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The large neighborhood search (LNS) framework introduced by Shaw [11]
provides a powerful hybridization of Local Search (LS) and Constraint Program-
ming (CP). The idea of LNS is to combine the expressiveness of CP and the ef-
�ciency of Local Search (LS) without requiring any meta-heuristic. LNS consists
in improving a best-so-far solution by iteratively relaxing it and optimizing this
solution using CP at each restart. This framework was successfully applied to
tackle several large-scale single objective industrial problems [3, 5, 8, 9].

We extend the LNS framework into the so called Multi-Objective LNS (MO-
LNS) to tackle Multi-Objective Combinatorial Optimization (MOCO) problems
ubiquitous in real life applications [1, 2, 4]. The criteria to optimize in MOCO
are usually con�icting. It is thus necessary to provide the decision maker with
a set of non-dominated solutions re�ecting all the optimal combinations of the
con�icting goals. Instead of maintaining a best-so-far solution, the MO-LNS fra-
mework maintains the best-so-far approximation of the non-dominated set. At
each restart (iteration), a non-dominated solution is chosen and one criteria to
optimize is chosen, while preventing the other ones to deteriorate, in order to
improve the set of non-dominated solutions.

The MO-LNS framework is implemented into OscaR solver [12]. Our expe-
riments show that this new framework is competitive with state-of-the-art me-
thods [6,7] on academic problems such as the well-studied, bi-objective Traveling
Salesman Problem (bTSP). We also demonstrate the �exibility of our framework
by considering a more complex industrial problem i.e. a bi-objective version of
the Tank Allocation Problem (TAP) [10].
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