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PUBLIC WASTE COLLECTION:

A CASE STUDY

Ludo F. GELDERS

and
Dirk G. CATTRYSSE

Katholieke Universiteit Leuven

Afdeling Industrieel Beleid
Celestijnenlaan 300 A, B-3001 Leuven-Heverlee, Belgium

ABSTRACT

This paper deals with the waste collection in the N.E. area of Brussels. It summarizes a

study carried out as a master’s thesis project. Until now the collection scheme was based

upon experience. Managementfelt that a more normative and systematic approach was

needed.This paper discusses the modeling of the real-life problem based on the capacitated

arc routing problem. The solution approach is based on the path scanning algorithm. The

problem solver was coded in Pascaland linked with dBase-files which contain all informa-

tion on the collection area. A reduction of approximately 15% in distance travelled was

achieved.

 



1. PROBLEM DESCRIPTION.

The current problem deals with the waste collection of a set of 5

municipalities in the N.E. area of Brussels. Between 4 and 11 waste

collection trucks have to serve these communities daily. Ona yearly

basis, these lorries total 360.000 km. These 360.000 km are divided into

60.000 km for the actual waste collection and 300.000 km for trips to the

waste disposal area, which is located south of Brussels. The distance

from the last collection point to the disposal area varies between 25 and

50 km.

Until now, the collection scheme was based upon experience. Each truck

was assigned a set of streets to be served. In the current system, a

truck crew is free to go home whenever the job is finished. This work

organization relies upon the hypothesis that the work force will try to

optimize its routing. Under current operations, the company employs 41

people, 34 being crew members of the trucks.

As always in garbage collection problems, the experience based work

schemes take into account a very broad and complicated set of

constraints, e.g. :

- one-way streets

- fluctuating quantities to be collected

- given collection frequency (twice per week)

~ capacity limitation of trucks

- truck maintenance

- special collection services due to special events

- etc...etc...

Management felt however that a more normative and systematic approach

might give some insight to do the job more efficient, through a better

use of resources (decreasing the total travel distance, the number of

trucks used, etc...). Moreover a need was felt to have an interactive

decision tool which might provide quick answers to certain urgent

problems (e.g. unavailability of a crew or a truck).

 



2. MODELING THE PROBLEM.

In literature one can find discussions on similar problems, e.g.

sanitation vehicle routing [ 2], vehicle routing for municipal waste

collection [ 1] and routing electric meter readers [ 9].

The above waste collection problem can be modelled as the Capacitated Arc

Routing Problem (CARP)

demands qi; 2 0 for each arc (i,j) which must be satisfied by one of a

fleet of vehicles of capacity W, find a number of cycles each of which

given an undirected network G(N,E,C) with arc

passes through the depot (node 1) which satisfy demands at minimal total

cost. The CARP can be formulated as follows (see Golden and Wong [ 7])
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where N = the number of nodes,

K = the number of available vehicles,

qij = the demand on arc (i,j),

W = the vehicle capacity (W 2 max qij;),

ci; = the length of arc (i,j),

Xijk = 1, if arc (i,j) is traversed by vehicle k, 0 otherwise,

lijk = 1, if vehicle k services arc (i,j), 0 otherwise,

[ z ] = the smallest integer greater than or equal to z,

Q = subset of N with cardinality between 2 and |N].

The objective function (1) seeks to minimize total distance travelled.

Equations (2) ensure route continuity. Equations (3) state that each arc

with positive demand is serviced exactly once. Equations (4) guarantee

that arc (i,j) can be serviced by vehicle k only if it covers arc (i,j).

Vehicle capacity is not violated on account of equations (5). Equations

(6) prohibit the formation of (infeasible) subtours. Every index q

corresponds to a set Q. Integrality restrictions are given in (7).

3. SELECTION OF SOLUTION METHODOLOGY.

Given the computational complexity of the CARP (which is an NP-hard

problem (Golden and Wong [ 7]})) it becomes necessary to apply approximate

solution techniques or heuristics. Golden, De Armon and Baker [ 6]

compare some heuristics developed to solve the CCPP (Capacitated Chinese

Postman Problem). The CCPP is a special form of the CARP : qi; > 0 for

all i and j (instead of qi; 2 0). In general, 3 different approaches are

available when dealing with multi-vehicle problems , i.e.,

- Cluster First-Route Second : the area is divided in subareas in such a

way that every subarea can be serviced by one vehicle. For every

subarea a Chinese Postman Problem (CPP) is solved.

- Route First-Cluster Second : first the problem is solved as a CPP. The

complete cycle is then split in several routes which do not violate the

capacity constraints of the vehicles and minimize the distance

travelled.

- Route and Cluster Together : routing and clustering is done at the same

time.

 



All three approaches have advantages and disadvantages. The first method

creates smaller problems which are easy to solve and requires less data

handling but yields suboptimal solutions and does not take the stochastic

character of the demand into account. The second method has the

advantage that the first phase remains the same even if demand varies.

However a larger network has to be optimized and the relation between the

tours and the depot (start node) and the different tours is gone

(remember that the distance to the depot contributes the most to the

total travelling distance). This method works rather well when every

tour consists of only a few arcs { 9}. This is not the case in this

study. The third approach is well adapted to problems where a vast

physical area contains a very large number of arcs. It allows for a good

overall and integrated view of the problem. This third approach is

chosen and three algorithms in that class are briefly discussed

- Path Scanning [ 6] : the basic idea is to construct a tour at a time by

adding arcs sequentially till the capacity is exhausted. Then the

shortest return path to the depot is followed. The criteria for

choosing an arc (i,j) are : the distance, Cij, per unit remaining

demand is minimized (a) or maximized (b), the distance from node j back

to the depot is minimized (c) or maximized (d), if the vehicle‘is less

than half-full maximize the distance (e); (a) looks for a large and

quick payoff while (b) seeks to incur the larger expenses early; (c)

tends to obtain shorter cycles; whereas (d) in general, yields longer

cycles; (e) represents a hybrid approach. The set of cycles with

smallest total distance is selected as outcome for this simple and

rather fast algorithm.

- Construct and Strike [ 4, 6] : this algorithm repeatedly constructs

feasible cycles and then strikes or removes them. The following steps

are required

step 1 : construct a cycle fulfilling the capacity constraint of the

vehicle.

step 2 : set the demand of the arcs belonging to this cycle equal to 0.

step 3 : repeat steps 1 and 2 till there are no arcs, to be serviced,

left in the network.

This procedure has one drawback : how to construct good cycles ?

 



- Augment - Merge { 3, 7] : this procedure merges several smaller cycles

in larges ones

step 1: start with as much cycles as arcs to be served.

step 2: starting with the largest cycle available, see if a demand arc

on a smaller cycle can be serviced on a larger cycle

(= AUGMENT).

step 3: evaluate the merging of any two cycles, subject to capacity

constraints or additional restrictions. Merge the two cycles

which yield the largest positive savings (= MERGE).

step 4 : repeat step 3 until finished.

Computational experience done by Golden, De Armon and Baker [ 6]

indicates that the augment-merge strategy yields the best results on

average, but is much more complicated and time consuming than the two

other types. The path scanning algorithm has the advantages of

simplicity and minor CPU-time requirements. This algorithm can easily be

adapted to all the necessary needs and criteria as required by the

problem stated above. The construct and strike algorithm has the same

advantages but yields results which are worse.

Since management needs an interactive decision tool which provides quick

answers to urgent problems, an approach based on the path scanning

algorithm is chosen. Moreover, a number of different criteria for

choosing the next arc in every step of the algorithm exist (they are

mentioned earlier). By simulating some scenarios it is found that the

following combination of two criteria leads to the best results.

Given a provisional path (start node = 1) arrives in node i, we add the

arc (i,j) satisfying one of the following criteria :

~ if the truck load is less than 50 2, maximize the shortest distance

from j to the end-node, distance of arc (i,j) included.

- if the truck load is 50 Z or more, minimize the shortest distance from

j to the end-node, distance of arc (i,j) included.

This combination leads to cycles with a reasonable length without

augmenting markedly the distance from the last collection point back to

the start or end (waste disposal) node.

 



4. IMPLEMENTATION ISSUES.

4.1 CLUSTERING.

Although the path scanning algorithm is a route and cluster together

method, we will start dividing the total collection area in a number of

sectors. These sectors are much larger than the clusters in the cluster

first - route second approach. For a particular day, all lorries will be

send to the same sector. Our major concern is to minimize the number of

trips from and to the waste disposal node. In this way a lorry can take

over a part of the tour of another one without driving a long distance

(interaction between tours). Demand is stochastic and a vehicle can

reach its maximum allowable load before finishing its cycle.

Adding up the collection amounts to obtain the total daily collection

quantity per sector, levels out a large number of these stochastic

elements. Nevertheless some time-depending parameters remain. There is

a seasonal dependency because people produce more garbage in summer time

than in winter. Also on the long term, the total amount of garbage to

collect yearly increases. To start, we will define the sectors by

aggregating the present sectors.

4.2 INPUT DATA.

It was an enormous task to collect all input data necessary for solving

this problem. And as the accuracy of these data will influence to a

large extent the accuracy of the solution, it is of major concern to keep

these inputs up-to-date. So a well developed database structure had to

be set up. The input data can be devided into three classes:

- data related to the network

- an adjacency list for every node

- cost cy; for every arc, expressed as:

1. a collection cost (time)

2. a driving cost (time to drive through the arc without collection)

- quantity garbage qi; to be collected for arc (i,j)

- one-way streets or not

- both sides of the streets can or can not be served simultaneously

- collection arcs and arcs connecting one node to another without

collecting garbage

- start and end node for every sector.

 



- general data :

- number of lorries available for the different types of garbage

- maximum capacity (load) for every lorry and an average lorry

capacity Was used in the program

- as the density of garbage is not always the same, not weight but

volume can be the binding constraint. We do not only need an

average W but also a margin on W, to express the variability

- seasonal coefficient on quantity of garbage produced.

- a number of parameters tested in the different scenarios to evaluate

their sensitivity on the result.

The most important data in this model are the costs c,; and the

quantities qi; related to every arc. cj, can be expressed as the time

necessary to Serve an arc, with or without collection. The time can be

derived by measuring the distance (l,;) and multiplying it by the average

velocity of a lorry. Distances of the arc were measured on detailed maps

of the area and corrected with information from the drivers who noted

down distance travelled. There are 2 velocities:

va = velocity with collection --> tay = liy / vg

vp = velocity without collection --> tpiy = lay / vp

In the article of Bodin et al. [ 2] the velocity vp is even devided into

4 classes depending on the types of streets.

The quantity qij is the most difficult element in gathering the data,

because qi; has a stochastic nature and a direct measurement (estimation)

of qi; is impossible for practical reasons.

qij was estimated in the following way. From historical data, total

weakly collection volumes V per sector S will be determined.

qij = fuy * V with 0 S fay $l,

(fi; = 0 if arc (i,j) belongs to the sector S and has to be

serviced by another sector S’ or arc (i,j) does not belong to

the sector S)

When garbage is collected in mini-containers, £1; can be easily estimated

as follows

# containers for arc (i,j)

fay mmememnneennn

# containers for sector S (arc (i,j) € S$)

10

 



It is clear that the costs ci; can be estimated more accurately than the

collection quantities qi; per arc. Nevertheless, with regard to the

accuracy of the data, following equation is very important to keep in

mind :

er(q) = er(qiy) * nl? with: q = collection quantity per trip

n = number of arcs in one trip

e,(X) = relative error on X

Analogously we have:

er(1) = e-(1ij) * nll? with: 1 = driving distance per trip

li; = driving distance per arc

Example: 1 = 20.000 m

diy = 200 m ----- > ey(1) = er(1i;) * 10

n = L/lij = 100

This means that when a relative error of 5 Z on 1 with a confidence

interval of 95 Z is required, a relative error on li; up to 50 2 is

allowed. As a consequence the way we estimated both distances and

collection quantities per arc leads to rather accurate results when

aggregated over a collection trip.

5. COMPUTATIONAL ASPECTS.

The software program can be separated into two parts:

- a general database program (in dBase III), to store and update

all input data.

- a route generation program written in Pascal.

5.1 GENERAL DATABASE PROGRAM.

Every arc is defined by two nodes, the start- and end-node. The

following information is given per arc

- two costs : a collection cost and an empty cost (cost for driving

through an arc without collecting garbage)

- capacity qi; : quantity of garbage to collect for arc (i,j)

- type : 1 = directed arc

2 = undirected arc

1]

 



- ten fields S1, S2 .... $10, corresponding to ten sectors with each

field containing one of the following codes :

1 = a collection arc for the corresponding sector.

2 = arc belongs to the sector, but no collection is necessary.

3 = arc does not belong to the sector.

This is a general database, containing all the possible streets in the

collection problem. From this data base we can easily select the arcs

belonging to one or more sectors (1 ... 10), these arcs will be copied

into a sector data base and used as input for the route generation

program. Whenever there is a change in the street pattern or collection

quantities, the general data base will be updated and new partial data

bases per sector will be derived. Organizing the input structure in this

way will never lead to data inconsistency.

5.2 THE ROUTE GENERATION PROGRAM.

The program is built in a modular way. The first module reads all the

network data out of the sector data base and doubles the undirected arcs.

The second module reads the general data related to the sector (start-

node, end-node, collection quantity) and other data like number of

lorries, their capacity, etc...

After the user has chosen an optimization criterion, one arc at a time

will be selected in module 3 to generate the different trips. In every

node the path scanning algorithm is used when one of the related arcs is

not yet served. The Dijkstra [ 5] algorithm is used in all other cases,

to find the shortest way to another unserved arc.

When lorry capacity is reached, the program also uses the Dijkstra

algorithm to find the shortest way back to the end-point.

A new trip will start in the end- or start-node of the network and module

3 will again generate a new routing. New trips will be generated as long

as unserved arcs in the network exist. After every trip, data with

regard to collection quantity q and length of the trip (1) are stored.

5.3 FLEXIBILITY OF THE PROGRAM.

The program is built in such a way that it is very easy to generate a

number of scenarios. Following options are possible :

-~ changing the area and shape of the sectors

 



- choosing a start- and end-point of a trip in one node or in two

different nodes. In this way a lorry can start its first trip at the

depot and end it at the waste collection area (from where the second

trip starts)

- different criteria to execute the path scanning algorithm

- introduction of a seasonal coefficient to adapt collection quantities

per arc over the year

- a lorry, close to the end-point of the network has two options. It can

start a new cycle, or it can drive directly to the waste collection

area. A preference for one of these options can be implemented by

adding a parameter a. Instead of having a lorry capacity W, we will

give the truck in the end-point a capacity oW. If q < oW, the truck

will start a new cycle. If q > aW, the truck will go directly to the

collection area.

By giving a a number between 0 and 1 we can influence thoroughly the

length and the number of trips

- simultaneous garbage collection on both sides of the street

- blind alleys are automatically added to an adjacent arc. In this way

the network is simplified and empty driving time is minimized.

Elements not included in the program are : time constraints, holidays,

rough garbage, traffic jams, right turns.

6. CONCLUSIONS

A combination of six current sectors was selected as a testing area.

These sectors give a good representation of the whole collection area.

Total weekly collection in the testing area is approximately 5000 tons.

6.1 INFLUENCE OF LORRY CAPACITY (W).

Initially W was fixed on 9.330 Kg. The total driving distance decreases

by increasing W. From fig.1 we see that the decrease in driving distance

is not continuous. The explanation is very simple. Whenever a lorry A

reaches its capacity constraint W, it drives directly to the waste

disposal area. Another lorry B (operating in the neighbourhood ) will

continue and serve the remaining collection quantity of the arc (i,j).

Increasing W will only decrease total driving distance when arc (i,j) can

be collected completely by lorry A.

13
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Fig.1 : Sensitivity of the lorry capacity on the total driving distance.

6.2 OPTIMAL CRITERION FOR QPEN AND CLOSED TRIPS.

A closed trip starts and ends in the same point of the network whereas,

an open trip has a different start- and end-point. Intuitively it is

clear that open trips give better results than closed trips for all

possible criteria. However for combination tours, open as well as closed

trips, using one and the same criterion for both types of trips gives

better results than using two different criteria. This was a rather

remarkable result we found from the simulations of the testing area.

6.3 INFLUENCE OF PARAMETER a.

As mentioned before, parameter a@ is of major influence on the number of

trips and on the collection distance. The smaller a, the larger the

number of trips (trips are shorter). It is more important to reduce the

number of trips than to reduce the total collection distance, as the

waste collection point is situated a long way from the collection area.

Therefore parameter a close to 1 yields the best results in this case.

6.4 COMPARISON WITH THE CURRENT SYSTEM.

Using the aggregated collection area of the six current sectors, an

overall reduction in driving distance of 15% was found. Due to a
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reduction in the number of trips (10 trips/week against minimum 12

trips/week in the current system) total driving distance to and from the

collection area was reduced by 14.5%. Another 4.5% was saved on

collection distance. For the individual sectors there was no clear

improvement. Whereas the Path Scanning Algorithm was developed for a

CCPP problem, the scenario of individual sectors is more related to a CPP

problem as one trip is mostly sufficient for collecting all waste in a

sector. Aggregating sectors gives a better overall result as it reduces

the number of partly loaded trucks which has an influence on the total

number of trips.
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1. INTRODUCTION

The concept of systematic risk is of central importance in

Modern Portfolio Theory (MPT). Within the standard Capital Asset Pricing

Model (Sharpe [1964], Lintner [1965], Mossin [1966]), the measure for

this market risk is defined as:

Cov(r, ,t,)

by = —— (1)
Var (x, )

where r, = the return on security i;

Yq, = the return on the market portfolio m.

