can be characterized as the « dimensionality problem »
and the problem of «trapping at local optima». These difficulties are
illustrated by the «local corner search » where each of the 2" adjacent

corners of a current point are evaluated and the best of these is used as
the next current point. The number of function evaluations increases expo-
nentially with the number of variables and the procedure is impossible except
for problems with very few variables. As is well known, this procedure
stabilizes at local optima. Traditionally, convexity is invoked by mathe-

* Research supported by Army Research Office.
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maticians to eliminate this sort of unpleasantness. As a practical matter
with real problems, convexity is never established. In fact, the essence of
location of facilities problems is precisely the tradeoff between the economies
of scale in production and the transportation cost. (Economies of scale imply
minimization of concave functions).

In a recent paper [4], Falk and Soland have presented a method which
is intended for nonconvex problems where the criterion function is separable.
It employs the general ideas of branch and bound where branching is effected
by repeated partitioning of the domain. Bounds are obtained for the various
partitions replacing the criterion function by its convex support and optimizing
the resulting problem. Falk and Soland have given a proof of convergence.
However, a major drawback of their method is the fact that the subproblems
formed to determine the bound are in general nonconvex optimization pro-
blems. This can be seen by noting that while the subproblem’s criterion
function is convex by construction, the constraints are determined by inter-
secting the sets of points defined by the original constraint set with the
constraints defining the partition. If the original constraint set is nonconvex,
which is the form they support to treat, the resulting feasible region cannot
be guaranteed to be convex. Presumably, the effective scope of application

of their method would be limited to convex constraint sets.

The classical approaches, then, have been essentially « local » or « neigh-
borhood » techniques dependent on derivatives (or finite difference approxi-
mations to derivatives). Only unrealistic assumptions such as « convexity »
or vague arm waving such as «try a representative sample of starting
points » have been advocated to deal with the global problem. (Obtain-
ing a «representative sample of starting points» is feasible with small
generally artificial examples). We feel this sweeps the very quintessence of
many economic problems under the rug. Our central aim here is to present
a new framework for reaching global optimum. The procedure involves
two interconnected mechanisms, a method for structuring the search and a
decision rule for selecting the course of the search.

2. Structuring the Search.

Structuring the search consists of introducing a framework for reducing
the general problem to that of «implicit enumeration» [1] suitable for
machine implementation. In general, given a bounded domain P, it can

be symmetrically partitioned into components Py, Py, ..., P,z For example
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y; 4 P
g2
Bg | %4
v(2)
Py P,
b(2)
>

b(1) y(l) s(1)
Technically :
given b)) < y()) < (i)
define r () = (s() — b (9))/2
T = b + )
and introduce the class C of finite maps
o {1, ., n} = {0, 1}

Now a 1 —1 correspondence can be setup between the components P; of
the partition of P and the class of maps C by defining the upper and lower
bounds of a component in terms of a map

L o) = 30) — (1 —a(i).r()
UG, o) = 50) + oli).r()

To illustrate these formulas, we can apply them to the two dimensional
unit square. In this event,

0< () <1 jo= 1,2

e b(ly =0 i) =1
£(2) =0 s2) = 1

and r(1) = 172 Fl2) = 172
y1) = 1/2 7(2) = 1/2

Using these quantities :

L(1, w(l)) = 1/2 — (1 — o(1)).1/2
U@L o)) = 172 + o(1).1/2
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and

L2 w(2) =1/2 — (1 —w(2).1/2
U2, 0(2)) = 1/2 + w(2).1/2

The choice of any of the four different maps (o (1), w(2)) specifies a
particular rectangle.

&

* 3
1/2 o
i 2
0 142 1 >
For example, consider the map (0, 1), e.g.
w(l) =0
(2 = 1
This map specifies rectangle 3
L(L, w(l)) = 0 U(l, o(l)) = 1/2
L(2 w(2) = 1/2 U2, e(@) =1

The problem is now reduced to choosing a desirable map s € C and
further refining the corresponding component until a point is specified to
any predetermined accuracy.

Technically this can be setup recursively by taking
(B = () — b ()2

j/'o (1) — b(z) + #0 (!)

() = rU0(3)/2

ji (I) — j(l.-n —] (l — i Y (I)) ot (1) 4_ i =1l (f) gt (1)

70

and

and again for any may o' at the #'® stage

LG ot (@) = 760 — (1 — ot @) .7 ()
UG o' () = 7°0) + o (). r @)
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Now specifying a sequence of maps
(u)- 0 wxl, @x’ )
specifies a sequence of nested intervals for each /
LG ot () UG, oxt ()]

such that the limits of L (i, w ' (/)) monotonically increases with ¢ and
the limite of U (7, w+' () monotonically decreases with ¢ and the difference
U@ ox' () — L w ()] = (s(i)) — &(i))/2"* approaches zero as
¢ increases.

