






TRANSPORTATION TECHNIQUE

FOR QUADRATIC FRACTIONAL PROGRAMMING

S.P. AGGARWAL *

University of Calgary, Canada

ABSTRACT. — In this paper a transportation technique for a quadratic fractional
Programming subject to linear constraints has been provided, In another article it has
been shown that this function is pseudo monotonic which gives local optimum as global
optimum,

Introduction

This paper deals with a special type of problem which occurs in big
business concerns to fill a number of vacancy categories which demand
different capabilities, experiences and trainings. The applicants having
different capabilities, experiences and trainings will have the value depend-
ing upon the jobs in which they are to be employed. It is always the
sincere intention of the concern to assign the applicant categories to vacancy
categories in such a way that the value of the objective function with which
the business concern is dealing with is a maximum. Theobjective function
considered here is pseudo monotonic [2].

This paper is the outcome of the main results of the paper [2] in which
the author has proved that maximum will occur at the vertex of the feasible
solution set and local maximum is global maximum. Thepresent paper has
been divided into three sections. In section 1, mathematical model is given.
Preliminaries are given in section 2. Section 3 deals with the optimal
conditions.

Section 1
Mathematical Model.

Maximize nok

(ZS Devan +
fe) = ———— (1)

(> & ayy xy + B)*
iz. jst

 

* Research for this article has been financially supported by National Research
Council of Canada under Grant No. A7666.
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subject to
m

Sey Hh FTL2ZWe (1.2)
i=l

a
E ky = & iS Bway (1.3)
j=1

xiy > 0 1 Uy Brews j=1,2,..0 (1.4)

where x,; = set of structural variables; these variables represent com-

petitive candidates or activities.

¢i3, 4:4; = set of profit coefficients in the problem and are the

coefficients of the structural variables in the objective function.

Section 2

Preliminaries.

(i) The consistency condition for the existence of the solution to the

problem is
m

a= d4
d=i=1

m a . m
In case Sa, < & 4;, then a ficticious personnel categorry 3) 5; — ¥ 4

i=. j=t j=t i=l

men is added to the problem. When 4, < > 4, then a ficticious
321 ist

job category containing S| 4; — > 4; jobs is used [3].
i=1 j=1

(ii) These are in all m + » equations in (1.2) and (1.3), out of which

always only m+ m—1 are non-redundanti.e. any basis will involve only

m+ n—1 variables [4].

(iii) The set of feasible solutions is regular and non-empty.

(iv) Initial basic feasible solution can be found by using one of the

well-known methods : North-West Corner Method, Volga’s Method and

Inspection Method [6].

y) Simplex Multipliers. As in [7], we determine the simplex multipliersiP iP P. P
pis pi? @ = 1, 2, .., m) and g;1, 9? (7 = 1, 2, .... ) from equations

ay + pi + gi) = 0 (2-1)
, i,j take suffixes of basic variables

diy + pe + 9° = 0 (2.2)
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Further let

i = big of pit + qi" (2.3)

(2.4)

oy

ay = diy + pe + 9?

It must be noticed that we are dealing with a system of m+ n—1
equations out of m + equations given in (1.2) and (1.3) as one equation
is always redundant. The choice of the redundant equation is immaterial,
we may set arbitrarily one of the p; or one of the qi equal to zero and
solve for the remaining m+ 2—1 simplex multipliers. These simplex
multipliers would be unique as the set of equations (1.2) and (1.3) are
independent. We shall make use of these values of the simplex multipliers
in (2.3) and (2.4) to determine ¢,;' and d,;" for the non-basic variables.

Section 3

We shall determine here the next best basic feasible solution which
improves the value of the objective function. Objective function would be
written in terms of non-basic variables only. ‘The function F(X) is

 

 

(S Sey x + a)?

i] =—
(S S4ix + 6)

mon m m

[SB eaxy + 3B pe (S ey—a) + 3B 92S xy —H) + of?
  