Cov and Var denote the covariance and variance operator, respectively.

In applications of MPT, historical data are used to estimate the

relevant ex ante B by means of the market model (cf. Fama [1976]). In

its most simple form, this regression model can be written as:

Yip =O + Bite + fae , teT, ieNn (2)

where a, is a constant and ¢,,.is a zero-mean error term, uncorrelated

with r,,. T and N denote the sample of time periods and the set of N

securities in the market portfolio, respectively. For the sake of

brevity, the time index t will be suppressed.

The use of this market model involves a number of more or less

arbitrary decisions, for example the choices with respect to:

-the particular form of the model: the simple form eq. (2), the excess

return (or risk premium) form or the two factor model (cf. Blume &

Friend[1973]);

-the index that serves as proxy for the market portfolio (for the effect

of index choice, see for example Frankfurter [1976] and Roll [1977]);

-the total interval T chosen to perform the regression (cf. Baesel

[1974], Levhari & Levy [1977] and Theobald [1981]);

-the appropriate length of the observation intervals within the sample

of time periods T (cf. Hawawini [1983} and Handa, Kothari & Wasley
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[1989]}).

The sensitivity of the estimated @ for the latter intervalling

aspect determines its stability. Especially when daily data are used,

nonsynchronous trading gives rise to an errors-in-variables problem and

causes biased estimators (Scholes & Williams [1977], Smith [1978], Scott

& Brown [1980], Dimson & Marsh [1983] and more recently Shanken [1987]).

In addition, as the ex ante value of # is relevant, it is

important whether # is constant over time. This brings us to the issue

of the intertemporal stationarity!) of #8: is a # estimated from data in

period T, equal to the 6 estimated in period T,?

Blume [1971, 1975] found that #’s were non-stationary. More

specific, he found that, over time, 6's tend to drift to the market

average of one. Klemkosky & Martin [1975] examined various techniques by

means of which #’s could be adjusted for this drift. Elgers et al.

[1979] however, showed that whether 6's were calculated moving forward

or backward in time, they similarly drifted towards the value one. This

#-drift thus appears to be caused by statistical aberrations.

Fabozzi & Clark [1978], Sunder [1980], Chen [1981] and Simonds

et al. [1986], among others, test a random coefficient model and also

present evidence of non-stationarity. Fisher & Kamin [1985] suggest

some improvements in estimating A's by gradually decreasing the weight

of each observation with the passage of time. To determine these

weights, they use a Kalman filter.

Other studies only focus on part of the f-coefficient in eq.

(1). Myers [1973] finds significant changes in the variability of the

‘market factor’ from period to period and concludes that, as a result,

B's are not stationary. Elton et al. [1978] focus on the numerator and

investigate the stationarity of the correlation structure of security

returns. They conclude that the best way to estimate securities’

correlations is just to use the average correlation coefficient for the

entire universe of securities (’overall mean’): additional efforts to

refine the estimated correlations appeared to be fruitless.

1) Note that we explicitely make a difference between stability and
stationarity.



The above mentioned studies are of an empirical nature and

concentrate on the form and statistical properties of the instation-

arity. On the other hand, there are studies of a theoretical nature that

concentrate on the identification of micro- or macroeconomic variables

that influence #-stationarity. Officer [1973] investigated changes in

the variability of the market factor (just as Myers [1973] did) and

found that these changes appear to be related to changes in the Index of

Industrial Production (a measure of business activity in the US) and

changes in the M2 money supply. Levy [1971] related shifts in B to

alternating bull and bear market conditions. Fabozzi & Francis [1977]

reject the influence of bull-bear market forces on 8, but conclude later

that the intertemporal non-stationarity of 6 appears to result from

changes which are associated with business cycle economics (Francis &

Fabozzi [1979]). Using the concept of duration, Bildersee & Roberts

[1981] relate changes in # to changing interest rates. More recently,

DeJong & Collins [1985] start from the joint Option Pricing Model/

Capital Asset Pricing Model framework and find a significant relation

between #-non-stationarity and the degree of leverage of the respective

firm and changes in the risk-free interest rate.

McDonald [1985} considers major structural changes in the

economy. These changes were accompanied by large changes in interest

rates and yielded shifts in #'s. Further evidence concerning these

changes in the structure of the economy and the variance-covariance

structure of security returns is presented by Bollerslev et al. [1988],

Harvey [1989] and Van Der Meulen [1987, 1989]. Analyzing the covariance

structure of deflated returns of general classes of assets (including

currencies), Van Der Meulen detects several large shifts in the

covariances between these assets over time. As these changes affect the

composition of the assets’ covariance matrix, the #'’s of these asset

classes (and of the individual assets therein) presumably will not be

constant.

In this paper, we accept the strong empirical evidence support-

ing the existence of $-non-stationarity, and consider the theoretical

effect of fundamental shifts in the structure of the economy on f. We

hypothesize that the returns of assets or securities are generated by a
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factor model and that intertemporal changes in the variances of the

factors provide the ‘missing link’ between the shifts in the covariance

structure of these assets. In section two, we specify the theoretical

multi-factor return generating process of securities by means of which

the fundamental changes in the structure of the economy can be modeled.

The conditions under which security-8's will be constant in a changing

economy form the central issue of this paper and will be dealt with in

section three. Section four contains our conclusions and directions for

future research.

2. MULTI-FACTOR MODELS AS RETURN GENERATING PROCESSES

To model the dynamic ecomomic environment in which the returns

of the securities are generated, we reduce the dimensionality of the

interrelationships therein. We therefore introduce a mechanism that

generates the return for each of the N securities in the market

portfolio. More specific, we assume that there exists a function g,(.)

that links the individual returns r, to a set of K common underlying

variables or factors (65) sex- In a general form, this return generating

process (henceforth: RGP) can be expressed as:

Tie = 8iCSjtaexx + Cit» with ECe;,) = 0 , ieNn (3)

To incorporate randomness, the common factors are assumed to be

stochastic and a random disturbance term ¢, is added to incorporate the

influence of idiosyncratic factors on each individual return. We assume

that the idiosyncratic factors ¢, and the common factors (6;},are

mutually independent. Furthermore, the idiosyncratic factors are assumed

to be truly security specific and thus also mutually independent. With

these assumptions, the dimensionality of the economic environment is

reduced from :N(N-1) relationships between the returns of securities to

(i) the K(K-1) relationships between the common factors and (ii) the

NxK relations between the securities and these factors. The latter

relations can be explicitized by means of sensitivity coefficients.

21

 



Although the function g,(.) is unknown, we can apply the multi-

variate version of Taylor's theorem and expand g,(.), for example,

around the value it takes when the common factors are set to their mean

values. We then can rewrite eq. (3) as

ag,

ry = 8, [E(5;)] +2 (6, -E(6,)]—
86,

o 1 6 4h
+ a —| Fis B61 | &i + & (4)

where the symbolic power between the large square brackets on the right

is first to be expanded formally by the binomial theorem and then the

powers 9/46; multiplied by g, are to be replaced by the corresponding

nth derivatives 8%g,/05,", 8%g,/(46,""105,) &c., evaluated at the

spanning point [E(6,),E(6,),....].

Note that &, [E(S,)] is not necessarily equal to E(r,) when g, is

a non-linear function of the 6,’s (cf. Jensen’s inequality for the uni-

variate case). For simplicity, we can assume that terms of second and

higher order are small and be neglected. Eq. (4) then reduces to:

584
ry = g, [E(6;)] + d [6,-E(5,)]—+ (5)

06 J

A stronger assumption involves the (local) linearity of g, in the 6,'s.

The sensitivity coefficients of the returns for the common factors are then

constants b,,; (for a specific range of 6,):

ar; a8;
=-—-=-b, , v ieN, jek (6)

a6, a6;
 

Under these assumptions, the RGP eq. (3) reduces to:

ry = E(4) +3 [6; - E(5;)] by; +e, , ten (7)
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If the identities of the factors are known, this linear relation can be

estimated by means of OLS regression. As easily can be seen from eqs.

(5) and (7), the OLS estimation does not provide a Taylor series

approximation. The argument is that the choice of the point of expansion

is arbitrary (see eq. (4)).

White [1980] and Van Praag [1981], however, note that the OLS

estimators (b,,) provide the best linear approximation of the dependent

random variable (here: r,) by the independent random variables (here:

the 6,‘s): the b,,’s result from minimizing the mean square error of the

approximation. For the least squares approximation, White assumes that

there exists a functional model, although that may be unknown. Van Praag

considers this regression approximation as ‘model free’, so that we even

can interprete the sensitivities b,, without assuming any underlying

functional model at all.

If there should exist a return generating model g(6,),q that is

non-linear, it is important to note that problems can arise. As can be

inferred from eqs. (5) and (7), the crucial point then is that the

response coefficients b,, are only correct for small deviations of the

factors. If the variability of the factors changes, this may imply that

the sensitivities for these factors also change. In other words, the

functional form eq. (7) then changes and does not apply any longer for

different time periods (i.e. different levels of the factors). In this

paper, however, we'll treat the factor sensitivities as constant

technical coefficients; we’ll model structural shifts in the economy as

changes in the variances of the factors.

3. THE STATIONARITY OF B WHEN RETURNS FOLLOW A LINEAR MULTI-FACTOR RGP

In this section, we investigate the implications of changing

factor variances in a K-factor RGP for the f-coefficients of the

securities. We start from the following assumptions:

(Al) For all securities, the RGP is linear in its parameters:
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r, = E(ry) + Y bis f, + &4, Vv ieN, (8)
J

where f, denotes 6, -E(6,).

(A2) The common factors are mutually uncorrelated and uncorrelated with

the idiosyncratic factors:

Cov(f,,£,,) = Cov(f,,€,) = 0, Vj j’ (9)

(A3) The idiosyncratic factors are truly security specific, so

Cov(e,,€5.) = 0, Viwi'. (10)

As the sensitivities b,, link the (variability of the) security returns

to the (variability of the) factors, we can say that these coefficients

measure the factor risk of the securities. The variability of the error

term «, induces the idiosyncratic risk.

The CAPM-§ links the (variability of the) security returns to

the (variability of the) return on the market portfolio, so B measures

the market risk of the securities. As the market portfolio m is a convex

combination of the N securities, its RGP can be expressed as:

T. =) mry = E(rq) + y bay £, + &m ql)
i j

where m, is the proportion of the total market value of security i

relative to the market value of the market portfolio (),; m, = 1).

Given the RGP with its assumptions, the covariances between the

securities’ returns and the return on the market portfolio can be

expressed as:

Cov(r,,r,) = y; b,,b,; Var(f;) + mVar(e,) , V ieN (12)

The variance of the return on the market portfolio equals:
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Var(r,) = ys b,; ?Var(f£,) + Var(e,) (13)

Using eqs (12) and (13) in (1), we can rewrite f, in terms of factor

variances:

Y3 b,jb,,Var(f£,) + m,Var(e,)

By = , Vv ieN (14)
Y bay?Var(£;) + Var(eq)

 

The central issue is how # behaves if the economic environment

(in which the returns of the securities are generated) changes. For this

purpose, we additionally assume that:

(A4) fundamental shifts in the structure of the economic environment

arise because the variance of one or more common return generating

factors changes.

Using eqs. (12) and (13), the changes in the relevant variance-

covariance structure of the security returns can then be modelled as:

dCov(r, ,%_,) = 2 by; Bay @Var(£,;) , Vv ieN (15)
j

and

dVar(r,) = Y. Dy; 2dVar(f,) (16)
Jj

Given eqs. (15) and (16), the question arises how f changes when the

factor variances undergo small changes. If the changes in the numerator

of B in a way offset the changes in the denominator, # will not change.

But under what conditions will f indeed be stationary?

To answer these questions, we have to analyze the change in # as

a result of a marginal change in a factor’s variance. From eq. (14) it

follows that:

ap, byb,jVar(r_) - Cov(ry,t_)ba3?
= , WV ieN, jek (17)

aVar(f,) [Var (r,)}?
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3.1. Single-factor RGP

We first consider the case in which the RGP only consists of one

factor, factor k, and where the variance of this factor exhibits a

marginal change.

THEOREM 1: A security’s § will only be stationary under a marginal

structural shift in the one-factor economy if this B is equal to the

security’s factor sensitivity b,, scaled to the of the market

portfolio’s factor sensitivity b,,.

Proof: It will be clear that #, is invariant under a marginal change in

Var(f,) if:

apy
————_ = 0 (18)
dVvar (f,)

Combining eqs. (17) and (18) and using the definition of 6, yields the

restriction

A, = ; (19)

provided that the market portfolio has a non-zero sensitivity for the

factor k. In a one-factor RGP, this is of course very likely.

The next two corollaries give insight in the conditions under

which eq. (19) is satisfied.

COROLLARY 1: If the market portfolio is an equally weighted portfolio of

a finite number of N securities, the B-stationarity condition (19)

requires the equality of the ratio of the security’s factor risk to

the security’s idiosyncratic risk and the ratio of average factor

risk to average idiosyncratic risk.
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Proof: Substituting eq. (14) in (19), we get

by,b,Var (f,) + mVar(e,) by,

= — (20)
by?Var (f,) + Var(e,) bax

or

by. Var(e,)
La, (21)
Dix Var(e,)

When the market portfolio is equally weighted (m, = 1/N, Vi), we have

var(e,) = Var( )) mes) = Var(N1)e,) = N? J) Var(e,)
sem s

Var (e) (22)

a
l
r

where the bar over Var(.) denotes its average value.

Using this result, we can rewrite eq. (21) as

bik Dax (23)

Var(e,;) Var(e)

For a typical security, the idiosyncratic variance of its return

equals the average of all securities’ idiosyncratic variances. For its pf

to be stationary, its sensitivity to factor k must equal the market

average sensitivity b,, to this factor. Consequently (according to eq.

(19)), its 8B must equal one. For a security with a larger (smaller) than

typical idiosyncratic variance, b,, must be larger (smaller) than b,,,

which implies that its B must be larger (smaller) than one.

COROLLARY 2: If the market portfolio consists of a (countably) infinite

number of securities, each with an infinitesimally small weight, then

all B’s will be stationary in the one-factor economy.

Proof: If the number of securities in the market portfolio increases

more and more, it follows from eq. (22) that the market portfolio
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becomes well-diversified with respect to the return generating factor:

Var(e,)70 as Now, Without variability there can exist no covariability,

so Cov(e,,€,) = (1/N)Var(e,)70 likewise. As a result of this naive

diversification process, we can rewrite eq. (20) as

by,.byVar ( £,) by,
= — (24)

boy?Var (£,) Dane

Hence, the stationarity condition (19) is satisfied by any value of by,

and b,, - a

Note that the $-stationarity conditions, as stated in the

corollaries above, are independent of Var(f,). Consequently, these

conditions do not only apply for marginal changes in the factor’s

variance, but also for any arbitrary large changes.

3.2. Multi-factor RGP

Empirical evidence (as early as King [1966]) indicates that a

single-factor RGP is an oversimplification of reality and that a multi-

factor RGP is more appropriate. In this general case, the economic

environment is allowed to change in more than one dimension, i.e. the

variances of K factors are allowed to change (K>1).

THEOREM 2: A security’s 8 will only be stationary under any marginal

structural shift in the multi-factor economy iff (i) the security’s

factor sensitivities (b,,},. are (pairwise) equal to the market

portfolio’s factor sensitivities (Da3) sex> and (ii) its B equals one.

Proof: The condition that a change in 8 as a result of marginal changes

in the factor variances is zero can be expressed as:

ap,
dp, = y ——— dvar(f,) = 0 (25)

J aVar(£,)
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Using eq. (17), this is equivalent to

1

——— J [by;ba; - Pibg;2]dVar(£,) - 0 (26)
Var(r,) 4

Solving for 8,, this yields

Y, by; by; @Var(£,)
B,= (27)

YX Pay 24Var(f,)

It follows that #,; is only stationary under independent marginal changes

in the variances of the return generating factors if

(i) bi; = Pay » V Je

According to eq. (27), we then also must have

(ii) By = 1. if

The derivation of these conditions from eq. (27) does not depend

on the magnitude of the factor variance changes. Consequently, these

conditions apply for any arbitrary large changes in the factor

variances.

Given eq. (14), the stationarity conditions (i) and (ii) imply

m,Var(e,) = Var(e,) (28)

If the market portfolio is an equally weighted portfolio of a finite

number of securities, eq. (22) applies. Consequently, only typical

securities can satisfy these stationarity conditions (cf. corollary 1).

If, on the other hand, the market portfolio consists of a (countably)

infinite number of securities, each with an infinitesimally small

weight, then idiosyncratic risk is no longer relevant. Condition (ii)

becomes redundant and the pairwise equality of the security's and market
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portfolio’s factor sensitivities then forms the necessary and sufficient

stationarity condition.

Condition (i) places a severe restriction on the variance-

covariance structure of the security returns. If this condition is

satisfied, the covariances between the returns of all "intertemporal

stationary A" securities would be identical. In a large, well-divers-

ified capital market, these covariances would equal the variance of the

return on the market portfolio. Also, the variances of the returns on

these individual securities must then all be larger than the variance of

the market portfolio’s return (this follows from eq. (13): the market

portfolio is well-diversified, but the security returns can contain an

idiosyncratic component).