Therefore, a sequence of maps (w+’, o ', ..) defines an n-tuple of
real numbers or a point in R". (Recall the Weirstrauss-Heine development
of the real numbers. Their definition is : « A real number is a nest of inter-
vals (x, , y,) such that {x,} is monotonic decreasing, and 4, = (3, — x,) —> 0
as 7 — w » See Knopp, [3], Chapter 1). Now for any stipulated accuracy
of the solution »* (/) =+ ¢ take the first positive integer T such that
(T (@) — BT (@)/2™ < e for all i or 27 > (5T () — & ())/e.

For a choice of 1/0 = T, introduce the class T of meta-maps
Qo= {(U], @7y ey wT} or
® = {1, 2, ., X T} — {0, 1}

The choice of a @ determines a « quantitized » point in the domain of
interest. 'The problem is reduced to choosing the optimal meta-map
PF = (ox', © % . ox"). The algorithm we propose is to immpliciily
ennmerate the class © of meta-maps. There are of course many other ways
of « quantitizing » the domain suitable for implicit enumeration. The
employment of the present structure and, in particular, the T sub-maps
(o', &, .., o") to specify & is to isolate for easy exploitation the nested
components of the successive partitions identified by the o' [Ir is these
nested components that allow ws to introduce set functionals for decision
mating and a global approach to calculating the optimum independent of
such restrictions as convexity on the original functions.

3. Decision Rules for Directing the Search.

The most common set functional in mathematics is the ordinary integral.
It is our contention that use of this functional instead of resorting to the
derivative or its finite difference counterpart of the «local» procedures
should enable us to utilize global information. Liberating our decision
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pracess from the myopic local neighborhood processes should render us
insensitive to trapping at local optima and enable us to dispense with
inapplicable mathematical assumptions such as « convexity ». The most
elementary use of the integral would be to simply calculate for each com-
ponent (defined by an element ' of the meta-map) the following quantities :

1 W ULt (1)) Ugn, &t (n))
AV (o', g) = —“—{J f () dy, . dy,
| Lil,w! (1)) Lin, @t (1))
I @)
i=1
. 1 Uil el (1)} LUl et (n))
55 (o', g) = "“,if—f &) dy o dy
: L1, el (1)) Lifn, @t (n})

SGM (0, g) = [(S8 (o', g) — AV (0!, g)I'*
d(wl, g} = AV (wt, g) — v.5GM (cu‘., g)
‘The element of the meta-map o' chosen would be such that
d(wx', g) = min d (o', £)
wteC

The decision functional 4 (o', g) is a simple estimator of the minimum
value of the function g(y) on the associated compenent of the partition.
If no knowledge of the underlying distribution is available, the parameter

v in the definition of 4 (o', g) would have to be determined empirically
or several runs made using various values.

This simple procedure suffers from the same « dimensionality problem »
as the local search procedures. The evaluation of the decision functional
d (o', g) for all possible 2" maps ' would impose an intolerable com-
putational burden (except for artificial mathematical examples). This « di-
mensionality problem » can be eliminated, however, by resorting to an
n-stage sequential decision process. The total map o' would be constructed
in n-steps by sequentially fixing elements of the map. Suppose an arbitrary
set of £ out of the possible # elements of the domain are fixed, At the
(£ + 1)t step an additional element of the domain, say /., is chosen and

b == 0 or by — 1

Now if the order of fixing elements of the domain is completely arbitrary,
there would be 2 (7 — £) possible choices of a couple (/,,, 0) or (4., 1)
at each stage. The total number of functional evaluations would reduce to

E 2(n—4&) = 2 % £ = nn+1)

k=0 k=1
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(This reduction is insignificant for 3 or 4 variables, but with as few as
20 variables we would achieve a reduction from

220 = 1,048,576
to
20-21 = 420.)
In the n-stage sequential process, it is necessary to use a slightly more
sophisticated decision functional. Each choice is now determined by expected
values over all completions of the k-partial map. Given a #-partial map,