— 1 det ist j=. i= isa ee

[= S4ixs + Deexy —a) +E gi2 (3S my —4,) + Bpi=l j= ie’ jet joa i=

‘ i 4)
because of S) xj; = a and ¥ Xi; = 4; whatever may be the values of

jet i=

Bis BPs gi", 9,

(3.1) can also be put in the form

[XS dis + pt t+ a) aj—-S pta—>d qi bi + ol?
i=l j=1
 fe) ===
[3 3 @ua + pr + 94%) x; — 3 pe a — & 9° b; + ppixt ji i=1 j=1

(3.2)Pi’, Pi*, 95, 9" are chosen such that
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oj + peta = 0) 47 take suffixes of the basic set

dj + pe +g? = 0) of m+n—l basic variables.

[ 3 este — Bp a — = 4" b; + al?

fReH=— = = os (3.3)

[ DS 4m; —D pra — ZT 4% bs + BP
i,ges ist {=a

where § is a set of non-basic variables. Making use of the given basic

feasible solution, the value of the objective function at that basic feasible

solution becomes

[- DS pita — & 9s & + of?
ist jet
 

T. 2

=i (3.4)
mo a , (T.]?

[Spr a — 3S 4b + Bl
isl j=

where wo ,

T= —D pra — dq 4 +e
i=1 j=l

T= —Dpra—Vqeat Bs
i=l j=1

All the non-basic variables are zero at the initial basic feasible solution.

Equation (3.3) can be rewritten as

[ 3 4s? #4 + TP
xX) = i,jeS

f( ) [ > dik x3 + TP
i,jeS

Now we choose x,, variable to enter the basic set at a value W (> 0) and

Xtm [7] variable departs from basic set i.e. becomes non-basic at zero level.

The value of objective function becomes [1] F(X) such that

_ [T, + W pq’)?

(T. + W ¢,,?]?
 FS)

In case f (X) > 7 (X) (strictly) {when all basic feasible solutions are non

degenerate} ie.

(Ty + Ww Ena’|? (Ta?

i+ W4.P  (hP ies
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we can say that the value of the objective function will improve.
(3.6) becomes

[W?(Coq)? + 2T W e.] To? — [W?(d,)? + 27, W dp] T2 > 0

(denominator of the objective function is positive always) or

[Ts eq! — Ty dyq2] [W {T, pa + Ty dy} + 27, T,] > 0

pq and d’,, refer to the original basic feasible solution. Let

bi = [Te1 — Ty dy] [W {T. Spat + Ty dy} + 27, T,]

and it can be calculated for non-basic variables if p,!, p,°, qi, qj? are
known for the same.

Here 4 = max $3; (bi); > 0) Le. we choose the most positive bij
to determine the variable %pq to enter the basis. The variable x,,, which
is to leave the basic set and the value of the basic variables in the new
basis can be determined in the same way as in the case of transportation
problem in linear programming.

In case all i; < 0 we get the optimal solution of the given problem.
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STRESS VS STRENGTH PROBLEM

J. PRASAD
Defence Science Laboratory

Delbi-6, India

ABSTRACT. — In this paper, somereliability models are presented for a stress

vs. strength problem. A particular case, in which both stress and strength are normally

distributed, has been discussed. The model has also been illustrated by solving a numer-

ical example.

Introduction.

Scooman [4] developed some reliability models introducing a new

variable *z’, such that z = y—x, where y and x stand for strength and

stress, respectively. However, it is not always possible to find the combined

effect of y and x i.e. z, specially when they (y and x) have different distribu-

tions.

Lipow [2] also developed a reliability model assuming the distribution

of stress and strength to be normal and trucated normal, respectively. His

approach seems to overestimate the reliability. With these in view, certain

reliability models have been developed to enable to evaluate the reliability

even in the case when stress and strength have different distributions.

Statement of the problem.

Consider two independent continuous random variables y (0 < y < o)

and x (0 < x < o) representing strength and stress, respectively. It is

assumed that the distributions of y and x are known and their probability

density functions (p.d.fs.) are denoted by f(y) and (x), respectively. Since

the failures of y occur only due to stress, therefore, it becomes necessary to

measure both the variables in a common unit. Assume further that the

two curves have been plotted on a common graph and P is the proportion

of area common to both curves (fig. 1).