4. CONCLUSIONS

We hypothesize that fundamental shifts in the structure of the

uncertain economic environment, in which the returns of the securities

are generated, arise because the variance of one or more common under-

lying return generating factors changes. Using this return generating

process, by means of which changes in the relevant covariance structure

of the security returns are modelled, we analyzed the conditions under

which a security's f-coefficient will be stationary.

In a single-factor context, all A's will be stationary if the

market portfolio is large, equally weighted and hence well-diversified

with respect to the return generating factor. Should the market

portfolio in contrast contain idiosyncratic risk, then for a security-f

to be stationary there should exist a restrictive relationship between

the security’s factor risk and idiosyncratic risk. More specific, for

that security the ratio factor risk to average (=market) factor risk

must equal the ratio idiosyncratic risk to average idiosyncratic risk.

In a more realistic multi-factor context, security A's will

only be stationary if the large, equally weighted market portfolio is

well-diversified with respect to the factors and the factor risks of the

securities are pairwise equal to the factor risks of the market portfolio.

This implies a severe restriction on the variance-covariance structure

30



of security returns, which is not likely to be satisfied in reality.

In case the market portfolio should contain idiosyncratic risk, we have

the additional stationarity condition that B's must equal one. Hence,

only securities with average factor risks and average idiosyncratic risk

would exhibit stationary B's.

The relevance of results is two-fold. From an ex ante point of

view, the ability to predict changes in estimated B's could be enhanced

by empirically identifying the factors that generate the returns and

thus contribute to #-nonstationarity. The ability to identify factors

contributing to intertemporal changes in 8 also has potential value in

an ex post context. Event studies rely on constant-f market models to

estimate residual returns. If § changes over time, an error is made in

estimating the residuals. It would be more correct to adjust the

residuals for the changes in f. In the evaluation of investment

performance, errors may result when relying on constant-f market models;

adjustments of f according to changes in the economic environment would

be adequate. Although empirical research has yielded some candidates

for the factors (cf. Chen, Roll & Ross [1986]), it would be worthwile to

investigate the intertemporal behavior of their variability and link

these results to the behavior of £.
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ABSTRACT

This paperstudies a single serverinfinite capacity queueing system with Poissonarrivals

of customers groups of random size and a general service time distribution, the server of

which applies a general exhaustive service vacation policy. A computational methodis ap-

plied to obtain the steady state distributions of the queue of a post-departure or inactive

phase termination epoch, at a post-departure epoch and at an arbitrary epoch. Relations

between thesedistributions are given. As special cases, we consider two hybrid vacation

models: the (7(SV),N)-policy and the (7(MV);N)-policy. In particular, when the service time
distribution is of phase type, explicit results can be obtained for the N-policy. Whe show

this by a simple example.

 



1. Introduction

This paper deals with the single server infinite capacity queueing system — considered

in Loris-Teghem (1990a) — satisfying the following hypotheses:

H, : groups of customersarrive according to a Poisson process of parameter \. The sizes

of the groups are ij.d. random variables, with probability distribution {di }io1,

generating function D(z) =  dyz* (|z| < 1), finite expectation E{D] and second
kD

order moment E[D?).

Hz: The server alternates between active and inactive states. In the active state, the

server provides service to customers, so that in what wecall an “active phase”, the

system is never empty. The epochs 0 < to < ty <--+ <tm <---+ at which the server

“enters” the inactive state — and thus, becomes unavailable to the customers — are

the times at which the system gets empty (exhaustive service). We denote by T™,,

m 2 1, the epoch at which the inactive phase beginning at ¢,,_, terminates. Thus,

if X,,, m 2 1, is the number of groups of customersarriving in the time interval

Jtm=1; Tm], we have X,, > 1 as. We put Va = Tm —tm-1,m 2 1, and we assume

that the random variables V,,, m > 1, are i.i.d., with finite expectation and with

distribution function V(-). We denote by (X, V) a random vectordistributed as the

(Xm Vm) (m2 1)-

Hz : Customers are served individually in an order independent of their service times,

which are i.i.d. random variables independentof the arrival process and the sequence

{V,,}mzi, With distribution function S(-), Laplace-Stieltjes transform (L.S.T.) S(O),

and with finite positive expectation E[S] and second order moment E[S?].

Hy: p= AE(D]E[S] < 1.

For this model, Loris-Teghem (1990a,1990b) gives, in terms of generating functions, a

probabilistic proof of the stochastic decomposition property for the stationary queue

length distribution, at a post-departure epoch and at an arbitrary epoch.

Our purpose here is to obtain computational expressions for the stationary queue

length distributions.

Computable formulas for a single server queue with server vacations are given in Lu-

cantoni, Meier-Hellstern and Neuts (1990). In the model considered in that paper, cus-

tomersarrive (individually) according to a general arrival process, the Markovian Arrival

Process — of which the Poisson Arrival Process is a very special case — and the vaca-

tion policy applied by the server is the “multiple vacation policy”, sometimescalled the

“T(MV)-policy”. The computable expressions obtained by the authors concern waiting
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time distributions as well as queue length distributions, namely the stationary distribu-

tion of the queue length at a post-departure epoch, at an arrival epoch and at an arbitrary

epoch.

In the present paper, we assume that groups of customers arrive according to a Pois-

son process. However, we consider a class of exhaustive service vacation policies which

contains the T(MV)-policy as a special case. We are interested in the queue length

process, and wefirst consider the queue length at service completion or inactive phase

termination epochs (section 2), for which we compute the steady-state distribution by

Neuts’method. We then relate the steady-state distribution of the queue length at ser-

vice completion epochs (section 3) and at an arbitrary epoch (section 4) to the former

distribution. Section 5 is devoted to two particular policies: the (T(SV); N)-policy and

the (T(MV); N)-policy. For N = 1, the latter reduces to the T(MV)-policy considered

in Lucantoni, Meier-Hellstern and Neuts. Our results for this policy agree with those

obtained by particularizing the queue length results in Lucantoni, Meier-Hellstern, and

Neuts to the Poisson Arrival Process.

We mention that a general batch arrival process, the Batch Markovian Arrival Process,

has been considered recently by Lucantoni (1991). We plan to further investigate vacation

models, by considering such an arrival process.

Notations

Let ¥,,, m 2 1, be the number of customers arriving in the time interval ]ém—1, Tm];

{¥in}mp1 is a sequence of iid. random variables with Yn 2 1 a.s. We denote by ¥Y a

random variable distributed as the ¥,,, m 2 1, with finite expectation E{Y] and second

order moment E[Y?].

‘For t > 0.n > 0, Re(s) 20 and |z| < 1, define:

P(n,t) Pr [n customers arrive in the time interval ]0, ¢] |
n d k

= >Oealk)

k=0

where {da(k)}nz0 is the k-fold convolution of the probability distribution {d,}n1.

A,(t) = [Pin 2)as(x) (1)

A,(s) fdA,(2) = f e-*P(n, 2)dS(z)
0

m
o
= o
e
= lI ¥ An(t) = S(t)

nZo
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An =

where #, = {eeAS(e), 7 0

A,(s)z" = S[s + A — AD(z)]
n2O0

An(-+00) = Aq(0) = Do vyda()

>

So Anz” = A(z,0) = S[A — AD(z)]

[ Porptt — sold =Fva)

where oT=eA?I — S(t)]dt, j > 0.

Remark 1

(Co(t) = 0)
= fo etdcatt)

= Cal) = Vit)
n2l

= S>C,(s)z"
n21

= C,(+oo) = C,(0) = Pr[¥ =n]

= Cas" = C(z,0)
n21

{a) For n > 1,C,,(¢) depends on the specific type of vacation policy considered.

(b) Explicit expressions can be obtained for 7; and ~*, 7 2 0, when the service time

distribution S{-) is of phase type with the (irreducible) representation (8, H) of order

n. Recall that this means that S(-) is the distribution of the time until absorption in a

Markovprocess with a finite number n of transient states 1,2,...,n and a single absorbing

state n + 1. The infinitesimal generator of such a processis of the form

(0 0)
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where H is a non singular n x n matrix which describes transitions between transient

states, and H° is a column vector of dimension n, which describes transitions from tran-

sient states to the absorbing state, with H° = —He. Throughoutthis paper, ¢ is a column

vector of appropriate dimension with all its components equal to 1. (8, 8,41) is the initial

probability vector and S(z) is given by S(x) = 1 ~ Sexp(Hz)e, for z > 0. For simplicity,

we consider only the case where 6,4; = 0.

Let
LyM LywyM «+ IynM

LQOM= :

LeiM LeaM «+> LeaM

be the Kronecker product of two matrices £ and M of dimensions k, x kz and ki x kj

respectively (£ @ M is a matrix of dimension kiki x k,k}). Let (1,(—A)) denote the

simplest representation of the group arrival Poisson process and let J denote the identity

matrix (of appropriate dimension). Then (see Neuts [1989, th. 5.1.5, pp. 244-246])

to = —(1@8)((-A)OT+1QH)(1 @ A),

ve = p10, k>I,

and

vw = -UOB)(-A)O@14+1@H)"(1 ee),

(8)

ey'N, kB1,€ =

|

where the matrices y, y, and Q(of dimensions 1 x n,n x n and n x 1 respectively) are

given by

gy = -(1@B)((-A)OI+T@O A)A8)),

y = -U@I\((-A@al+l@Ak)ylAeh,

(9)

N = -(L@I)\((-A)@I4+1@H)MI@H),

M% = -(1@I)((-A)@14+1@H)'(1 Be)

From (7) and (8), it is clear that no numerical integrations are needed to compute 7, and

wy, k 2 0. We refer to Latouche (1989) and Neuts (1989) for more information about
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phase type distributions.

2. The queue length at service completion or inactive phase termination
 

epochs

Let N(t) be the numberof customers in the system at time ¢. We are concerned with

the discrete parameter process obtained by restricting the process {N(t),¢ 2 0} at epochs

of service completion or inactive phase termination. Denote these instants by 6,, n 2 0,

and let ¢,, n > 0, be the number of customers arrived in the time interval ]0,,6n41].

Define

Ty = 9n41-0, and N, = N(O,+),n 20.

Then, for n 2 0,

Nati = (Nn -1)T HG,

and

Pr(Nnti = DT < t|No, To, M1.0,---,Tr-1, nr = i]

= Pr(Nagi =, Tn < t|Nn = 2] (= Qij()),e 2 0)

It follows that the sequence {(Nj, Tn) }nz0 is a M.R.P. on the state space {i > 0} x (0, too].

Its transition probability matrix Q(-) is given by

Co{z) Ci(z) C2(z)

Ao(z) Ai(x) A2(z)
Q(x) = 0  Ao(z) Ai(z) 20, (10)

0 0  Ao(x)

where A,(z) and C,(x), v > 0 are the probability mass-functions defined in (1) and (5).

Note that

p = SlkAe<1 (Ha) ,
R31

é= [fF edA(a) = [° 2d5(2) = EIS] < +00
0

B = [PF cae (x) = [ 2dv(z) = BV] < +00,

do kCk
k21

C'(1) = E[Y] < +00.
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Thus (see Neuts [1989, th. 1.3.1, pp. 12-13]), the M.R.P. {(Nn, Tn) }ago and the Markov

chain {N, Jao are positive recurrent. From (16), the transition probability matrix of the

Markovchain {.V,}nz0 is given by

Co Cy Cz
Ao At Az cc

Q=Ql+ooj=] 9 Ao Aro (11)
0 0 Ao

Clearly, this Markov chain is irreducible and aperiodic.

Let 2 = (2;)iz0 be the stationary probability vector, whichsatisfies

£Q=k

zer=l

From (11), we have

i+]

a= oC; + D> tvAjsi-v, for i > 0, (12)
vol

2.1. Computation of zo

From Neuts (1989, p. 15) we obtain

-1 1

—p-li4--yic,| =-—22. (13)vo | LY | 1—p+E¥]

2.2. Computation of z;,7 > 1

From Neuts (1989, p. 17) we have the following recurrence formula:

x in] a

—_ Ag’ [ee + >“’ 2 2 1, (14)

v=l1

where A, =1-¥A, and C, =l- Ey,for v >

An analogous recurrence formula for.the computation of z;, 7 2 1, can be found in

Ramaswami(1988).
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2.3. Mean queue length at service completion or inactive phase termination

epochs.

Put X,(z) = 0 xyz’ (|z| < 1). Equations (12) readily imply
So

X,(z)[z — A(z)] = xol[zC(z) - A(z}]

so that (see Neuts (1989, th. 1.4.1, pp. 17-18]) X zz; = -X/(1) is given by
Si

a
2(1 — p)

where 2g is obtained in (13),

X{(1) = {A"(1) + 2o[2C"(1) + €"(1) — AM(1)]} (15)

AN(1) = 35 p(y —1)A, = 1 (E[D})?E[S?] + AE[S](E[D?] - E[D}),
v22

and

C"(1) = Yo ov - 1)C, = E[Y?] — EY].
v32

3. The queue length at post-departure epochs

By restricting the process {N(t),t 2 0} at service completion epochs, we obtain

another M.R.P. on the state space {i > 0} x [0,+00[, with transition probability matrix

Q:(-) given by

where Bi(r) = 5 C.(-)* Aigi—v(2), for § > 0.
Thus Q;(z) differs from Q(z)-given by (10)-only in the elements on thefirst line: B,(x)

instead of C;(x), and the stationary probability vector t = (7;)izo of the corresponding

Markov chain could be computed in a way similar to that described in section 2 for the

computation of the stationary probability vector z.

Note, however, that a simple probabilistic argumentleads to the following relation

y= 7O +2Ci , 121 (17)
To
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Indeed, as the system is not empty at an inactive phase termination, we have:

to = Pr[the system is emptyafter a transition]

= Prlthe system is emptyafter a transition and this

transition is a service completion]

= Prla transition is a service completion] x

x Pr|the system is empty after a transition, given

that this transition is a service completion]

= Pria transition is a service completion] x 1

Thus, a is the probability that a transition is a service completion.

On the other hand,

Pr[a transition is an inactive phase termination]

= Pr[the system is empty after the previous transition]

= Io

The result follows by application of the law of total probability, as C; is the probability

that 7 customers arrive in an inactive phase.

From (17) we have

vin == m+ 20 9,C

 

 

ipl Fo 331 ipl

OF

l= 29 = 2(1 — m0) + 20

To

so that

mm = ro _ 1- p

° ~ {=a EY
(18)

™m% = } (x; — 2oCi),2 21
1— Zo

and, using (15),

. "qQ) c"(1)in =p +A 47) (19)2X PY 30 — p) *2[Y]
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4. The stationary queue length at an arbitrary epoch

In this section, we are interested in computing the continuous time stationary queue

length distribution, denoted by {p;}i0, by using one of the M.R.P. considered in the pre-

vious sections. As we noticed, the matrices Q(-) and Q(-) associated with these processes

differ only by the elementson thefirst line. As the expression for these elements is simpler

in Q(-) than in Q,(-), we will relate the distribution {p;};z0 to the stationary distribution

{z;}:x0 of the queue length at a service completion or inactive phase termination epoch.

(In Loris-Teghem (1990a, 1990b), a relation between the distributions {p;}iz0 and {7;}ix0

is obtained).

Wefirst introduce the fundamental mean F of the M.R.P. {(Nna,Tn)}azo (ie. the

inner product of the stationary probability vector x and the vector of row sum means

fo° zdQ(z)e of the matrix Q(-)). In the stationary version of the queue, EF’ maybeinter-

preted as the average time between two consecutive transitions (i.e. service completion

or inactive phase termination). From Neuts (1989, p. 22) we have

BA -p)+ax 0G,
v21

l-p+ uC,
v2)

& Hl 93 + (1 — zo)a =

\-1BLX] = E[S|(E[DJE[X] — E[Y])
1~p+EY] (20)
 

We assumethat time ¢ = 0 correspondsto a transition epoch in the M.R.P. {(Na, Tn) }azo

and that No = io > 0.

For t 2 0, let Mj,:(t) denote the conditional expected number ofvisits to state z in the

time interval [0,t], given that No = io, and let M(t) = {Mj,:(t),20 2 0,2 2 0} be the

Markov renewal matrix of the M.R.P. {(Na, Tn) }azo-

The matrix M(-) is given by the convolution powerseries

M(t) = 35 Q(t) , fort 20.
n20

Let dM,,i(t) denote the conditional probability that in the interval ]t,t + dt[, the M.R.P.

{(Na,s Tn) }azo enters state i, given that No = io.

We now consider the continuous-parameter process {N(t),¢ > 0} and define:

P.,i(t) = Pr[N(t) = t|No = io] , for t > 0,

and

Ki,:(t) = Pr[N(t) = 1,4, > t|No = to] , for 1 > Zo.
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We have(see Cinlar (1969, 1975))

iat ;

Pott) = Of difyiu)a(t — u)
j=0 “9

So dMio(uje*t-4) fori =0

fo dMjo(u)Kot — u) + ¥ ffdM;,;(u) [1 — S(t — u)] PQ — jt — a),
j=l

forz > 1.

The limits p; = him P,,:(t),7 2 0, exist (and are independentof ig) by virtue of the key
00

renewal theorem and are given by

_ to fp topm = 3 [ Koo(t)dt

 

“XE

_ AT —?p) (21)

~ AHELX] — E{S}(E[D]E[X] — E{Y]) ”

py = at ft Koi(t)dt + ; Ye,i P(i — j,t)[1 — S(t)]dt,i > 1, (22)

provided that eachof the functions A‘o;(-) — which depends onthe specific type of vacation

policy considered — be directly Riemann integrable.