Bios A3 s Foos Bea s oews o
( B )y @ (i o 5 (i o Gy o o i) )
where the {7,} are an arbitrary ordering of the elements of the domain
and the barred elements are considered fixed, we need to consider its com-
pletion class C,'. This completion class consists of all possible completions
leaving the first & assignments fixed. It is the subset of maps which give
the same assignment for a specific set of £ elements of the domain. We
then employ the following expected values over the completion class C,*

i Ut (1)) Uk, @t (k))
B AVE, 2) = e [ -
e 20K T (f) Jra,m an Lk, B a0)

Udhk+1,1) Ufn, 1)
f f w(3) @Yy o Ay
Li{n, 0)

LCk41, 0)
1 UL Te) Uk, T (k)
E, . (SS(o', g)) = —;—“f . f )
" 275 11 #(f) YLa.zan Lk, Gt (k)
U(ke1,1) U(n,1)

i f- f 22 () dy o dyy?
Li{k+1, 0) L(n,0)

These results, of course, rely on the « additivity » of the limits of integration.

Using these more sophisticated quantities we proceed as before by cal-
culating

SGM® (at, g) = [B, (SS(s', ) — B, (AV (6!, )"
that is, the standard deviation of g (y) on the components and
29 () 9 = B, AV, g) — v.5GM (o,
The decision functional 4% (o', g) is evaluated for the 2 (2 — &) possible
couples, say (4,) — 1 or (4,,, 0) and /., any «free» element of the
A-partial map. The minimum value of 4% (o', p) determines the next
couple to be fixed.



G. Graves and A. Whinston : Nonconvex programming 29

This whole n-stage sequential decision process is then carried out T
tfimes as indicated in Section 1 to yield a « point» in R® which is hope-
fully very close to the global minimum of g(y). In any event, by con-
tinuing and employing a « confidence level implicit enumeration » (see [1]
and [2]) of the whole class T of meta-maps, we should achieve a highly
sophisticated search of the whole domain. The only point to note in
employing the mechanism of the « confidence level enumeration » is that
the recursive definition of the components would require i to be entirely
fixed before any element of «i*!.

4. Additional Observations.
(A) Limiting value.
When the function g(y) is continuous, it might be worth noting that
A (o' g) = g (") st = w
where y* € R®

is the point defined by the sequence of maps (w °, wx', ...). This follows
immediately from the Mean Value Theorem for Integrals which says :

1
T ik =
e L g £

where y € D.
Applying this result to the terms of 4™ (o', g) yields
E(AV (o', g) = g(®) as | — o
SGM™ ((0*, £g) — © sl — o
and hence
dm (o', g) = g (5% for any v as t+ — .

(B) Indefinite Integral.

The evaluation of the integrals employed in the definition of the
decision functional 4% (', g) can be carried out in various ways. With
continuous functions, the simplest procedure is to employ the closed form
given by the indefinite integral; for example,

(U — L% (U2 — Ly
f Y1 Y2 dy, dy. =
. 4(U, —L).(@U, — L)

(U + L) . (U, + L)
4

1
AREA
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(C) Stratified Sampling.

When the function is not known in closed form or the indefinite integral
is not available, it may become necessary to resort to stratified sampling
of the various components of the domain defined by the limits of integra-
tion in the decision functional; for example,

yz‘ D
P p
1 2
S
Sy
By
> Y

We could determine an appropriate sample size #; for each strata S; and
on the basis of this sample calculate estimates

=i

(AV (o', ) and  SGM® (ut, g)

Ck
and from these calculate 4% (o', g). At any decision peint, we are strati-
fying a domain of the form :

L(L, o' () €3 < U@ Q)

Uk o (8)

N

ylc
L(£-+1,0) € por < Ue+1,1)

L (£ o (£)

N

L (2, 0) <y < U

VAN

(It is also possible to apply Analysis of Variance and other more sophis-
ticated statistical techniques in refining the components).

(D) Discrete Variables.

It is, of course, not necessary that the variables be continucus. The
Rieman-Stieltzes Integral is available to deal with discrete variables. Recall
the usual Unit Step Function

Iy =4 8

0)
0)

AV AN
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and Standard Counting Measure

ai(y) = 1() + 1 — 1)

that would be employed with zero-one discrete variables. (A slight general-
ization would eliminate the reduction to zero-one discrete variables). In
this formulation,

1+€ 1+e

« AREA » = f f dog vo da, = 20

o 3

and for illustrative purposes, consider the simple linear case
g = 2 aiyn
i=1

Take S§(/) = 1 4+ ¢ and b(}) = 0

bp)
1 & : © (1,1)
]
Py ': P,
§
|
by | o
& i ¥y
0 1/2 i
P, B (AV (W g) = 3 J., £ Dyt ) da da
= % ; 4y day = a,/2

1+¢ 1+e

P, Eﬁ (AV (“’t’ g)) = 1 f f (‘71 Y1+ 4 }*2) da da
“k o 1/2

1+e

:%-f- (¢1+423’2)d¢12:41+“2/2
0

Hence, as expected, the decision of whether 3, — 0 or y, — 1 is determined
by whether @, << 0 or @, > 0. This general approach reduces to techniques
expounded in great detail in the paper, « A New Approach to Discrete
Mathematical Programming ». It should be stressed that the Rieman-Stieltzes
Integral Approach developed in this section is perfectly capable of handling
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pure continuous variables, mixed continuous and integer variables, or pure

integer variables.