It will be worthwhile to note from the above graph that if there is

any failure in y due to x, it must occur in the overlapped area between the

two curves ie, P. However, it does not mean that all the components

whosestrength falls in this region should be regarded as failures.
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FIG.1 STRESS. STRENGTH MODEL

If p’ is the probability of failures of y, the reiability ’R’ or the
probability of success is given by

R=1—p, p<e (1)
Thus the value of R depends upon the value of p and P and hence the
present problem is to evaluate these parameters.

Development of the models.

Let N be the total number of identical components, out of which
n lie in the overlapped area, denoted by 9, (@ = 1, 2, .., n). Similarly,
let x; (¢ = 1, 2, ..., 2) be the values of stress in the area under considera-
tion. Without loss of generality, we can assume Ja S Je Se < yy, and
Xy <x << x, such that

x; = 9; for all 3, (@ = 1, 2,..., n) (2)

Now if we choose at random a value jj out of # values, viz, y,, yz, ..., In»
three possible situations occur, namely
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(i) y; <x for 4, f= Ft lLft2.. 4,

(ii) 9; > x fori, # = 1,2, 2,71, (3)

(ii) 9) = x, for; = 2

Obviously, y, fails in case (i) and does not fail in case (ii), but in case (iii)

it may or may not fail. In order to take a decision in case (iii), consider

infinite number of such tie cases. Then one can definitely say that in

approximately half of such cases, y will fail. Therefore, the probability

that y; fails when encountered by an equal amountofstress is approximately

0.5. Combining(i) and(iii) together we have (” — j + .5) cases favourable

to y, for failure. The total number of cases, in which y; can encounter

stress x, is m, i.e. all the possible values of x lying in the overlapped area.

Following Weatherburn [5] p, (y;), the probablity that y, fails when en-

countered by stress x is

n—jt.5
Pe Qi) = (7 = 1,2,2) (4)

n

and p,(y;) the probability that it does not fail ie. the probability of sur-

vival is given by

j—.5
Ps (3) ~ b _

n

=l— pry) G = 12-50) (5)

Now, allowing y, to vary over the overlapped area and attaching a

value 1, to y; if it fails, and 0 if it does not fail, we get

E(r’) = EX (i) (6)
jaa

where »’ is the number of failures.

Using relations (4) and (5) in relation (6) we obtain

 

a n—jt.5 j—.5
E@y = 1x 0K

j=l

= n/2

= 1/2 X overlapped area (7)

Here p’ and R are given by

p=2/N
n/2N (8)
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and
R=1—2/2N (9)

Obviously in the probability sense the ratio n/N represents the area
given by P under the curves. Therefore

p= P/2 (10)
and

R=1—P/2 (11)

Evidently, when ¢ (x) and f(y) coincide, » = N, thus

p=R=17 (12)

In order to evaluate p’ and R, we now proceed to evaluate P the over-
lapped area in the following manner:

Let the curves f(y) and ¢(x) intersect at a point y. (fig. 1), so that
the overlapped area P is given by

P= [Cede + S404 (13)Y
Sometimes in practice the components are screened to reject weaker com-
ponents. This increases the mean strength of the remaining components.
Now, suppose that the distribution of the remaining components is given
by f (y), such that

: £0)foy=— xy Kw (14)
{- 0) 4

where y, is the point of truncation.

Using the relation (14) in relation (13) we have

SPOG+ feeds Ron Oy
Pal ftwee ify <y, mt

S E(x) dx if Yo = Ja "
The models developed above viz. models given in relations (13) through

(17) are most general whatever be the distribution of stress and strength.
However, to increase the practical utility of these models a particular case
is discussed below.
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Particular case.

Let both stress and strength be normally distributed, such that

 — JOEY) o<y¥< a (18)
V2a081 2 o1

 

 ep (- 2") oxxte (19)
V2a02

where p; and o; (#= 1, 2) are mean and standard deviation, respectively.

O2

Since f (y) and (x) intersect at yy, setting x = y = Jo in relations (18)

and (19) and equating them we have

 

 

K, yo? + Kz yo + Ky = 0 (20)

where 3 ’
oy — onK,=
Oo oz

K =ed

ga ae?

and
Ky = {po? ox? — pu® on2}/or? on? + 2 loge {02/01}

If «6, & o:, K, — 0; so that yo is given by

jo = —K,/K,

pa + be= 215 (21)

If K, # 0, equation (20) gives two values of yo. Since both stress

and strength vaty from 0 to oo, only positive value of y, would be admissible.