Mean queue length at an arbitrary epoch

Relations (21) and (22) give, for the generating function P,(z) = & pit" (lz| <1):

Pi(z) = po + z {tci Ko(t, z)dt + [X.(z) — zo][1 — A(2)][\ - AD(z)"} ; (23)

where Ao(t,z) = 37 Ko;(t)z’.
31

Using this expression for P,(z), one could obtain the mean queue length > ip; = P;(1).v
2

Note, however, that this can be obtained by using the following decomposition property

(Loris-Teghem (1990a, 1990b)):

Py(z) = Pa(zJA.(z) , |zel<1 ,

where P,,(z) is the generating function of the queue length at an arbitrary epoch in the

bulk arrival model without vacations and A,(z) is the following generating function:

1—C{(z)
A(z) ==? -= BERIT = DED
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Thus

P,(1) Pro) + AL) (24)

 A[ACE[D])?E[S?] + E[S](E[D?] — E[D])]
pt

2(1 — p)
A‘(1) depends on the specific type of vacation policy considered.

with P!,(1)

5. Particular cases : the (T(SV); N)-model and the (T(MV); N)-model

In this section, we are interested in the functions Ko,(t), i 2 1, for two hybrid vacation

models: the (T(SV); N)-policy and the (T(MV); N)-policy, introduced in Loris-Teghem

(1985). In these models, upon becoming idle, the server leaves the system for a vacation

of random length. In the first case, when he comes back to the system, the server be-

comes active immediately if he finds at least N customers present. Otherwise, he remains

inactive, inspecting the queue, until N customers are present. In the second case, the

vacations are repeated until the server finds at least N customers in the system upon

return from a vacation. We refer the reader to Loris-Teghem (1990a) for more details

about these policies. Note that in Loris-Teghem (1990b), the distribution {Ck}kp1 of Y

is given for both the (T(SV); N)-model and the (T( MV); N)-model.

Let U(-) be the common distribution function of the vacation lengths, with finite

expectation E[U].

5.1. The (T(SV); N)-model

We have :

Aoi(t) = P(t, t)[1- U(é)], fort 2 N (25)

= P(i,t) forl<igN-1

Remark 2

For the N-policy (i.e. U(-) = 1), (25) reduces to

Ko:(t) = 0 , fori 2>N

=P(i,t) , forl<i¢N-1

Substituting into (22) yields

Pi = Pod di(k) +n sforl<i<N-1 (26)
k=l

=h fori 2>N
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where 7; (i > 1) is given by

_l At —
m= BL iy @ 21)

je

Whenthe service time distribution is of phase type, explicit expressions can be obtained

for p; (i 2 1). This follows from (4) and remark 1 (b). In the following example, we write

the expressions for po, p1, p2 and ps3.

Example

Consider the case where n = N = 2, H = ( O { ) and 6 = (1,0). We have

1

rp = ——s ,ELX]

AMA + 2
Pl o= {a +0520) ;

A+ p)(A+2n) Am= am! mr +2) a}
H Hl

 

A+e4OA +24) At p)(31? + BAM) 4sad py = Ay {@*A0" “
A+2 X
a+ d2)- xa} ;

where ELX] = 1 +d).

Remark 3

The N-policy model with a phase type service time distribution was considered in

Altiok (1987). In order to compute the p;, 7 > 1, Altiok uses the following relations:

po =O PY .for 1<i<N-1
k=0

(27)

where P*, (0 <i < N-1) and P*, (i > 1,k =1,...,m) are the steady-state probabilities

that i customers are in the system and the serveris idle, and to have ¢ customers in the

system and the server is in phase k respectively, for the computation of which Altiok

develops algorithms.
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5.2. The (T( MV); N)-model

We have:

N-1Kult) = OE fe Pewdy)PC = kt = yl=U) (28)
= P(i,t) gig N-l

where U')(t) denotes the r-th power of convolution of U(t).

Remark 4

Let by) = fo° e~dl/(t) denote the probability that no arrival occur during a single

vacation.

Putting NV =1 in

e (22) and (25) we get

Pi = dpe P(i,t)[1 — U(t)]dt-+ (21) (29)

for the T(SV)-model.

e (22) and (28) we get

p; = Apo(1 — bo)? P(i,t)[1-U@)+m (21) (30)

for the T(MV)-model.

When S(-) and U(-) are phase type distributions, explicit results can be obtained for p

(t 2 1) for both models. Note that pp appearing in (29) and (30) is given by

Po = (E[X])~"(1 — p)

where(see Loris-Teghem (1990a)) E[X] = AE[U] + 6 for the former model, while for the

latter model ELX] = AE{U](1 — 6y)7?.

References

Altiok T. (1987). Queues with group arrivals and exhaustive service discipline, Queueing

Syst., 2, 307-320.

Cinlar E. (1969). Markov renewal theory, Adv. App. Prob., 1, 123-187.

Cinlar E. (1975). Introduction to Stochastic Processes, Englewood Clifs, NJ : Prentice-

Hall.

47



Latouche G. (1989). Distributions de type phase : tutorial, Cahiers du C.E.R.O., 31,

3-11.

Loris-Teghem J. (1985). Analysis of single server queueing systems with vacation periods,

Belg. Journ. of Op. Res., Stat. and Comput. Sc., 25, 47-54.

Loris-Teghem J. (1990a). On vacation models with bulk arrivals, Belg. Journ. of Oper.

Res., Stat. and Comput. Sci., 30(1), 53-66.

Loris-Teghem J. (1990b). Remark on : On vacation models with bulk arrivals, Belg.

Journ. of Oper. Res., Stat. and Comput. Sc., 30(4), 53-56.

Lucantoni D.M. (1991). New results on the single server queue with a Batch Markovian

Arrival Process, Stochastic Models, 7, 1-46.

Lucantoni D.M., Meier-Hellstern K.S. and Neuts M.F. (1990). A single-server queue with

server vacations and a class of non-renewal arrival processes, Adv. Appl. Prob., 22,

676-705.

Neuts M.F. (1989). Structured Stochastic Matrices of M/G/1 Type and their Applica-

tions, Marcel Dekker, Inc., New York.

Ramaswami (1988). A stable recursion for the steady state vector in Markov chains of

M/G/1 type, Stochastic Models, 4, 183-188.

48



Belgian Journal of Operations Research, Statistics and Computer Science, Vol 31, n° 1-2

THE P-CENTER PROBLEMIN Re

WITH WEIGHTED TCHEBYCHEFF NORMS

Blas PELEGRIN PELEGRIN

Dpto. de Matematica Aplicada y Estadistica
Universidad de Murcia, 30100-Espinardo. Murcia. Spain

ABSTRACT

In this paper the p-center problem in R" is studied when distances are measured by a

weighted Tchebycheff norm. For the 1-center problem it is proved that the lower boundpro-

posed by Dearing and Francis (1974) is attained and a onestep algorithm is given to obtain

an optimal solution. Then, an exact algorithm for p>1 is proposed which generalizes the

one given by Aneja et al. (1988) for the unweighted rectangular p-center problem on the

plane. Finally, a new 2-approximation heuristic polynomial algorithm is given which is «best

possible» since for 6<2 the existence of a d-approximation polynomial algorithm would im-

ply that P= NP.



 

1 INTRODUCTION

Let M = { PyePo,-- +s Py } bea given set of points in the

Euclidean space rR". The p-center problem in R" seeks p points

Cy Car ee ek p<m , so that the maximal weighted distance betweenp’

each point Pi and its closest point c, , j=1,..,p, is minimized.

The problem is usually formulated as

(P1) Minimize max { Wi min { N(P;-X3) }

Xyree xer” 1<ism 1<isp

where N denotes a norm function and w,>0 , i=t,..,m.

Alternatively, the problem can be seen as that of finding a

partition a = { M1, - +My } of the set M into p disjoint subsets,

so that the maximum among the maximal weighted distances between

the best point (optimal solution to the 1-center problem with

points Pi in M,) and the points in each subset M. is minimized.

Then the problem is also formulated as

(P2) Minimize Ty = max. { r(M,),.-.5(M5) }

aeP(M,p)

where P(M,p) denotes the set of all partitions of M into p

disjoint subsets and r(M,) denotes the optimal value of the

1-center problem associated with the points in M, ,j=1,..,p.
J

Then the points Cy Core Cy, are found as optimal solutions to the

1-center problems associated with the subsets of an optimal

partition.

The problem arises typically for n=2 in the field of Location
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Theory when one seeks locations for p facilities, so that the

maximal distance or travel time between each demand point Py and

its closest facility c, is minimized.Examples of this kind of

problem are in the location of emergency services (like fire

stations, ambulance and helicopter bases, police stations),

location of radio and TV stations, messenger delivery

services,etc. The problem can also be found in Cluster Analysis

where the aim is to create p groups in a set of objects M, so that

the maximal dissimilarity between each object Py and the center

c, of its group is minimized. The objects are characterized by

the values of n variables, and the dissimilarity is meaSured by a

norm function. Examples are found in economics, social sciences,

and almost all empirically based disciplines.

For n=2, in spite of being NP-hard (Megiddo and Supowit'), the

problem has recently been solved by exact algorithms for the

euclidean norm (Drezner”, Vijay, Chen and Handler‘), and for the

rectangular norm (Watson-Gandy”, Drezner®, Aneja et al.’). For

arbitrary n, due to its complexity, only heuristic algorithms have

been used (Drezner’, spath®, Eiselt and Charlesworth’, Dyer and

Frieze!°), which can be applied for any norm N. Most of these

heuristics require the 1i-center problem to be solved many times,

which is time consuming for n > 2. In this case, the centers

Cyr erly are normally constrained to be points in M, as happens in

other Cluster Analysis problems and in the classical p-median

problem in Location Theory.
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The aim of this paper is to study the problem when N is given

by a weighted Tchebycheff norm, which is defined as:

N(X) = max { An | x, | ,h=1,..,n )

where XK = (X4,-+++%)) and 4,20,h=1,-.,n. For n=2, these norms are

obtained by linear transformation from bidirectional polyhedral

norms (Pelegrin!') , and they can then be used in Location Theory

when the movement is restricted to two given directions. For

instance, taking the transformation X= Yqt¥2 6 X= ¥,-¥o it

follows that |y,|+|y,|=max.{|x,[,|]x,|}, and the Tchebycheff norm

is eotained from the rectangular norm. For any n , they are

obtained by a scaling transformation from the Tchebycheff norm

and can be used in Cluster Analysis as criterion distances.

To our knowledge, the problem is studied here for the first

time for this type of norm. Firstly, we deal with the 1-center

problem showing that the lower bound given in Dearing and

Francis!? is reached and solve the problem by a one step

algorithm. Then, the algorithm given in Aneja et al.’, which

solves optimally the problem in R? with the rectangular norm

and wil ,i=1,..m, is generalized to solve the problem in R®

with any weighted Tchebycheff norm and w,>0,i=1,..,m. Finally,

some heuristic algorithms are considered and a 2-approximation

polynomial algorithm is proposed which is "best possible" since,

for any 6<2, the existence of a &-approximation polynomial

algorithm would imply that P=NP as shown in Ref. 15 and 16.
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2 THE 1-CENTER PROBLEM

The 1-center problem is formulated as follows

(P3) Minimize R(X) = Max { Wi N(P,-X) }

XeR” 1<i<m

where X = (x x),P.=(a i a iy and N(P, -X)= max.{ a, la iy |
wren ead 1/°"*r on %¢ i . h'vh h

h=1,..,n }. Let x" and c denote an optimal solution and the

optimal value of (P3) respectively.

A lower bound of R(X) for any norm N is given in Dearing

and Francis |? by

B= max { WWN(P,-PL)/ (Ww,+) }

itk

The following property shows that the lower bound B is reached

and gives the set s* of optimal solutions to (P3).

Property 1

i) xr =B

ii) S* ={ XeR™ : max { a,*-B/w,A, } <x, < min { a,"+B/w,A, }}-
ivh h h ivh

1<i<m 1<i<m

Proof:

Let B(X,r) denote the ball centered at X and with radius r,

i.e.,B(X,xr)= { Yer": A, l¥n-%,l & 5» het,..,n }, and let B,(X,r)

denote the projection of B(X,r) on the h-th axis,i.e., B, (X,5) =

{ y, «R : a, ly,-x,| <5} . Then B(X,X) =], B,(X,r) because N is

a weighted Tchebycheff norm (note that this holds for such norms

only). Also r > r* iff vn { B(P,,r/w,) : Py eM} #2.

For Xia (wyPst WPL) / (Wit wy) , itk , it follows that

B> WwWLN(P,- PL) / (Ww, +w,) = wiWy ( N(P,-Xi,)+ N(P, -Xj,) )/(wy+wy) =



= WiN(Pi = Xiy) = WN(PL- Xiy)
ik ik

therefore Kix = (x, pee Ry )eé B(P,,B/w,) n B(P,,B/w,) and

ik .
Xpy €B) (P; ,B/w;) n By (P),. B/W, ) for h=1,..,n. Hence on each h-axis

By CP, B/W, )nBy (P,, B/W, ) * o for any Pi ,P,e M,i#k. From the Helly

property ( Rockafellar'? ) , it follows that o { By, (P;,B/w,)

P.eM} #28
i

For h=1,..,n, let x," be in oa f{ BL (Py B/W): Pie M } , then

X'= (x, peer Xy )en { B(P,,B/w,;)+ P,é M } . This implies that

R(X') = B . Consequently, r= B and s*= { XeR™; R(X)= B }.

~ . i
As XeS if and only if Wy max. { An lan “xX| : h=1,..,n} £ B

for all Pie M, the proof is complete.

The lower bound B is also reached in R? for bidirectional

polyhedral norms, however this result is false for the L, norm

in rR", n>2, as it happens for Py = (0,0,0) , Po= (1,1,0),

P3=(1,0,1) , P4=(0,1,1) and wi=l,i-1,..,4.

As a consequence of property 1, =the following one step

algorithm gives an optimal solution to (P3).

ALGORITHM 1

- Calculate

i k
B= max { w,W,/(wW,+W,) max { An lan -ay |} }

ik 1<hén

i =a, = max {f{ ay -B/wiAy } for h = 1,..,n

1<ic<m

: i _
By = min { an +B/WiAy } for h= 1,..n

1<i<m

54



* *

~ Choose Xp, € [ a By ], e.g. Xn = (@,+By) /2 for h= 1,.,n.

* * * * * *

- Set X =(X, ,+-,%, ) and r = BB. Output X andr . Stop.
n

3. AN EXACT AL GORITHM FOR P>1

In the following, the algorithm given in Aneja et al.’ is

generalized to solve the problem (P2). Let r denote the optimal

value of (P2) and CiKe WWN(P, -PL)/(w,+w,) for ik . For any

partition a=(My,..M)), from property 1 it follows that

(1) r(M5)= max { lik PiPy € M, }

izk

Then, it is not necessary to solve any optimization problem to

evaluate ry + as happens with other norms, and the following

property satisfies.

Property 2

rc € R= { ©, P.,P, € M, ik }ik * tit’k

Let reR, and define the graph G(r) = (V,E(r)) as follows :

V= { Py,-.,P, }

E(r)= { (P,,Py) ip £ Or}.

Property 3

(P2) is equivalent to the problem of finding the minimum value

of r in R , such that Vis covered by a set of p cliques (maximal

complete subgraphs) of G(r).

Proof;

Let a=(M,,.-M,) be a partition such that ly £ xr, then lik £2
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for Pie Pye M,. j=1,..,p. Therefore, Mi, j=1,.-,P, are complete

subgraphs of G(r) from which a set of p cliques covering V_ can

be generated adding (if necessary) points to each subset M,-

Conversely, if Var eeVy are cliques of G(r) covering V, then

a partition a can be generated ,eliminating (if necessary) some

points in VyeeeVy , which satisfy Ly Kr. Note that since this

transformation of partitions into sets of covering cliques may be

done in polynomial time, the problems are polynomially equivalent.

Let Vara Vg be all the distinct cliques of G(r). There exist p

cliques of G(r) which cover V if and only if the optimal value of

the following set covering problem , SCP(r), is less than or

equal to p:

SCP(r) Minimize z=y). xX.

s.t. ¥. a... xX, > 1°, i=1,..,m

x, e {0,1}, j=1,..,q.

where x5= 1 if clique V; is chosen,0O otherwise ; ais 1 if Pievy.

0 otherwise. Then, the following algorithm solves (P2) optimally

ALGORITHM 2

Step 1 : Arrange all the distinct Tix values , ik, into an

increasing sequence : r, < r,< ...<¢ £
1 2 t*

Step 2 : By a binary search on the list R= { Lye loge Ty } find

the smallest r in the list, i.e. r’,for which the optimal

value of SCP(r) is p.
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Step 3 : Output r and the cliques v5" corresponding to x57 1 in

the optimal solution to SCP(r’).

* * *

An optimal partition « =(M, roa My, ) can easily be generated

from the cliques vy") j=1,..,p. Optimal centers C,,..,C. are
1 Pp

obtained by Algorithm 1 solving the 1-center problems associated

with an optimal partition.