(E) Constraints.

The ideas developed in this paper can be extended to treat constraints
of the form
&) <0
by introducing conditional expected wvalues. The simplest way to achieve
this is through the use of a Regression Equation. Instead of using AV (o', g),
this would require employment of :
COV (o, g1, £2)

AV (0!, (g:]£2)) = AV (0%, &) + Var (g,) (& — AV (' &)

the conditional expected value of the function g, given a value of function
g - In this procedure, it would be necessary to estimate the maximum or
minimum of (g, — AV (w', g,)) depending on the sign of the covariance
on the components specified by the current &-partial map »'. This could
be done in turn in terms of the variance of g, and its mean. It would
also be necessary to establish an appropriate confidence level that g, (y) < 0
on the component. When the confidence drops to low it is necessary to
<« backtrack » in the construction of the meta-map. It should be observed
that « normality » assumptions are not required for this procedure, but in
the event of non-normality, the linear regression equation reduces to a first-
order approximation. Again, these ideas are developed at greater length
in [L].

5. Examples.
The following simple examples will illustrate some of the ideas deve-
loped in this paper.
Example 1 (single variable two minima).
gy) = 1/4y' — 7/69* + 7/4y* —y
y = 1/2  f(y) = —37/192  (local minimum)
y =1 fly) = —1/6 (local maximum)
=2 f(y) = —1/3 (global minimum)
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f(y)

Subrontine,
Sum.
§ = 1/20 (U.L% + 7/24 (U* — L% , 7/12 (U? — L) — 1/2 (U2 — L2)
Sum of Squares.
S8 = 1/144 (U* — L*) — 7,96 (U% — L&) 4+ 161/504 (U* — L7)
— 55/72 (U* — L% + 259/240 (Us — L%) — 7/8 (U* — L)
+ 1/3 (U* — L3)

Results.
Run 1 b{1) = 0 §(1} = 3 # = 10
).‘(U) = 15
. . My — IT .
Where linear damping v* = — | ) v was employed and, Mr is

Mr
the total number of steps and IT is the current step.
Example 2 (two variables).
fo)=30n— 2P + (3. — 258
Sain.
S = (U, — L) (U — L% — 6 (U2 — L)

+ (U, — L) (1/3 (U2 — Lp®) — 5/2 (U2 — L,2) + 18.25 (U, — L,)
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AV SGM d
all) = B — 1687 0412 — 2065
Wity = 2 0187 4816 — 3859
y = 2.25
afl) =0 — 13005 0287 — 3208
all) = 1 3380 5090 0410
§® = 1.8750
w (1) = 0 — .2817 {0264 — .2938
§® = 2.0625
w(l) = 0 — 3333 0284 — 3333
w (LY = 4 — 3332 0191 — 3332
y® = 1.998

Runs using the straight mean were made on the following domains :

b(l) = —1 (1) = 1
B = —3 1) =%
ki) = —3 = g
b(2) = —1 i)y =1
B(1) = —35 w{i)y =5
B —5 o) = 5

In all cases the minimum was attained.
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Announcement A3

8th INTERNATIONAL SYMPOSIUM ON MATHEMATICAL
PROGRAMMING SPONSORED BY THE MATHEMATICAL
PROGRAMMING SOCIETY

AUGUST 26-31, 1973

STANFORD UNIVERSITY, STANFORD,
CALIFORNIA 94305, USA

MEETING ANNOUNCEMENT

The Mathematical Programming Society announces that the
8th International Symposium on Mathematical Programming
will be held at Stanford University, August 26-31, 1973.

Contributed papers on theoretical, computational, and applicational
aspects of mathematical programming are welcome. Abstracts
should be sent before March 1, 1973 to the Chairman of the
Programm Committee, Professor George B. Dantzig, Department
of Operations Research, Stanford University, Stanford, California
94305, U.S.A.

Further information concerning the Symposium may be obtained
from Professor Richard W. Cottle at the same address.
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