Numerical example (*).

Consider the case of an empty solid propellant rocket motor which

undergoes a proof pressure test by being pressurised usually with water to a

given level of pressure, y,. The cases which rupture as a result of this

test are discarded, thereby increasing the average burst strength, of the

remaining group which are then loaded with propellant and ultimately either

test fired for motor lot acceptance or for operational use.

(*) Extracted from [2].
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It is known that the peak rocket motor operating pressure x is normally

distributed with mean py, = 500 psi and o, = 100 psi. The proof pres-
sure test on the case is to pressurise it to y, = 600 psi, when it is known

that the mean case strength (pressure at which the case ruptures) is normally

distributed with mean », = 700 psi, and ¢, = 100 psi.

Evidently, the distribution of strength is truncated at y, = 600 psi.

On the assumption that the proof pressure test does not affect the strength

of cases which are accepted for use, the point of intersection can be obtained

by using the formula (21). Thus

pa + pe

2

 since ¢; = ogJo =

= 600 psi.

Since y, = yo, P is given by

oe. 1 1 x— 500,
P= J Se Oxp das 2 —) Jax% Via 2 100

= 1587

  

and

R= 1 —P/2 = .92065

The application of the models developed by Shooman [4] becomes dif-
ficult in this situation whereas according to Lipow [2] the value of R is

-9683 which overestimates the reliability by 5.2 per cent as evaluated with

the help of the model developed in this paper.
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AN ALGORITHM FOR NONCONVEX PROGRAMMING*

G. GRAVES and A. WHINSTON

Krannert School

Purdue University

Lafayette Indiana

1. Introduction.

This paper presents an alogrithm to solve the most general mathematical

programming problem

S.t.gi(y) < 0 7 = 1,2,..,m

Min . g (9) ¥ = (rs o> In)

The only restriction required is that the functions gi, g be real valued.

The general formulation allows for nonlinear or linear integer programming,

mixed integer programming and general nonconvex continuous variable

programming. The extant algorithms for this most general problem can

usually be viewed as local search procedures. They suffer from two serious

difficulties which can be characterized as the « dimensionality problem »

and the problem of «trapping at local optima». These difficulties are

illustrated by the «local corner search» where each of the 2" adjacent

corners of a current point are evaluated and the best of these is used as

the next current point. The number of function evaluations increases expo-

nentially with the number of variables and the procedure is impossible except

for problems with very few variables. As is well known, this procedure

stabilizes at local optima. Traditionally, convexity is invoked by mathe-

* Research supported by Army Research Office.
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maticians to eliminate this sort of unpleasantness. As a practical matter

with real problems, convexity is never established. In fact, the essence of

location of facilities problems is precisely the tradeoff between the economies

of scale in production and the transportation cost. (Economies of scale imply

minimization of concave functions).

In a recent paper [4], Falk and Soland have presented a method which

is intended for nonconvex problems where the criterion function is separable.

It employs the general ideas of branch and bound where branching is effected

by repeated partitioning of the domain. Boundsare obtained for the various

partitions replacing the criterion function by its convex support and optimizing

the resulting problem. Falk and Soland have given a proof of convergence.

However, a major drawback of their method is the fact that the subproblems

formed to determine the bound are in general nonconvex optimization pro-

blems. This can be seen by noting that while the subproblem’s criterion

function is convex by construction, the constraints are determined by inter-

secting the sets of points defined by the original constraint set with the

constraints defining the partition. If the original constraint set is nonconvex,

which is the form they support to treat, the resulting feasible region cannot

be guaranteed to be convex. Presumably, the effective scope of application

of their method would be limited to convex constraint sets.

The classical approaches, then, have been essentially « local » or « neigh-

borhood » techniques dependent on derivatives (or finite difference approxi-

mations to derivatives). Only unrealistic assumptions such as « convexity »

or vague arm waving such as «try a representative sample of starting

points» have been advocated to deal with the global problem. (Obtain-

ing a «representative sample of starting points» is feasible with small

generally artificial examples). We feel this sweeps the very quintessence of

many economic problems under the rug. Our central aim here is to present

a new framework for reaching g/obal optimum. The procedure involves

two interconnected mechanisms, a method for structuring the search and a

decision rule for selecting the course of the search.