The above algorithm requires that all distinct cliques of

G(r) be found and then SCP(r) solved, and this at most for log,t

2log,m-1 different values of r. It can be proved that the number

of cliques (number of columns of SCP(r)) is bounded by m™ , so

that the algorithm can only be used for very small values of

n (in Aneja et al.? problems with n=2 and m<¢ 100 are optimally

solved). For relatively large problems however, only heuristic

algorithms can be used.

4, HEURISTIC ALGORITHMS

Most heuristic methods for other location-allocation problems

can be modified to obtain approximate solutions to (P2) for any

norm N. For instance ,~ the "alternate location- allocation

method" (Cooper!3) and the “exchange method" (Spath!4),

both suggested for the p-median problem, can be used ; the

difference is that, due to the different objective function, it is

necessary to use a 1-center algorithm instead of a 1-median

algorithm as a subroutine. These types of method become more
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efficient for a weighted Tchebycheff norm since it is enough to

use the evaluation of r(M,) given in (1) as a subroutine

during the iterative procedure instead of a 1-center algorithm,

which is used only at the end to obtain the centers ( Algorithm 1

can be used to obtain the centers from the generated partition ).

Moreover, for (P2) some S-approximation polynomial algorithms

have been given , which generate a partition a such that ry £5 r’

for some given value of 6 . For instance , Dyer and Frieze!°

describe a simple heuristic for the p-center problem with an

arbitrary metric which is a 65-approximation for 6 = min { 3 ,

w } , where w is the maximum ratio between the weights of the

points in M , and Plesnik!> gives a 2-approximation

polynomial algorithm ("best possible") for the p-center in

graphs; both can be used to obtain approximate partitions of (P2)

for any norm N from which the centers can be obtained by

Algorithm 1.

We propose a new heuristic algorithm to generate an approximate

partition ,based on properties 1 and 2, as follows

ALGORITHM 3

Step 1: - Generate any partition a= (Myo, MO°)

- Calculate ly
°

- Set R={rfr itk }.ik * Tikt Ta, '
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- Make a list L arranging all the distinct lik values

of R into an increasing sequence.

- Set T= “a, and a= a,

Step 2: - If {|[L]>1 take r as the median value of L. Make

unlabelled all points in M . Go to step 3.

- Else L { lo } , STOP. Output Ly and «@

Step 3 : - Choose an unlabelled point PL of maximum weight and set

M= { Phir tie

- If all points in M are labelled go to step 4 . Else go

it & rv}. Label all the points in M

to step 3.

Step 4: - Set a'={ Mit: ML! is generated in step 3 }.

- If ja'| < p set Le { riy,f Lo: Ly, <r}, aw = aw and

torr. Else set Le { Liye L:fr< lik }

- Go to step 2.

The complexity of step 1 is 0 (m*10g m). Step 2 to step 4 is a

binary search in the set L_ that finds the minimum value in L

for which the partition a' generated in step 3 satisfies |a'| < p.

As step 3 is O(m*) and the binary search is O(log m) the

complexity of the algorithm is O(m21log m).

Property 4

The above algorithm is a 2-approximation polynomial algorithm

for (P2), and gives a lower bound lo of r’

Proof

First, it will be shown that r(M,") & 2r for each set M,

generated in step 3 and any reL. From the definition of M,’ and
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(1), this is true if |M = 1o0r [M,* | = 2. Otherwise, let P,Pt'| k

€ Mit, i,k #t, as lit £02, Tyee £2, Wi x We and Wy cq We , then

Ti, = Wi/ (Wi tH) N(P, - PL) <

Wi/ (WitH) (N(P. - PL) +N(P,- PLY) x

Wiwy/ (Ws ty) ( (Wi tWi) JWWy + (Wytw) /WLWe ) res

(1+ 2 WW/ (Wytw) )xrs

( 17 + max {wi W/W )reg2r,

therefore from (1) it follows that r(M,") < 2x

Let r > r- , that is there is a partition a@ = (M,,-./M)) with

ly £ xr. Let the point Py in an iteration of step 3 be in M. ; as

Tit < x for any PieM, it follows that M, c M,'- Then the partition

a’ generated in step 3 satisfies Ja'| < p . Consequently, if the

partition «' generated in step 3 satisfies |a'| >p then r < rc.

xr
*

Therefore min { r ik © L } is a lower bound of r in each
ik

iteration of step 4

At the end L={ ry) and ja] < p, as then rok ty sk 24 £2 r.

it follows that Algorithm 3 is a 2-approximation polynomial

algorithm and Ly is a lower bound of rn.

The proposed algorithm is then "best possible" since for any

6&<2 it ais known that the existence of a 5-approximation

polynomial algorithm would imply that P=NP {Hsu and

153 Hochbaum and Shmoys!®) . It generates a partition a ,Nemhauser

as happens with the other algorithms mentioned, so that the

centers can be obtained from the generated partition by Algorithm

1. Also, an upper bound on the related error ( ry r’) / r- can

be obtained as ( ry IQ) / to:
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ABSTRACT

Weconsider the problem of scheduling a set of n jobs nonpreemptively on m identical

machines. The goal to minimize C*, the maximum completion time overall jobs. This pro-

blem is known to be NP-complete. We present a class of new approximation algorithms
that have low running time O(n log m) and guarantee the worst case performance of Graham's

famous LPT-Algorithm.

 



—

1 Introduction

We consider the problem of scheduling a set of n jobs nonpreemptively on m

identical machines. The goal is to minimize the maximum completion time over

all jobs. We denote the maximum completion time in an optimal schedule by

C*. In 1969, Graham [2] suggested two simple heuristics for this problem. List

Scheduling, the first heuristic, lists the jobs in any order and then assigns them

in this order to the machines as they become free. The Longest Processing Time

algorithm (or LPT, for short) first sorts the jobs by decreasing processing time

and then applies list scheduling to them. List scheduling gives a schedule with

maximum completion time at most 2~ + times C™ and LPT gives a schedule

with maximum completion time at most 4 — + times C*. Both bounds aretight.

For the running time,it is easy to see that list scheduling takes O(n log m) time

and LPT takes O(nlogn) time. Thus, if we take the number of machines to be
constant, the running time oflist scheduling outperforms LPT bya log(n)-factor.

In this note, we present an algorithm that has the same worst case performance

guarantee as the LPT-algorithm and has the low running timeoflist scheduling.

Moreprecisely, we construct a sequenceof algorithms that lie between list schedu-

ling and LPT and determine their exact worst case performance. The behaviour

of the algorithms depends on the number m of machines and on some parameter

k, 0 <¢k < 2m. For k > 2m,ouralgorithm is at most the LPT-factor $ — 34 off
3m

the optimum.

2 The Algorithm and the performance guaran-

tee

Let J be a set of n jobs that must be scheduled to m machines and let k be some

integer, 0 < k <n, We may assume m < n as otherwise the problem is trivial.

Our approximation algorithm A(m, k) proceedsas follows.

(1) Determine the set J* of the & jobs in J with largest processing times. Form a

list that contains the jobs in J* in arbitrary order and append the remaining

jobs in J — J* toit.

(2) Apply list scheduling to the constructed list.

It is well known that determining the k*-largest processing time can be done

in O(n) time (see e.g. [1]). Thus, finding J* takes O(n) time and appending the
remaining jobs takes O(n) time, too. Step 2 is standard O(n log m)list scheduling,

and so we get an overall time complexity of O(n log m)for algorithm A(m,k).
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Now let C/ denote the maximum completion time in a schedule constructed

by the algorithm A(m, k} and let C™ denote the maximum completion time in an

optimal schedule. In Section 3, we will prove the following tight worst case bounds.

 

  

 

    

Worst case Ratio Ratio

Rangeof & of CH/C" for m =2
0 <k< (m-1)/2 2 -—1/(m—k) 3/2

(m—1)/2 <k< m-l 2 —2/(m+1) 4/3
m <k< (4m—-1)/3] 1.5 -1/(4m—2k)| 5/4

(4m—1)/3 <k< I2m-1 1.5 —3/(4m +2) 6/5
2m <k 1.33 —1/(3m) 7/6
 

That means, the worst case ratio remains constant for all k > 2m. However,

the running time detoriates and so in practice we will not use large values for k.

Numerical experiments demonstrated that the average performance of algorithm

A(m, k) improves with increasing k. Figure 1 graphically illustrates the worst case

behaviour of A(m,k) for k > 0.

3 The Proofs

Let m denote the number of machines and let k be the parameter of algorithm
A(m, k) as defined in the preceding section. As k is fixed we write C” for CH to
simplify notation. By z we denote the job that is treated last by the algorithm.

First we consider the cases 0 < k < m-—1. Thejobs in J* all havelength at

least z. W.Lo.g. the jobs in J* are scheduled to the last k machines. Consequently,

at the time before job z is scheduled by the algorithm, the total load of the first

oe

3_
2 2m a >

4
3

 T T T— T k
0 (m—-1)/2 m (4m—1)/3 2m

Figure 1: The worst case performance of algorithm A(m, k)
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m —k machines is at most mC” —(k+1)z. Job z is scheduled to the machine

with smallest load at this time and the smallest load is less or equal the average

load of the first m — k machines. This gives

CH < (mC™ - (k + 1)z)/(m — k) +2 = (mC* + (m—2k —1)z)/(m—k) (1)

For 0 < k < (m— 1)/2, the coefficient of x in inequality (1) is nonnegative.

Using z < C*, we get that C7/C* < 2-—1/(m —k) holds, the claimed result

for 0 < k < (m—1)/2. For (m —1)/2 < k < m—1,the coefficient of x in
inequality (1) is nonpositive. In this case for zr > mC*/(m +1), inequality (1)

immediately implies C4/C* < 2—2/(m+1). For z < mC*/(m +1), we use

another averaging argument. At the time before job z is scheduled, the total load

over all machinesis less or equal mC™ — x. Hence

CH <(mC* -2)/m+2=C* +(m—1)z/m< (2-2/(m4+1))C* (2)

holds, and we have finished the proof for cases 0 << k <m—1.

Next, we treat the cases m <k <2m—1. We define k’ =k —m 0. First we

observe that

z<cCc"/2 (3)

musthold. If z is greater than C*/2, there are k+1 > m big jobs of length greater
C*/2. Then in the optimum schedule there exists a machine with two big jobs and

load greater C*, a contradiction. After the algorithm scheduled the m+ Kk’ jobs in
J*, there are at least m — k’ machines that received exactly one job of J* (Every

machine gets at least one job. If there are only m — k’ — 1 machines with one job,

the remaining k’ + 1 have at least two jobs each, and we get a total job number of

at least m+k’ +1 > jobs in J*, a contradiction). We rearrange the sequence of
machines such that the m — k machines with one job of J* rangefirst. The last

k’ machines process the remaining 2k’ jobs. Consequently, at the time before job

z is scheduled by the algorithm, the total load of the first m — k’ machines is at

most mC™ — (2k + 1)z and

CH < (mC— (2k' + 1)z) /(m — kK’) + 2 = (mC™ + (m — 3k— 1)z) /(m — F') (4)

holds. For 0 < k’ < (m — 1)/3, the coefficient of z in the right hand side of

inequality (4) is nonnegative. Using (3), we derive C4/C* < 1.5 — 1/(2m — 2k)

and weare finished. For (m — 1)/3 < K < m—1,the coefficient of z in the right
handsideof inequality (4) is nonpositive. We distinguish between the two subcases

z <mC*/(2m +1) and s > mC*/(2m+ 1). In the case r > mC*/(2m + 1), we
can use inequality (4) again and we get C4/C* < 1.5 —3/(4m + 2). In the case
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z <mC*/(2m+1), we consider the time before job x is scheduled. The total load

over all machinesis less or equal mC" — x. We derive that

C# <(mC* ~2)/m+2=C"+(m—1)z/m< (15-3/(4m+2))C* (5)

holds, and the cases m < k < 2m — 1 arefinished, too.

Finally, we assume that 2m < k holds. It is easy to see that x < C*/3

must hold. Otherwise, there are k +1 > 2m+1 jobs of length > C"/3. In

the optimum schedule, at least one machine must contain at least three of these

jobs; this machine would have load > C*. Therefore, we may reuse inequality (5)

and plugging in z < C*/3 instead of z < mC*/(2m +1), we derive C#/C™ <
4/3—1/3m. This completes the proofof all worst case boundsclaimedin Section 2.
O

To prove the tightness of our bounds, we exhibit the following five sets of
examples. In each example sequence,the first k elements are the largest k elements

in the sequence. Hence, algorithm A(m, k) may skip step (1) and use the sequence
exactly in the given ordering.

Example 1. (0 < k < (m-—1)/2) First there are k jobs of length 1, then

(m — k)(m — k — 1) small jobs of length 1/(m — k), and finally job z of length 1.
By scheduling all small jobs on m —k —1 machines, we see that C* = 1 holds. Our

approximation algorithm equally schedules the small jobs on m — k machines, and

finally puts z on one of them. Hence, C# = 2—1/(m—k). O

0 ((m —1)/2 < k < m—1) Our list consists of m — 1 big jobs of
length m/(m+ 1), m small jobs of length 1/(m + 1) and the big job x of length

m/(m+1). The optimum solution simply matches every big job with a small job

and gives C* = 1. Our algorithm schedules all small jobs to one machine. Then
job z makes C4 = 2m/(m+1). O

(m < k < (m—1)/3) We use & big jobs of length 1/2, then

(k—m)(k—m—1) small jobs of length 1/(2k~—2m), andfinally the big job of length

1/2. Similarly as in example 1, we see that C= = 1 and that C? = 1.5-1/(4m—2k).

O

((m — 1)/3 < k < 2m 1) Thefirst 2m — 1 jobs are big jobs of
length m/(2m +1), then there are m small jobs of length 1/(2m +1) and job z of
length m/(2m +1). The optimum schedule assigns to each machine two big and

one small job, the approximation schedule assigns all small jobs to one machine.

Hence, C* = 1 and C? = 1.5~3/(4m+2). 0

(2m < k) Here we use Graham’s lower bound example [2] for the
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LPT-algorithm. We have jobs p,...pom such that p; has length 2m — [7/2] and
Pom+1 = z has length m.It is easy to check C* = 3m and C? = 4m—1. 0

References

[1] M.Blum, R.W-Floyd, V.R.Pratt, R.L.Rivest and R.E.Tarjan, Time boundsforselec-

tion, . Comp.yst. ciences 7, 1972, 448-461.

{2] R.L.Graham, Bounds on multiprocessing timing anomalies, AM . Appl. Math. 17,
1969, 416-429.

68

 



Belgian Journal of Operations Research, Statistics and Computer Science, Voi 31, n° 7-2

MODELLING CORPORATE VULNERABILITY:

YET ANOTHER EMPIRICAL ATTEMPT

D.J.E. BAESTAENS

Erasmus University Rotterdam

Dept of Finance

Burg. Oudlaan 50, 3062 PA Rotterdam, The Netherlands

ABSTRACT

This paper argues that potential weaknesses of MDA could be avoided by using the
Mahalanobis Distance (d2). The model’s uniquenessallows for a more detailed analysis of

corporatefailure triggers (conversely shock absorbers)at the corporatelevel. Incidentally,

the main input for the distance analysis, the sample’s dispersion matrix, could be used to
quantify the distance’s sensitivity to changesin the (co)variances of so-called policy variables.
Such analysis is likely to benefit central bank regulators (monetary & fiscal policy) as well

as corporate management(interest rate sensitivity).

 



1. Introduction

Company failure is an emotionally event, unfortunately not
really accounted for by a solid theoretical framework’. As
Barnes (1987) pointed out, researchers may well be testing
the hypothesis that the event’? may be explained by the
statistical behaviour of ad hoc generated datasets.

The first attempts to quantify the bankruptcy process in the
US were presented in the seminal Altman (1968,1977,1984)

papers. Taffler (1977,1980,1982) was among the first to
introduce and improve upon the Altman MDA-method’ in the UK
corporate environment. These original contributions have
since been the subject of elaborate testing procedures and of
academic debate (see eg. Ezzamel and Mar-Molinero,1990;
Karels and Prakash,1987) whereby the discussion focuses on
the misspecification of the MDA model. Are researchers
justified in applying a multivariate statistical technique
while disregarding its restrictive assumptions ?
In theory, the use of MDA requires the prevalence of at least
two easily identifiable and mutually exclusive groups of
observations, multivariate normality of the cases under
study, specification of the a priori probabilities of
occurrence of each group and dispersion matrices’ equality in
case of linear discriminant analysis (LDA).

In this paper we assert that the first two requirements are
very restrictive indeed. Because of these constraints the
MDA method may not be the most appropriate method to describe
and predict failure. Consequently, we will suggest a poten-
tial alternative to MDA. Finally, we will apply the alternat-—
ive to a sample of UK firms from the Printing & Publishing
Industry with a view to identifying entities deviating from
the industry average.

2. Limitations of MDA

1. Group Composition

Although the first requirement does not usually constitute an
obstacle, identifying distinct groups of failed and nonfailed
firms may be more treacherous than it seems. How does one
define failure when the failure process is conceptually
nebulous ? A majority of studies appears to adopt some ex
post empirical record as failure criterion, be it renego-
tiation with creditors, bond default, stock exchange delis-

1 Donaldson’s (1969) Financial Mobility Strategy
attempted to integrate unanticipated events and cash flow
patterns in a systematic manner.