2. Structuring the Search.

Structuring the search consists of introducing a framework for reducing

the general problem to that of «implicit enumeration » [1] suitable for

machine implementation. In general, given a bounded domain P, it can

be symmetrically partitioned into components P,, P,, ..., P,”. For example
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y,4 P
s (2)

Pz Py
y (2)

ey 1
b(2)

>
b(1) y (1) s(1)

Technically :

given (i) < y() < sii)

define (i) = (s() — b(A)/2

7) =b) +r)
and introduce the class C of finite maps

o: (1, .., n} > {0, 1}

Now a 1 —1 correspondence can be setup between the components P, of

the partition of P and the class of maps C by defining the upper and lower

bounds of a component in terms of a map

Lo) = 7) — (lL — o (4-7)

Uli, o() = 7) + of)-r

To illustrate these formulas, we can apply them to the two dimensional

unit square. In this event,

0<7 <1 j= 1,2

e.g. b(1) = 0 sQ) =1

b(2) = 0 s(2) = 1

and r(l) = 1/2 r(2) = 1/2

7(1) = 1/2 7Q) = 1/2
Using these quantities :

L(i, o(1)) = 1/2 — (1 — o(1)).1/2

GU atl) = ye + waye
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- L(2, 0 (2) = 1/2 — (@ — 0 (2) 1/2

U (2, (2) = 1/2 + o(2).1/2

The choice of any of the four different maps (o(1), (2)) specifies a

particular rectangle.

4

 

 

   
 

L
1/2 3 Ly 4

i 2

0 1/2 A, >

For example, consider the map (0, 1), e.g.

o(l) = 0

o(2)= 1

This map specifies rectangle 3

L(1, o(1)) = 0 U(l, (1) = 1/2

L (2, »(2)) = 1/2 U (2, »(2)) = 1

The problem is now reduced to choosing a desirable map ox € C and

further refining the corresponding component until a point is specified to

any predetermined accuracy.

Technically this can be setup recursively by taking

) = 6@ — e@)/2

() = 6) +

yo

7°

r (i) = 9 (/2

FG = FO — (Lo OM || + oOJH
and again for any may o' at the ¢'stage

Léo'@) = 7H — A —o'()A
UG o() = 7H + oH.

and
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Now specifying a sequence of maps

(o °, oxt, ox?) -)

specifies a sequence of nested intervals for each /

ILwx! ()) UG, os )

such that the limits of L(i, » ‘(/)) monotonically increases with ¢ and

the limite of U(7, wx‘ (?)) monotonically decreases with ¢ and the difference

[U @ox! ()) — L@ ow '())] = (6 (i) — 4(A)/2™ approaches zero as

t increases.

Therefore, a sequence of maps (wx, w 1, ...) defines an n-tuple of

real numbers or a point in R". (Recall the Weirstrauss-Heine development

of the real numbers. Their definition is : « A real number is a nest of inter-

vals (x, , Jn) such that {x,} is monotonic decreasing, and d, = (y, — x,) > 0

asm — cw». See Knopp, [3], Chapter 1). Now for any stipulated accuracy

of the solution y*(/) -+ ¢ take the first positive integer T such that

(57 (4) — OT (/)/2™ < « for all 7 or 2™ > (sT (4) — B(d)/c.

For a choice of 4/0 = T, introduce the class G of meta-maps

2 = {ol, 0%, .., oT} or

6 = {1, 2,..,2x T} > {0, 1}

The choice of a determines a « quantitized » point in the domain of

interest. The problem is reduced to choosing the optimal meta-map

&* = (ws', o %, ., ox"). The algorithm we propose is to smplicitly

enumerate the class 6 of meta-maps. There are of course many other ways

of « quantitizing » the domain suitable for implicit enumeration. The

employment of the present structure and, in particular, the T sub-maps

(o', 0%, «., 0”) to specify is to isolate for easy exploitation the nested
components of the successive partitions identified by the w'. If is these

nested components that allow us to introduce set functionals for decision

ma'ing and a global approach to calculating the optimum independent of

such restrictions as convexity on the original functions.

3. Decision Rules for Directing the Search.

The most common set functional in mathematics is the ordinary integral.

It is our contention that use of this functional instead of resorting to the

derivative or its finite difference counterpart of the « local» procedures

should enable us to utilize global information. Liberating our decision
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process from the myopic local neighborhood processes should render us

insensitive to trapping at local optima and enable us to dispense with

inapplicable mathematical assumptions such as «convexity». The most

elementary use of the integral would be to simply calculate for each com-

ponent (defined by an element »' of the meta-map) the following quantities :

L UG, wt (1)) Ucn, wt (n))

AV (o', g) =| o f g (9) dy,dy
. LG, et ()) L(n, wt (n))

II@

1 UC, wt (1)) U(n, wt (n))

SS (o', g) = =——— f a f & I) dys oe An
. LG, wt (1)) L(n, et (n))

rt (4)

i=1

SGM (o, g) = [(SS(o4 g) — AV? (o, gt?
d(o', g) = AV (o', g) — v. SGM (o', g)

The element of the meta-map »' chosen would be such that

d (ox', g) = min d(o', g)
ated

The decision functional d(w', g) is a simple estimator of the minimum

value of the function g(y) on the associated component of thepartition,
If no knowledge of the underlying distribution is available, the parameter

v in the definition of d (w', g) would have to be determined empirically

or several runs made using various values.

This simple procedure suffers from the same « dimensionality problem »

as the local search procedures. The evaluation of the decision functional

d(o', g) for all possible 2" maps »' would impose an intolerable com-

putational burden (except for artificial mathematical examples). This «di-

mensionality problem» can be eliminated, however, by resorting to an

n-stage sequential decision process. The total map »' would be constructed

in n-steps by sequentially fixing elements of the map. Suppose an arbitrary

set of & out of the possible 7 elements of the domain are fixed. At the

(@ + 1)** step an additional element of the domain, say /,,, is chosen and

hui 2 0 or hor > 1

Now if the order of fixing elements of the domain is completely arbitrary,

there would be 2 (7 —&) possible choices of a couple (/,,,, 0) or (dij: , 1)

at each stage. The total number of functional evaluations would reduce to

ZS 2(0—A) = 234 = net)
k=0 kei
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(This reduction is insignificant for 3 or 4 variables, but with as few as

20 variables we would achieve a reduction from

27° = 1,048,576

to
20-21 = 420.)

In the »-stage sequential process, it is necessary to use a slightly more

sophisticated decision functional. Each choice is now determined by expected

values over all completions of the &-partial map. Given a &-partial map,

ay Ze a warey Bie x Tear 9 oes dy

( ot (4), of (4), 5 Ot (A) of (Aga)s os * (An) )

where the {/,} are an arbitrary ordering of the elements of the domain

and the barred elements are considered fixed, we need to consider its com-

pletion class C,'. This completion class consists of all possible completions

leaving the first & assignments fixed. It is the subset of maps which give

the same assignment for a specific set of & elements of the domain, We

then employ the following expected values over the completion class C;,'

1 UG, @t(1)) U(k, ot (k))

E ,(AV(o', = oe f
oe (AV (0! 8)) 2k TE r(f) Jua,aa) Lk, Bt (k))

Uke+1, 1) U(n, 1)

a f a f By) ayydyn?
L(k+1, 0) L(n, 0)

1 va, sea) Ur,Bt)
E_, (SS(o', = ————— f - f
c, ( 8) 224 TT #(f) naa) Lk, Bt (i)

Ude1, 1) U(n,1)

os f- es f £2 (y) ayy ody
L(k+1, 0) L(n, 0)

These results, of course, rely on the «additivity » of the limits of integration.

Using these more sophisticated quantities we proceed as before by cal-

culating

SGM™(o', g) = [E, (SS(o', g)) — BR, (AV (o', a)"
that is, the standard deviation ‘of g(y) on the components and

4 (o', g) = B,(AV (0, g) — v-SGM®(o', 9)
The decision functional d®(o', g) is evaluated for the 2 (”— &) possible

couples, say (/.,,) > 1 or (qj, 0) and /,,, any « free» element of the

&-partial map. The minimum value of d(w', g) determines the next

couple to be fixed.
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This whole n-stage sequential decision process is then carried out T

times as indicated in Section 1 to yield a « point» in R® which is hope-

fully very close to the global minimum of g(y). In any event, by con-

tinuing and employing a « confidence level implicit enumeration » (see [1]

and [2]) of the whole class G of meta-maps, we should achieve a highly

sophisticated search of the whole domain. The only point to note in

employing the mechanism of the « confidence level enumeration » is that

the recursive definition of the components would require »! to be entirely

fixed before any element of wi*.