7 Or any other event, such as economic instability
(Baestaens ,1990)

> Multiple Discriminant Analysis
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ting or decision to file for reorganisation under Chapter XI
of the Federal Bankruptcy Act.
While analysis’ of the real world variable clearly indicates
the category the firm belongs to, classification of the cases
becomes a biased process as the failure category becomes
unnecessarily stratified. To exemplify, we have not come
across many MDA studies investigating the question why some
firms are more successful than others in a given setting.
Metaphorically, analysing failures may be like investigat-
ing the Black Death. What matters is not the detection of the
pathogen by carrying out post-mortem analyses but the
identification of the survivors’ defence mechanisms. We fear
that restraining the failure class sample to those entities
that actually failed (whatever the failure definition) may
lead to the repudiation of the evidence provided by those
firms that were infected with the failure-disease but managed
to get rid of the malady.
We therefore prefer an a priori undefined approach to the ex
post empirical classification routine. The advantages of the
a priori approach are fourfold. First, we do not have to hunt
for a specific, necessarily subjective (in the absence of a
failure theory) failure criterion. Second, by pooling all
firms we avoid the obligation of having to construct a non
failed sample consisting of really healthy firms unlike
Taffler (1982). Third, no tests are needed to verify the
equality of the variance-covariance matrices across groups.

, Finally, our procedure possesses the implied benefit of not
having to deal with the issue of determining a priori
probabilities of the event occurrence.

2. Multivariate Normality

The normality condition sometimes appears to be interpreted
as imperative (Eisenbeis,1977; Karels and Prakash,1987;

Taffler,1982) and sometimes as accessory (Barnes,1982;
Richardson and Davidson,1983). This ambiguity may stem from
the lack of a standard test for multivariate normality
compounded by the fact that univariate normality does not
guarantee multivariate normality. As non normality may be
caused by the presence of outliers, the conventional statis-
tical approach has always been to identify such outliers with
a view to deleting‘ or separating them from the rest of the
data under study (Anscombe,1960; Collett and Lewis,1976;
Hartwig and Dearing,1979).

Our present approach on the contrary may be somewhat novel in
the sense that outliers are treated as the major information
source (Ezzamel and Mar-Molinero,1990; Howell,1989).

4 Sometimes euphemistically called Winsorization
(changing an outlier’s value to that of the closest non
outlier) or Trimming (removal from the sample an equal number
of the smallest and largest observations).
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We assume that events in which either individual variables or
the relationships between variables take unusual values or
are distorted into unusual levels (as measured by statistical
criteria) may reflect strain in or upon the economy, respec~
tively the individual firm. This strain may or may not endure
after the stress is removed’. Here we are interested in
extreme states in their own right, though we accept that some
of them will be due to spurious observations or chance
events. Where there are many variables, as here, multivariate
methods are well developed only for the normal distribution,
as discussed by Bacon-Shone and Fung (1987), and this paper
uses the Mahalanobis distance (d?) and Hotellings T? as
representative of such methods. Although d? assumes either a
multivariate normal or elliptical distribution (Mitchell and
Krzanowski,1985), we are hoping that our data are not jointly
normally distributed since we are actively seeking outliers
from such a distribution. In this sense, we believe we are
among the first to apply the Mahalanobis distance initsown
right to the issue of identifying sick firms.

3. dad? & T?: Alternatives to MDA ?

3.1. Presentation of d?

The joint distribution of normally distributed individual
variables is often multivariate normal. Figure 1 shows a
resulting ellipse of uniform probability density for two such
variables X and Y, standardised to equal standard deviations.

A joint confidence region for X and Y¥ is elliptical. This
region is not the intersection of the two univariate confi-
dence levels at the same significance level (circle in
Figure 1). We call this circle an "uncorrelated" confidence
region and points outside it "uncorrelated" outliers.
Points in Regions I and II are respectively outliers and

inliers for both the ellipse and the circle, whilst points in
the Regions III are inliers to the ellipse but outliers to
the square. Points in Regions IV are outliers to the ellipse
but inliers to the square.

Conventional regression analysis does not yield confidence
regions equivalent to the ellipse - projection into the X
space makes predictions of Y conditional on X rather than
absolute, so that the confidence region is hyperbolic and
unbounded before X is observed, and “unusual” states of X are
not recognised on observation. In general, the absence of a
theoretical framework disallow researchers to givé any
particular set of X variables special status as independents.

* In engineering disciplines, stress and strain denote
distinct realities. Stress refers to the event that causes
the distortion to happen while strain is the equivalent of
the distortion.
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Figure 1: Possible confidence regions using
uncorrelated and correlated multivariate
criteria.
 

 

 

   
 

To deal with this we note that points on the ellipse in
Figure 1 share not only the same probability density, but
also the same Mahalanobis Distance from the mean observa-
tion. The Mahalanobis Distance of a single multivariate
observation from the mean observation of a sample of n
observations can be estimated using:

Pp Pp _— _

d@? = F(x, - x) cf (x, - x) (1)
ie. jm

where

x, is the mean of the ith variable
and c’) is the element in the ith row and jth column of the
inverse of the variance-covariance matrix Cc”.

da? follows a Chi Squared distribution with p degrees of
freedom (Manly,1986). Figure 1 suggest that in correlated
data sets this test will be the most useful and is likely to
detect a set of outliers distinct from uncorrelated outliers.
A chosen cut off value of the Mahalanobis Distance d? separ-
ates observations between Mahalanobis Outliers (Regions I
plus IV in Figure 1) and Mahalanobis Inliers (Regions II
plus III in Figure 1). We assume temporarily that a d? value
has been chosen so as to give these regions convenient
relative probabilities, and interpret them as follows. Points
in Regions III are events where at least one variable is
outside its individual confidence interval, but the joint
value is not. Such events we call "structure preserving" in
the sense that the expected correlation structure is pre-
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served. In contrast, points in Regions IV we call "structure
violating", because although neither variable is outside its
individual confidence interval, the expected correlation of
the two variables is violated. Events in Region I may or may
not violate correlation structures.

3.2. Decomposition of the Mahalanobis distance

In a p dimensional observation each of the p(p-1)/2 pairs of
variates may show either structure violating or structure
preserving behaviour. It is desirable to have a means of
inspecting this behaviour directly, and one which does not
make use of an arbitrary d? to discriminate between Structure
Violation and Structure Preservation.

We can express d’? in equation (1) as the sum of all the
elements of a (pxp) matrix R whére F,, = XiXsVay (Kendall and

Stuart,1983) so that

Wak, Fy (2)

Diagonal elements of F represent a weighting of a single
squared deviation of the ith element (i.e. variable) from its
mean, and off-diagonal elements represent a weighting of the
product of the deviations of the ith and jth variables from
their respective means. Since F is symmetrical we can
conveniently combine off diagonal F,, and F,, in a single cell
by defining T (pxp) such that

for i= i. Ti = Faye
for i<j, Ty = 2Fi,
for i> j, ty = 0

Diagonal elements of T show the contribution to d’® of the
individual deviation of each variable in isolation, while
subdiagonal elements show the specific contribution to d’
from each variable’s interaction with each single other
variable. Diagonal elements in T and F are by definition
positive, but off diagonal elements can take either sign.

A negative element T,, for i<j indicates that the joint
deviations of x, and x, in this observation are less unlikely
than the diagonal elements (their individual unlikelihoods)
would suggest, and the fact that they are varying in the
expected joint direction is "Structure Preserving". Such
terms reflect the fraction of the joint variation of x, and
x, that can be predicted from their correlation, and is akin
to the "sum of squares explained" in ANOVA. They may corres~
pond to events in Regions II and III of Figure 1 for the x,
and x, concerned. Conversely a positive value for T,, for i<j
indicates that an expected positive or negative correlation
has been reversed, and this unexpected joint state of x, and
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X, we can call "Structure Violating". It can correspond to an
event in Regions IV or I (for variables x,and x,only).

A zero value of 1T,, can occur for i<j if x, and x, are
uncorrelated in the sample as a whole (T,,= F,, = 0 for i not
equal to j), or if standardised x, or x, or both are close to
zero in this observation. Such observations are Structurally

Neutral, or Uninformative.

3.3. Matrix simplification of F and T to F, and T,

So far, the triangular matrix T represents nothing more than
a rearrangement of the full contribution matrix F. The value
for d? was not at all affected. As matrices F and Tf in
section above contain p(p-1)/2 different entries per observa-
tion, we attempted to simplify these matrices by setting to
zero all elements in F (T) whose absolute value was smaller
than a filter value s. The resulting matrix can be called F,
(T,) , and the approximated Mahalanobis Distance is d?,, where

P
2%q?. =at a= E Fis (3)

and

e

aed7,= 5 Tray (4)
4,j

We used no theory to set s but investigated the sensitivity
of d?, to s, and selected the largest value of s for which

d?, seemed a close and stable approximation to d@’. This sim-
plified interpretation as well as providing a heuristic to
avoid over interpreting the large noise content of a p
dimensional observation.

3.4. Classification of entries in F,

Given the simplest acceptable F, (or 1T,), we sorted the
variables in descending order of the joint net contributions
to d?, (that is, the column, respectively row, totals of F).
This partitioned F, into three regions: Block A, where all
totals were positive, Block B where the sums were zero and
Block C where all aggregates were negative. We call all
variables with nonzerodiagonal entries Main Variables, since
they matter in their own right.
Block A variables contribute positively to qd? and are
therefore acting in a Structure Violating way. These vari-
ables can be observed to reinforce d? in their own right
(diagonal entry larger than zero resulting in the classifica~
tion of this variable as Main Variable) and/or in interaction
with other variables (off-diagonal entries larger than zero).
The contribution of Block B variables remains neutral or
uninformative as all diagonal and off-diagonal elements are
set to zero. While the net contribution by Block C variables
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can be classified as structure preserving (i.e. distance
reducing), their individual contributions are never negative
(diagonal elements are weighted squared deviations from
respective means) implying that the variable interactions
must more than offset these individual excursions. Again a
nonzero positive deviation results in a classification as a
Main Variable.

3.5. Hotelling’s T? to search for longer lasting outlier
episodes

Mahalanobis outliers for large enough da? are rare in the
sample. They may at times be caused by chance events, or
invalid measurements, or valid measurements of relationships
that have no substantive economic importance. However they
may also reflect important structural effects. For example
the observed overall correlation may be due to forces that
tend to suppress certain joint states of the variables.
If the system is driven suddenly into a "non favoured" state
by some shock or stress, and the corrective forces do not
take full effect within a single sampling interval lagged
effects may occur.

If such lagged effects are present, some Mahalanobis outliers
will form part of extended episodes, in which extreme states
in p space are only gradually approached and/or gradually

departed from. While the squared Mahalanobis Distance was
convenient for testing individual outlier observations, we
used the Hotelling’s T’ to test whether the mean of a group
of p dimensional observations differs from the mean of a
second group (the remaining observations) assumed to have the
same covariance matrix. For a null hypothesis of equal sample
means the relevant test statistic reduces to an F distribu-
tion with p and (n-p-1) degrees of freedom, in the notation
of equation (5) below (Manley,1986; Krzanowski,1988).

Pp eB _ — _ —

T? = nn,/ (n, + n,) ze (Xy - Xn ox, - X23) (5)

where

X,;, = the mean of the ith variable for group 1

p = number of variables
n = pooled sample size or (n, + n,), and
c? = the element in the ith row and jth column of the inv-
erse of the pooled within group covariance matrix

In order to avoid bias by each outlier itself, we omitted it
from each putative episode. We searched by trial and error
for subsets of the total sample, contiguous with but not
including the outlier(s), which differed significantly from

the total sample.
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Clearly there is some risk of "Data Mining" in such a
search, and we have not attempted to derive an exact correc-
tion for it. Explicitly dynamic methods were not used because
of the scarcity of degrees of freedom, and because we did not
wish to assume uniform simple dynamics throughout the sample.

4. Summary of hypotheses

1. Extreme values or Outliers will be found in economic data
sets which are wholly or mainly multivariate normal in their
distribution.

2. Mahalanobis Distances of outliers (or inliers) can be
decomposed to show the contributions made by each individual
variable and by each pair of variables. The latter can in
turn be divided into "Structure Preserving", "Structure
Violating" and "Structurally Neutral" behaviour for this pair
of variables. No specific predictions are made, but the
structure of actual outliers are assumed to be of interest to
economic modellers .

3. Mahalanobis Outliers will sometimes be a part of longer
Dynamic episodes, in which either the approach to or the
retreat from an outlier value in Mahalanobis space spreads
over several sampling intervals.

4. Multivariate distributions of data on an economy will not
be static, but will show, in addition to outliers, signs of
sustained structural change (perhaps corresponding to
intuitively identifiable periods of economic history). Such
secular changes will increase the scatter of a fitted static
distribution, and so reduce the power of tests for outliers,
but Mahalanobis extréme values will still occur, and outliers
strong enough to be detectable in these conditions may have
substantive meaning.
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5. Findings

5.1. Variable and Industry Selection

We selected a sample of 13 companies listed on the LSE and
for which the FT provides daily financial coverage under the
heading Newspapers & Publishers. Our sample constitutes about
34% of the total industry with strong emphasis (about 60%) on
the newspapers & periodicals segment. The companies are given
in table 1.

Table 1: Selected Companies and Code

1 Black (A.& C.) BLAC

2 Maxwell Comms.Corp. MAXC
3 Pearson PSON
4 Trinity Int Hld. TRIN
5S Utd.Newspapers UNWS

6 News Int Spec.Div. NEWS
7 Portam’th & Sund PSUN
8 Reed Internationel REED
9 Haynes Pub HYNES

10 Bristol Eve.Post BRTL
11 EMAP EMAP

12 News Corp NEWSC
13 Daily Mail "A" DNGT

Annual data from 1984 to 1989 (and where possible 1990) were
compiled from Datastream. The Printing & Publishing industry
was selected because of its alleged homogeneity in terms of
cost structure and of the press coverage some industry
members were/are receiving. The small number of companies (in
absolute sense) excluded every attempt to restrict the sample
to only those companies with the same year end. We agree with
Gonedes (1973) that such restriction may be viewed as a
sample stratification in the sense that the selected com-
panies may share some characteristics that differ from those
companies with different year ends.

Since we are interested in the health (or vulnerability) of
individual firms over time relative to the industry con-
sidered, we pooled the cross-sectional data on individual
firms resulting in 82 observations‘.

Raw data were collected in seasonally adjusted form and where
appropriate differenced to remove time trends. Table 2 lists
the variables and codes. It can also be seen that most
variables depart from a normal distribution on the Lilliefors
test (1967), a variant on the Kolmogorov-Smirnov test when
the population parameters are unknown, at the 5% significance

level.

‘13 firms times 6 years (84 to 89) + 4 firms times 1
year (since these firms report in April, accounting informa-
tion for 1990 was available at the time of our data collec-
tion).

78

 



Table 2: Selected Variables

 

No CATEGORY VARIABLE CODE K-S TEST

1 COMPANY SPECIFIC

1 PROFITABILITY OPERATING MARGIN PROFMAR YES

2 CAPITAL STRUCTURE BORROWING RATIO BORRAT NO
3 LIQUIDITY CASH / CUR LIABILITIES CASHCUR NO

4 TURNOVER RATIO SALES / NET CUR ASSETS TOURNCUAS NO
5S PRODUCTIVITY TAX / PRETAX PROFIT TAXRAT YES
 

[2 PRINTING & PUBLISHING INDUSTRY RELATED
 

6 EARNINGS INDEX AVG EARNINGS EMPLOYEES P&P INDUSTRY FEARNRAT NO

TO AVG EARNINGS MANUFACTURING IND
7 TRADE TERMS PPI OUTPUT OF PAPER PRODUCTS TO TRADET NO

PPI MATERIALS PURCHASED BY IND
8 PRODUCTIVITY INDEX OUTPUT INDUSTRY / OUTPUT MANUF IND RELOUTP NO

VOLUME TERMS

9 MARKET CONFIDENCE SP / FT ALL SHARE INDEX SPFTA No
10 NATIONAL OUTPUT GDP (SA, PERCENTAGE CHANGES) GDP YES

The bad results on the normality tests , while not very
encouraging, must not be dramatised.
First, a non normal distribution represents a well known
property of most financial ratios (Karels and Prakash,1987;
Lev and Sunder,1979). Following Barnes (1982) we did there-
fore not attempt to apply standard Box and Cox transform-
ations for right skewed data using the logarithm, square
roots and cubic roots. Negative data values prevented the use
of these transformations. Of course we could have added a
constant where necessary or we could have applied the
reciprocal transformation but we feared that too much data
manipulation might have destroyed the ratios’ informational
content. The univariate non normality, of course, may have an
adverse impact on the presence of multivariate outliers

implying the need to consider the them with great caution,
although univariate normality by itself does not guarantee
multivariate normality.
Second, assuming the homogeneity of our sample, it may be
argued that for a large sample such as ours a small viol-
ation of the normality assumption is sufficient for it to be
rejected.

Unlike most MDA studies, we attempted to incorporate three
possible determinants of corporate well-being and their
interaction effects in one dataset. A firm’s financial health
can be viewed as a function of firm specific, industry
related and/or economy wide elements. Obviously, each of
these components could be emulated by numerous variables and
ratios. In order to select a meaningful variable set for each
component, factor analysis (PCA) may be called for to reduce
the number of relevant variables. Here, we selected the vari-
ables on the basis of their perceived popularity in the
literature.
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5.2. Hypothesis 1

Table 3 shows the set of five outliers all at 1% signifi-
cance. On the null hypothesis one might expect one or two
such outliers in a sample of 82 observations.

Table 3: Identified Outlier Set

Case # CODE at a

62 sas 79.34 8.91
68 1085 $7.33 7.57
67 1385 49.16 7.01

76 684 31.53 $.62
64 785 26.61 5.16

79 984 20.99 4.58 | Cut-off value at the 1% level:
66 985 20.11 4.48 >> 23.12 ( X* (9), 90 ]
70 1285 17.24 4.15 ‘
69 11285 17.06 4.13
72 284 16.20 4.02
 

Key to CODE:

The last two digits refer to YEAR
The first (two) digit(s) refers to COMPANY NUMBER in Table 1

All significant outliers (and for that matter the first ten
outliers) refer to either 1984 or 1985. The nonuniform
distribution of the outliers over time may indicate that the
industry or parts thereof was under severe strain during that
period. It would be useful to check the evidence of this
assumed strain by examination of the relevant annual reports
of the identified firms. Hypothesis 4 (see 18) appears to
confirm our expectation of a nonstationary mean for the
Mahalanobis model implying a structural break within the
economy or industry under investigation. To the extent the
break does not alter the estimated dispersion matrix, the
model’s validity remains safeguarded.

As aforementioned, the outliers may represent real phenomena
or invalid measurements. The findings for hypothesis 2 on 16
may suggest measurement problems regarding the highest d?
values.

Figure 2 and Figure 3 show all outliers over time ranked by
firm. It can be seen that the outlier for firm 7 (PSUN)
appears to be part of a longer dynamic episode in which both
the approach to and the retreat from the outlier value
spreads over several sampling intervals. In contrast, the

values for firms 10 (BRTL) and 13 (DMGT) seem to belong to an
episode in which the approach to, respectively the retreat
from the outlier marks a rather abrupt process.
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Figure 2: Distances Firms 1 to 7
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5.3. Hypothesis 2: Internal Structure of Outliers

We now decompose the d? values by rearranging the variables
in such a way that we gain insight in their individual and
joint behaviour.
Since our variable set is not very large (p=10), the 45 pairs
can be evaluated without necessarily simplifying the contri-
bution matrix (F). Table 4 shows contribution matrices ranked
by the net variable contribution to d? and d?, (ie. column,
respectively row, labelled sum) for firm 7 (PSUN) for 1985.

The d? contribution matrix shows that all variables are
active, that is display nonzero entries. This finding which
was confirmed by the analysis of all F matrices supports our
claim that it is dangerous to rely on univariate criteria
when assessing corporate vulnerability. Moreover, the finding
demonstrates the weakness of those techniques such as MDA
that attempt to identify failure trigger points by the sole
use of internal, company specific factors. External (indus-
try and economy) factors are not to be omitted from the
analysis.

It can be seen that both d? and d?,appear to be driven (Block
A) by the solitary contribution of the tax ratio variable and
the joint contributions of the GDP variable. Structure
preserving behaviour (Block C) is displayed by the trade
terms, turnover to net current assets and liquidity ratios.
The remaining variables do not contribute in any way to d?,
and are therefore classified as Block B variables.
All Block A variables are Main variables, i.e. important in
their own right whereas one Block C variable (Trade terms)
figures as a nonmain variable (i.e. unimportant in its own
right).

The decomposed contribution matrix F could be used as input
for the selection of appropriate "policy variables" by
regulatory authorities or industry watchdogs. To understand
the variables joint behaviour within the system, estimated
variance and covariances could be altered to quantify the
effects (that is, changes in d?) of potential policy changes.
The aim would then be to minimise d? or to bring it below
some agreed reference value. To exemplify, we doubled the
variance of the TAXRAT variable mentioned in Table 4 (author-
ities indirectly control this variable through the tax rate).

Table 5 gives the result.
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Table 5: Quantification of Intervention Impact PSUN 1985

TAXRAT RELOUTP ’ GDP EARNRAT SPFTA PROFMARTURNCUAS BORRAT TRADET CASHCUR SUM
TAXRAT 7.84 -1.94 1.24 <-0.25 -0.08 0.48 0.01 0.01 -0.65 “1.01 5.64
RELOUTP -1.94 6.14 1.07 0.12 0.63 -0.91 0.01 90.01 -0.43 0.09 4.60

GDP 1.24 1.07 2-08 -0.22 -0.04 0.34 9.01 9-01 -0.20 -0.75 3.49
EARNRAT -0.25 0.12 -0.22 1-00 0.21 -0.39 -0.00 -0.01 0.28 0.01 0.74

SPFTA -0.08 0.63 -0.064 O.a1 0.66 -0.50 0.00 0.01 +-0.21 -0.17 0.81
PROFHAR 0.48 -0.91 0.34 -0.39 -0.50 1.49 -0.00 9.00 0.12 “0.46 0.16
TURNCUA O.02 0.02 @.02 -0.00 0.00 -0,00 0.00 9.00 -0.00 -0.01 0.02
BORRAT 9.01 0.01 0.01 -0.01 0.01 9.00 0.00 90.00 <-0.01 *0.01 0.01

TRADET 0.68 -0.43 -0.20 0.28 -0.21 0.12 -0.00 -0.01 0.89 0.17 +0.04
CASHCUR -1.01 -0.09 -0.75 0.01 -0.17 -0,46 “0.01 -0.01 0,17 1.99 -0.33
SUM $.64 4.60 3.49 O.74 0.81 0.16 0.02 0.01 -0.04 -O.33 14,81

Due to the intervention, this observation has become an
inlier. Note that the TAXRAT variable is still the most
important Main variable. Obviously, to fully assess the
impact of government’s intervention, it is necessary to
compute all d? values again to ascertain whether or not
outliers have become inliers or vice versa. We hope our
simplified example has demonstrated the model’s potential
usefulness in identifying target, intermediary and policy
variables without having recourse to monetarist or post-
keynesian theories.

Potential measurement problems were signalled above. Analysis
of the largest outlier (CODE 585:UNWS 1985,d7=79) revealed
that almost all of the distance value could be related to the

individual contribution of one variable, the borrowing ratio.
Table 6 gives the decomposition.

Table 6: Decomposition of the largest outlier, UNWS 1985

BORRAT PROFHAR GDP TURNCUAS RELOUTP TRADET TAXRAT EARNRAT CASHCUR SPFTA BUH
BORRAT 88.96 o.kt 0.22 O.12 -0.17 -1.90 -O.84 “3.586 -1.41 “1.73 80.10
PROFHAR O.11 0.21 0.02 0.00 0.08 0.00 -0.08 -0.30 -0.15 0.24 0.17
GDP 0.22 0.02 0.03 0.01 ~0.00 -0.05 -0.04 ~0.07 -0.08 o.01 0.05

TURNCUAS 0.12 0.00 0.01 0.02 -0.01 -0.02 -0.01 -0.01 -0.03 -0.02 0.04
RELOUTP -0.17 0.08 -0.00 -0.01 0.23 -0.01 “0.11 “0.10 -0.07 0.15 -0.00

TRADET “1.90 0.00 -0.05 -0.02 -0.01 0.78 0.18 0.55 O.22 0.21 -0.04
TAXRAT “0.54 -0.05 -0.0¢6 “0.01 -0.11 o.18 0.20 0.15 0.20 70.03 -0.07

EARNRAT “3.56 -0.30 -0.07 “0.01 0.10 0.55 0.15 3.56 0.12 “0.51 -0.17
CASHCUR “1.41 #-0.15 -0.08 -0.03 -0.07 0.22 0.20 0.12 0.92 O.1l +0.18

SPFTA -1.73 0.24 0.01 -0.02 0.15 0.21 -0.03 -0.81 0.11 1.02 -0.56

sUM 80.10 0.17 0.08 0.04 -0.00 0.04 -0.07 ~0.17 -0.18 -0.86 79.34

Since the totals for all variables but the borrowing ratio
hardly deviate from zero, we checked the accuracy of the
BORRAT variable’s value. As the raw value equalled -129.4, we
had Datastream confirm this value and its sign’.
The F matrix could be simplified such that almost all off-
diagonal elements became zeros without impairing the original
d? value. The importance of the diagonal entries (BORRAT and
EARNRAT) indicates an outlier whereby deviations by individ-
ual variables were not compensated for by offsetting move-

ments of other variables.

 

7 For the definition of the Borrowing ratio, see
Datastream’s Company Accounts Definitions Manual,119).

 



 
84

Ta
bl
e

4:
Co

nt
ri

bu
ti

on
M
a
t
r
i
c
e
s

fo
r

PS
UN

19
85
.

C
O
N
T
R
I
B
U
T
I
O
N

T
A
X
R
A
T

G
D
P

P
R
O
F
M
A
R

R
E
L
O
U
T
P

T
A
X
R
A
T

3
0
.
6
3

4
.
8
3

1
.
8
7

-
7
.
5
7

G
D
P

4
.
8
3

2
.
6
2

0
.
5
6

0
.
1
8

P
R
O
F
M
A
R

1
.
8
7

0
.
5
6

S
P
F
T
A

-
0
.
3
1

-
0
.
0
8

-
0
.
5
2

0
.
6
9

E
A
R
N
R
A
T

-
0
.
9
9

-
0
.
3
4

-
0
.
4
4

0
.
3
0

T
U
R
N
C
U
A
S

0
.
0
2

0
.
0
1

0
.
0
0

0
.
0
1

T
R
A
D
E
T

-
2
.
5
5

-
0
.
5
0

0
.
0
1

0
.
0
4

C
A
S
H
C
U
R

-
3
.
9
4

-
1
.
2
1

-
0
.
6
4

0
.
6
4

S
U
M

2
2
.
0
4

6
.
0
8

1
.
1
5

0
.
3
5
5

F
I
L
T
E
R

s
=

2
d
a
t
a

2
6
.
6
0
7
6
5

d
'
s

=
2
4
.
6
9
6
3
6

T
A
X
R
A
T

G
D
P

E
A
R
N
R
A
T

B
O
R
R
A
T

T
A
X
R
A
T

3
0
.
6
3

4
.
8
3

0
.
0
0

0
.
0
0

G
D
P

4
.
8
3

2
.
6
2

0
.
0
0

0
.
0
0

E
A
R
N
R
A
T

0
.
0
0

0
.
0
0

T
U
R
N
C
U
A
S
.

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

S
P
F
T
A

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

P
R
O
F
M
A
R

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

R
E
L
O
U
T
P

-
7
.
5
7

0
.
0
0

0
.
0
0

0
.
0
0

C
A
S
H
C
U
R

-
3
.
9
4

0
.
0
0

0
.
0
0

0
.
0
0

T
R
A
D
E
T

-
2
.
5
5

0
.
0
0

0
.
0
0

0
.
0
0

s
u
m

2
1
.
4
1

7
.
4
5

0
.
0
0

0
.
0
0

-
0
.
1
4

T
U
R
N
C
U
A
S
:

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
1
0

0
.
2
1

S
P
E
F
T
A

0
.
0
0

0
.
0
0

B
O
R
R
A
T

T
U
R
N
C
U
A
S

0
.
0
4

0
.
0
1

0
.
0
0

-
0
.
0
1

P
R
O
F
M
A
R

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
2

0
.
0
1

0
.
0
0

0
.
0
1

0
.
0
0

-
0
.
0
0

0
.
0
0

0
.
0
3

0
.
0
0

-
0
.
0
4

T
R
A
D
E
T

-
2
.
5
5

~
0
.
5
0

0
.
0
1

0
.
0
4

-
0
.
1
9

0
.
3
4

-
0
.
0
1

-
0
.
0
0

1
.
0
5

0
.
4
1

-
1
.
4
1

0
.
0
0

-
1
.
5
7

C
A
S
H
C
U
R

-
3
.
9
4

7
1
.
2
1

-
0
.
6
4

0
.
6
4

-
0
.
1
4

0
.
1
0

-
0
.
0
1

-
0
.
0
1

0
.
4
1

2
.
3
7

~
2
.
4
4

0
.
0
0

-
2
.
5
5

 

B
L
O
C
K

A
B
L
O
C
K

B
B
L
O
C
K

¢

-
2
.
4
4

26.
61



5.3. Dynamic ebisodes around each outlier —

The search for simple dynamics could be examined by either a
time series or a cross-sectional approach to our data.

The time series method focuses on the d? behaviour of
individual firms. Episodes consisting of gradual approaches
to an outlier constitute the necessarily input for failure
prediction analyses. In other words, "sudden" outliers, those
without any advance warning, are impossible to predict.
Figure 2 on 14 shows a potentially predictable movement by
firm 7 (PSUN) had observations before 1984 been included. For
example, an episode consisting of years 1982 to 1984 could
display a significantly different mean from that of a period
running from, say, 1970 to 1981. Assuming increasing d?
values over the 82-84 period, an even larger da? value
(possibly an outlier) could reasonably have been anticipated.

The cross~sectional strategy centers on the distinction
between years, not firms. The nonuniform distribution of the
outliers over the sample period (all outliers dated from 1985
or 1984) implies a nonstationary mean. Table 7 shows the
result of searching around each year for a continuous episode
in which all the points were close together in Mahalanobis
space and far away from the mean observation (at 1% signifi-
cance).

Table 7: Search for episodes deviating from the mean state

HOTELLINGS TEST

YEARS VALUE APPROX.F. sic.

a4 544.3 33865

ga 85 5.7 40.7
84 85 86 0.79 5.55

84 85 86 87 0.32 2.26 0.03
84 85 86 87 88 0.16 1.13 0.347

o
o
o

4

e
e

* DENOTES SIGNIFICANCE AT THE 1%

The decreasing T? statistic value suggests a strong but
extremely short lived strain and long recovery period.
For some reason, the mean of the observations for 1984 and
for the period 84-85 appears to deviate significantly from
that of the other years combined, marking a break in the
pooled cross-sectional series pattern. These results rein-
force our suspicion that something happened in the economy
and/or in the industry during 84-85. The presence of such a
break may reflect a sustained structural change in the
economy. Hypothesis 4 deals with this problen.

5.4. Identification of Structural Changes

Figure 4 displays the outlier distribution over the sample
period. All outliers occur during 1984 and 85. At first
sight, the d? values appear to be autocorrelated over the
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remaining sample period and may display significant dynamic
behaviour. Given the extremely short observation period (86-
89), we did not test for autocorrelation.

Figure 4: Outlier Distribution
over Sample Period
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Though formal procedures could be applied to test for the
presence of a significant break (Chow test), we believe a
qualitative analysis of the printing & publishing industry
would reveal a trend reversal in 84-85. Figure 5 seems to
support our feeling. The two indices stood more or less at
their bottom value in 1984 and the industry’s outlook
improved from 1985.

Figure 5: Competitive position
of Printing & Publishing In-
dustry
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6. Conclusions

We attempted to "explain" company failure by suggesting an
alternative model to the classic MDA technique. Our model,
the decomposition of the Mahalanobis Distance, identifies and
analyzes the actual distortions rather than its origins.
Indeed, it would be futile to try to isolate causal factors
because a dynamic economic system behaves very much like a
nonrecursive model in which the variables cannot be arranged
in any hierarchical order. Consequently, no single variable
can be picked as the sole or determining cause of the state
of the system afterwards.

The Mahalanobis technique incorporates some advantages over
the MDA. First, there is no need to worry about the conceptu-
alisation of the categories the observations fall into and to
resort to ad hoc criteria. Second, the Mahalanobis model
stands for a unique design for each year and each firm
whereas the discriminant function represents an aggregate
system and therefore probably incorrect. Lastly, contrary to
MDA analyses, we see no need‘to restrict the variables to
those endogeneous, that is accounting or financial, compo-
nents. External factors, such as industry and economy
effects, need incorporated into the analysis.

The Mahalanobis model is, of course, not without its defects.
We assumed a stable variance-covariance matrix. Our empirical
test showed the presence of a nonstationary mean so the
manifestation of an equally nonuniform variance cannot be
dismissed. Furthermore, the predictive ability of the
Mahalanobis model is restricted to those outliers that form
part of longer lasting episodes. Unexpected or sudden
outliers cannot be forecasted, but then how good is MDA at
anticipating sudden corporate fragility ?

We believe that the comparative analysis of the contribution
matrices (F) to the distance d@? may yield valuable insights
into the failure procedure and could contribute to a more
systematic approach of the corporate collapse issue. Such
analysis could be best performed by a pattern recognition
technique such as an artificial neural system (ANS).
Meanwhile, the Mahalanobis model is argued to assist industry
regulators in the selection of "policy" variables and testing
of various competing economic theories.
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ABSTRACT

In this paper we extend Alan and Seymour’s procedure to find a counterexample of the

Rank Colouring Conjecture, which was proposed by Van Nuffelen. This conjecture states

that the rank of the incidence matrix of a graph is an upper boundfor the chromatic number
of that graph.

 



We assumethe reader is familiar with the paper of Alon and Seymour([1]), in

which they constructed a graph with rank 29 and chromatic number 32 as a coun-

terexample to the Rank Colouring Conjecture. By generalizing this method one

can construct at least two more graphs G with rk(G) < x(G), one of these is

howeverisomorphic to the counterexample of Alon and Seymour.

The conjecture was originally put forward by Van Nuffelen in [2]. He proved the

conjecture for several classes of graphs but was not able to provide a general proof

for arbitrary graphs. The hope for such a proof wasfinally abandonedafter the

publication of [1]. When one looks at the results of Van Nuffelen, it remains

howeververyplausible that the counterexamples to the conjecture should belong

to a limited class of graphs. Consequently, the main motivation for this paperis

to provide a narrower description of the class of counterexamples.