4. Additional Observations.

(A) Limiting value.

When the function g(y) is continuous, it might be worth noting that

d™ (ot, g) > gi) ast ow

where y* € R®

is the point defined by the sequence of maps (w °, wx', ...). This follows

immediately from the Mean Value Theorem for Integrals which says :

1
——— (. pA =AREA £ & &()

where y € D.

Applying this result to the terms of d‘) (o', g) yields

EB, AVSa) > 80% ast >

SGM™((o', g) > 0 as t > 0

and hence
d™(a, g) > g(y*) for any v ast > o.

(B) Indefinite Integral.

The evaluation of the integrals employed in the definition of the

decision functional d(o', g) can be carried out in various ways. With

continuous functions, the simplest procedure is to employ the closed form

given by the indefinite integral; for example,

Jndydy = CEH) We — be)
pen= “4, —L).(U. — 1)

(U, +L). (Us + Ly)
4

1

AREA
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(C) Stratified Sampling.

When the function is not known in closed form or the indefinite integral

is not available, it may become necessary to resort to stratified sampling

of the various components of the domain defined by the limits of integra-

tion in the decision functional; for example,

 

 

 

    

 

Yy

We could determine an appropriate sample size &, for each strata S, and

on the basis of this sample calculate estimates

E. (AV (o', g)) and SGM(w', g)

and from these calculate d(o', g). At any decision point, we are strati-

fying a domain of the form :

L(t, of (l)) << UC, of Q))

L(é ot) <j < Ulot &)

LEE+1,0) < jy, < U+L1)

L(n, 0) < bh < U(r, 1)

(It is also possible to apply Analysis of Variance and other more sophis-

ticated statistical techniques in refining the components).

(D) Discrete Variables.

It is, of course, not necessary that the variables be continuous. The

Rieman-Stieltzes Integral is available to deal with discrete variables. Recall

the usual Unit Step Function

0 010) = vee
(y 0)V

N
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and Standard Counting Measure

a(i) = 10%) + 101 — 4)

that would be employed with zero-one discrete variables. (A slight general-

ization would eliminate the reduction to zero-one discrete variables). In

this formulation,

lse Ite

« AREA» = f a f day. do, = 2"
0 oO

and for illustrative purposes, consider the simple linear case

£0) = Say
ist

Take S() = 1+ ce and 4()) = 0

 

   Py,

P,  B,(AV(o4 8) = af f (4: 1 + 4,92) day day

=4{ apda = 4/2

1te Ite

f (4; 1 + a2 Yo) day d a
1/2

P,  B,(AV(og) = 4 f
+e

=4 f- G+ ay)da = 4 + m/2
oO

Hence, as expected, the decision of whether y, — 0 or y, — 1 is determined

by whether 2, < 0 or a4, > 0. This general approach reduces to techniques

expounded in great detail in the paper, « A New Approach to Discrete

Mathematical Programming ». It should be stressed that the Rieman-Stieltzes

Integral Approach developed in this section is perfectly capable of handling
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pure continuous variables, mixed continuous and integer vatiables, or pure

integer variables.

(E) Constraints.

The ideas developed in this paper can be extended to treat constraints

of the form
&i(y) < 0

by introducing conditional expected values. The simplest way to achieve

this is through the use of a Regression Equation. Instead of using AV (o', g),

this would require employment of :

COV (0, £15 &2

AY (o's Gilga)) = AV U6ge) + ETE bts — AV Go)  

the conditional expected value of the function g. given a value of function

&- In this procedure, it would be necessary to estimate the maximum or

minimum of (g,; — AV (o', g,)) depending on the sign of the covariance

on the components specified by the current &-partial map o'. This could

be done in turn in terms of the variance of g, and its mean. It would

also be necessary to establish an appropriate confidence level that g, (y) < 0

on the component. When the confidence drops to low it is necessary to

« backtrack » in the construction of the meta-map. It should be observed

that « normality » assumptions are not required for this procedure, but in

the event of non-normality, the linear regression equation reduces to a first-

order approximation. Again, these ideas are developed at greater length

in [1].