Alon and Seymourfound their counterexample by considering Cayley graphs, these

graphs are constructed by taking a finite abelian group G asits vertex set and by

connecting two vertices when their sum belongs to a certain predescribed subset

Kof G.

When we specialize this to G = (Z/2Z)* (the k-dimensional vector space over

the finite field with 2 elements), we can identify subsets of G with subsets of

P({1,...,&}) (the powerset of {1,...,k}) by considering them as characteristic

functions. The counterexample of Alon and Seymouris found by putting k = 6

and by taking Ay as the complement in P({1,...,k}) of the set

{0, {1}, {2}, {3}, {4}, {5}, {6}, {1,2,3, 4,5, 6}}.

We will denote J for the set {1,...,4} and P(J) for the powerset of I.

Definition : We will call aset A C P(I) symmetric in the numbers a1,...,an € I

if °

-Q€A,

- every subset of P(I) with cardinality equal to one of the a; is in A.

The set E(A) in the counterexample of Alon and Seymour has k = 6, n = 2 and

a, =ll,ag = 6.
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Wewill denote the symmetric difference of two sets X and Y by X *Y, i.e.

X#Y=(XUY)\(XNY),.

A subset X of I uniquely corresponds to a vector yx € (Z/2Z)*, where i-th

component of yy equals 1 if i € X and equals 0 otherwise.

It is now easily seen that:

PR«ay =Pxt Hy,

with addition in the vector space (Z/2Z)*.

Definition : A symmetric subset A of P(I) is called colourful if there are no X,

Y,Z¢€A with X *Y * Z = or equivalently X * Y = Z.

Proposition 1: A colourful set A cannot be symmetric in an even number

n< ek.

Proof:

Take A symmetric in n.

Put X = {1,...,n} and Y = {n/2+4+1,...,3n/2}, by the assumption on n it

follows that X,Y € A.

Furthermore

X *Y = {1,...,n/2,n+1,...,3n/2} EA

as the cardinality of X * Y equals n. Consequently, A is not colourful.

O

Proposition 2: Takez, y, z € I with x+y =z and take A colourful, we then

have

- if Ais symmetric in x and y, then A is not symmetric in z.

- if Ais symmetric in ¢ and-z, then A is not symmetricin y,

Proof:

The proofis analogous to proposition 1.

For the first statement, take X = {1,...,r} and Y = {r+1.,...,z}, it follows

that X¥ * Y = {1,..., 2}.
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And for the second statement, put X = {1,...,z} and Z = {1,...,z}, then as

z>a2X«Z={x4+1,...,z}.

O

Take now the hypergraph H with V(H) = I and E(H) = A Cc P(J), with A

symmetric.

Define the graph G with vertex set equal to the vector space V(G) = (Z/2Z)* and

where u and v € V(G) are adjacent ifu*v ¢ E(H).

By demanding that E(A) is colourful, we get that every stable set of G has

cardinality less or equal to 2 and so x(G) > 4|V(G)| = 2*-!. As mentioned in

[1], if E(H) ¢ {0} then in fact y(G) = 2*-', as its complement contains a perfect

matching.

To compute the rank of G, we have to count the number t of X C V(H) = I such

that |X 9 E| is odd forprecisely $|E(H)| members E of E(H).

By claim 2 in the paperof Alon and Seymour,it then follows that rk(G) = 2* —¢.

To get a counterexample to the Rank-Colouring conjecture we will have to find

graphs for which ¢ > 2*-?.

To this purpose, define a function F : IU {0} x TU {0} — Z by

b k—b
F(a,b) =
(4,6) (i431) (e321)

where the summation runs over all ¢ such that max{a+b—k,1} < 2841 <

min{a, b}.

It is clear, by construction of F, that F(a,b) equals the number of subsets of I

with cardinality a that have an odd intersection with {1,..., b}.

Assume further that E(H) is symmetric in a1,...,a@, then

euni=1+ 9° (2),
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and so we have to find all b € IU {0} that satisfy

n

Yo Flat =5+5> (f). («)
i=1

If the b),...,b; are the solutions of (*), then

=28-@)= (f) (+x)

It is now an easy exercise in combinatorics to verify:

Proposition 3: Fora, b¢€ IU {0} we have:

- for a even: F(a,b) = F(a,k — 5),

- fora odd: F(a,b)+F(a,k-b)= ().

Wethen have:

Proposition 4: In orderfor (*) to besatisfied in a way such that x(G) > rk(G),

at least one of the a; should be even.

Proof:

Assuine all a; odd and take 6 a solution of (*) such that k — 6 also satisfies (*).

Now(*) and proposition 3 imply:

“.(k “ 1 1(k
_ F > b= s 5 ,

»@ » (ai) 2 + 2 2» @

or
n

Yo Flat = -; + 3h (f).
i=]

Whichclearly contradicts (*).

This allows us to conclude that the solution set {b),...,:} of (*), can be replaced

by a subset {c),..., cr} of {0,..., |£]} (in (**) we may replace 6 by k — 5).

But .
l L$]

k 2. fk k-1

» (3) <> (i)aj=0 i=0

and consequently rk(G) > 2*~! = y(G).
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Based upon these four proposition, it is possible to write a computer program,

that generates scts E(H) symmetric in a,...,@, that satisfy:

- at least one of the a; is even,

- all the even a; satisfy, a; > 3k/2,

- there are no three a;, aj, a,, such that aj + aj = ag.

The program itself can be found in Appendix 1. Appendix 2 contains the output

of the program for k = 4,...,14. On the upper part of the page, you find F(a, 6).

Then each of the possible sets {0,a1,...,a@n} are listed together with the number

g=1/2+1/20(,,) and t= YG).
1 also verified the cases k = 15,...,18, but these are not listed in the appendix.

The three results found are:

- k=6,n=2 and aq, = 1, a2 =6.

-k=6,n=2 and aq, =5, a2 =6.

-k=7,n=landa, =6.

The corresponding sets E(H) are then given by:

E(H;) = {0, {1}, {2}, {3}, {4}, {5}, {6}, {1,2,3,4,5, 6}},

E(H2) = {0, {1,2,3,4,5}, {1, 2, 3, 4, 6}, {1, 2,3, 5, 6}, {1,2, 4,5,6},

{1,3, 4,5, 6}, {2,3,4,5,6}, {1,2,3, 4,5, 6}},

E(Hs3) = {9, {1,2,3,4,5, 6}, {1, 2,3, 4,5, 7}, {1, 2,3, 4,6, 7}, {1, 2,3,5,6, 7},

{1,2,4,5,6, 7}, (1,3, 4,5, 6, 7}, {2,3,4,5,6, 7}}.

It doesn’t seem very likely anymore counterexamples will be found using this

method, but presently Iam not able to provethis.

Thefirst graph G, is the one found by Alon and Seymour,it has 64 vertices. The

second one Gy»also has 64 vertices and take the map

v : G, _ G2

defined by

W(e1,%2,03,04,05,%6)

_ (er, t2,23,24,25,26) if S> x; is even,
(l-2,,l—29,1-—23,1-—a4,1-—2%5,1-—26) otherwise.
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It is then easily seen that Y is an isomorphism of graphs.

The third graph G3 is essentially different as it contains 128 vertices. We have

rk(G3) = 128 — 70 = 58 and x(G3) = 64. Altough these numbers equal the ones

found for the graph we get by taking G; twice and joining every vertex to every

vertex of the other copy (see [1]), they are not isomorphic as the complementof

G3 is a connected graph.

This proves:

Theorem; The method used by Alon and Seymourto construct a graph that

doesn’t satisfy the rank-colouring conjecture, only gives one other counterexample

with less than 500000 vertices.
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# include <stdio.h>

# define K 1L

# define MAX (long)(K + 1L)
# define POWER (long)(1L << (K — 1L))
# define TTK (long)(2L * K / 3L)

long _—_fac(13} =

{ 1L, 1L, QL,
6L, 24L, 120L,

720L, 5040L, 40320L,

362880L, 3628800L, 39916800L,

479001600L }
long F[MAX][MAX];

# define max(a,b) ((a) < (b) ? (b) : (a))

long combination(x,y)
long X,Y;

register long Pp, i;

long sq;

if(x < 13L)

return (fac[x] / fac[y]) / fac[x — y];
q = max(y,x — y);
p = 1L;

for(i = x;i > q;i-—)

p *= i;
for(i = 11 <= x — qjit++)

p /= i;
return p;

}

filleff()

{
register long j, b, a;

long sum;

for(a = 0;a < MAX;a++)

for(b = 0;b < MAX;b++)

{
sum = 0;

for(j = 1; < MAX;j += 2)

if] <= b && j <= a && a — j <= K — bd)
sum += combination(b,j)
* combination(K — b,a — j);

FlaJ[b] = sum;
}
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long

main()

{
register
long
char
FILE

next:

even:

A[MAX], B[MAX];

long i, J;
sum, number;

name{20];

*fp;

sprintf(name,"graphs .%1d",K);
if((fp = fopen(name,"w")) == NULL)

exit(0);

filleff();

fprintf(fp,"k = %2d\n------\n\n",K);

for(i = 03 < MAX;i++)

{
for(j = 033 < MAXj++)

fprintf(fp,"%41d "| F[iJ[j]});
fprintf(fp,"\n");

fprintf(fp,"\n");
for(i = 0;i < MAX;i++)

Ali] = 0;

for(i = 1:1 <= MAX;i++)

i == MAX)

fclose(fp);
exit(0);

}
if(A[i] == 0)

{
Afi] = 1;

break;

Afi] = 0;

for(i = 1 < MAX;i++)
if(A[i] && 1 % 2 == 0)

{
if(i <= TTK)

goto next;

goto even;

/* A should contain at least 1 even number,
but if 2%2 <= TTKthen 2*z is excluded */

goto next;

for(i = 11 < MAX;i++4+)

for(j = 1,5) < MAX;j++)

filleff—main(rcc.c)
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{
if(i + j >= MAX)

continue;

if(A[i) &&& Al[j) && Afi + j))
goto next; .

}

number = 0;

for(i = 1;i < MAX;i++)

if(A[i])
_ number += combination(K,i);

if(number % 2 == 0)
goto next;

number+-+4;

number /= 2;

for(i = 0;i < MAX;i++)
B[i] = 0;

for(i = 1,1 < MAX;i++)

if(A[i})
for(j = 0;j < MAX;j++)

BU] += Fill);

sum = 0;

for(i = 0;i < MAX;i++)
if(B[i) == number)

sum += combination(K.i):

fprintf(fp,"%2a ",0);

for(i = 1;i < MAX;i++)

if(A[i))
fprintf(fp,"%21d ",i);

else

fprintf(fp,"");

fprintf(fp," --> (g = %61d) %61d",number.sum);

if(sum > POWER)
fprintf(fp," !!!");

fprintf(fp,"\n");

goto next;
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0 0 0 0 0

0 1 2 3 4

0 3 4 3 0

0 3 2 1 4

0 1 0 1 0

0 4 --> (g = 1) 8
01 4 --> (g = 3} 0
0 3.4 <--> (g = 3) 0

k = 5

0 0 0 0 0 0

0 1 2 3 4 5

0 4 6 6 4 0

0 6 6 4 4 10

0 4 2 2 4 0

0 1 0 1 0 1

0 4 --> (g = 3) 0
0 3°44 --> (g = 8) 15

k = 6

0 0 0 0 0 0 0

0 1 2 3 4 5 6

0 5 8 9 8 5 0

0 10 12 10 8 10 20

0 10 8 6 8 10 0

0 5 2 3 4 1 6

0 1 0 1 0 1 0

0 6 --> (g = 1) 32
ol 6 --> (g = 4) 35 !1!
0 5 6 -> (g= 4) 35 tt!
k= 7

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 6 10 12 12 10 6 0

0 15 20 19 16 15 20 35

0 20 20 16 16 20 20 0

0 15 10 9 12 11 6 21

0 6 2 4 4 2 6 0

0 1 0 1 0 1 0 1

0 6 --> (g = 4) 70 13!
0 5 6 7 --> (g = 15) 0
k= 8

0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

0 7 12 15 16 15 12 7 0

0 21 30 31 28 25 26 35 56

0 35 40 35 32 35 40 35 0

0 35 30 25 28 31 26 21 56

0 21 12 13 16 13 12 21 0

0 7 2 5 4 3 6 1 8

0 1 0 1 0 1 0 1 0

0 8 --> (g = 1) 128
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This is a picture of the complementary graph of a graph G that looks very much like

the complementary graph of G, (and of G2). To get a real picture of the complement

of G,, you should also connect the vertices that are diametrically placed with respect

to the central point of the drawing.

In a drawing of the complement. of G,, one should label the vertices as follows:

00 01 02 03 04 05 06 07

10 11 #12 #13 #14 #15 #16 #417

20 21 23 24 25 26 27

30 31 33 34 35 36 37

40 41 43 44 45 46 47

50 51 53 54 55 56 57

60 61 63 64 65 66 67

70 71 73 74 75 76 77

o
k

O
w

W
O

N
N
W

~
J

o
O
w
h

The labels are the octal numbers that correspond to the binary representation in

(Z/22Z)°.

E.g.: The octal number 53 corresponds with the binary number 101011 and withthe

vector (1,0,1,0,1,1) of (Z/2Z)®.

To get a picture of the complement of G2, one should start from the same graph but

choosethe labels:

00 76 75 03 73 OF O06 70

67 11 12 64 14 62 61 17

57 21 22 54 24 52 51 27

30 46 45 33 43 35 36 40

37 41 42 34 44 32 31 47

50 26 25 53 23 55 56 20

60 16 15 63 13 65 66 10

07 71 72 04 74 02 O01 77
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by J.J. DROESBEKE Ph. TASSL P.U.F., Paris,

Collection "Que Sais-je ?" n° 2527, 1990

    stoire de atistion D

It is a challenge to write the history of a scientific discipline in the 128
pages of a "Que Sais-je ?". Though, that is what J.J. DROESBEKE and Ph.
TASSI havedonefor Statistics. This little book is pleasant to read andit will give
the reader (with some previous knowledge in the field) a general view of the
roots and main streamsof developmentof Statistical Theory. This book is all the
more welcomethat French litterature is not so rich in histories of Statistics.

Thefirst chapter deals with descriptive statistics. It is clear that Statistics
is born of the need and desire of summarizing and interpreting large sets of
collected data. Hence, graphical representations (first known bar chart in 1786),
typical values (means, median, variance since Gauss and the mean squares
method,...), curve fitting, correlation and regression. Special attention is paid
to the index numbers born three centuries ago (in England) for synthesizing
price evolution.

Although many descriptive indices can be defined and used without
probabilistic assumptions, probability is present in Statistics roughly since the
mid XVIIIth century with the theory of errors of observation. As the main
pieces of statistical theory rely heavily on Probability, the authors give a brief
account of its history in the second chapter : a 16 pages trip trom Pascal,
Fermat and the Bernouilli Brothers to Kolmogorov. One learns for instance that
the normal law,often attributed to Laplace and Gauss, can be traced back to the
Ars Conjectandi of Jacques Bernowiil: (1654-1705).

The main body of statistical knowledge is then split under the five
following headings : Survey Sampling (Les sondages), Therise of statistical
inference, Non parametric Statistics and robustness, Time series analysis,
Data analysis. One may regret (but there is always something to regret in such
a work) the absence of a chapter devoted to subjects like the general linear
model and the analysis of variance or to the design of experiments. Anyway.

The fact that Survey Sampling appears first in the main chapters is
probably due to its link with census (recensements) which are very ancient
(perhaps 5000 B.C.). From the seventieth century on, the governments have
shown growing interest in collecting data about the people and country they
rule and, of course, at the cheapest possible cost. This led to survey sampling.
The authors mainly depict the difficult genesis of the notion of representative
sample.

The chapter on estimation and tests in centered on the competing theories
of Fisher on one hand and Neyman-Pearson on the other hand. My regret here
is that the respective positions of the bayesian and non-bayesian statisticians
are not more extensively outlined. The authors would probably argue that the
debate is not sufficiently mature by now to be able to give an objective
presentation.



The next chapter is concerned with two types of more recently developed
techniques: the theory of robust statistics and non-parametric statistics.

The fact that the observations depend on a very special and familiar
parameter called time singularizes Time series analysis among stochastic
processes and justifies special attention. The methods reviewed include
graphical approaches, analysis in the frequency domain (based on the
periodogram), methods of decomposition (like the famous CENSUS), analysis in
the time domain (based on the correlograms), stochastic models including Box-
Jenkins methodology.

Thelast but one chapter- the last one being devoted to a short biography of
eight of the most prominentstatisticians, those who made Statistics whatit is -
is about data analysis in the French meaningof the word. This chapteris “a gift
of B. Fichet” to the authors. The history of the numerous methodsis outlined :
"metric methods" as principal component analysis, correspondance analysis
and discriminant analysis (with or without distributional, i.e. normal,
assumptions); non-metric methods,i.e. essentially, clustering.

In conclusion, the reading of this small book is recommanded, as the
authors say, to teachers of, searchers in and users of statistical methods.
Several reading levels are possible : the general lines will be perceived by
everyone while the details, especially in recent theories, will be understood by
people with higher degree of education in the field.

Marc PIRLOT,
Faculté Polytechnique de Mons.