5. Examples.

The following simple examples will illustrate some of the ideas deve-

loped in this paper.

Example 1 (single variable two minima).

&(y) = 1/49" — 7/6+ 7/49? — y

y = 1/2 f(y) = —37/192 (local minimum)

yel fo) = —1/6 (local maximum)

y= 2 fy) = —1/73 (global minimum)
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f(y)

 

 

Subroutine.

Sum.

S = 1/20 (U5.L’) + 7/24 (Ut — L’) , 7/12 (U® — L) — 1/2 (U2 — Ll)

Sum of Squares.

SS = 1/144 (U® — L*) — 7/96 (U8 — L8) + 161/504 (U7 — L’)

— 55/72 (U* — L’) + 259/240 (U® — L’) — 7/8 (Ut — L4)

+ 1/3 (U® — Ls)

Results.

Run 1 b(l) = 0 s(l) = 3 t= 10

7) = 15

Mr — IT
——) v was employed and, Mr isWhere linear damping »1 = —

Mr
 

the total number of steps and IT is the current step.

Example 2 (two variables).

f(y) = 3 (1 — 2)? + (x2 — 2.5)
Sum.

S = (U, — L,) (Uy? — L,’) — 6 (U2 — L,’)

+ (U; —L,) (1/3 (U2 — Li’) — 5/2 (U2? — L,*) + 18.25 (U, — L,)
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AV SGM d
a) = 0 — .1687 0412 — .2065
a(t) = 2 .0187 4816 — 3859

yD = 2.25

e(l) = 0 — .3005 .0287 — 3208
w(iy = 2 3380 5090 .0410

y) = 1.8750

o(l) = 0 — .2817 .0264 — .2938
o(l) = 1 — 3194 .0165 — 3248

yO) = 2.0625

o(l) = 0 — 3333 .0284 — 3333
o(l) = 1 13332 .0191 — 3332

y) = 1,998     
 

Runs using the straight mean were made on the following domains:

b(1l) = —1 sQjj) =1

b(2) = —5 5(2) = 5

b(i) = —2 s(l) = 2

b(2) = —1 s(2) = 1

(il) = —5 s(t) = 5

b(2) —5 (2) = 5

In all cases the minimum was attained.

REFERENCES

{1] GRAVES, G. and A. WHINSTION, « A New Approach to Discrete Mathematical

Programming », Management Science, Vol. 15, No. 3, Nov. 1968.

[2] GRAVES, G. and A. WHINSTON, « An Algorithm for the Quadratic Assignment

Problem », Management Science, Vol. 17, No. 7, March 1970.

[3] KNOPP, K., Theory and Application of Infinite Series, Second English Edition

corresponding to the Fourth German Edition of 1947, Hafner Publishing Company,

New York.

[4] FALK, J.E. and R.M. SOLAND, « An Algorithm for Separable Non-Convex Pro-

gramming Problems », Management Science, Vol. 15, No. 9, May 1969.



Announcement 35

 

8th INTERNATIONAL SYMPOSIUM ON MATHEMATICAL

PROGRAMMING SPONSORED BY THE MATHEMATICAL

PROGRAMMING SOCIETY

AUGUST 26-31, 1973

STANFORD UNIVERSITY, STANFORD,

CALIFORNIA 94305, USA

MEETING ANNOUNCEMENT

The Mathematical Programming Society announces that the
8th International Symposium on Mathematical Programming

will be held at Stanford University, August 26-31, 1973.

Contributed papers on theoretical, computational, and applicational

aspects of mathematical programming are welcome. Abstracts
should be sent before March 1, 1973 to the Chairman of the
Programm Committee, Professor George B. Dantzig, Department

of Operations Research, Stanford University, Stanford, California
94305, U.S.A.

Further information concerning the Symposium may be obtained

from Professor Richard W. Cottle at the same address.
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