
From Grammars to Parameters:

Automatic Design of Iterated Greedy Algorithms

Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste

and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles

{fmascia,manuel.lopez-ibanez,jdubois,stuetzle}@ulb.ac.be

Abstract

Recent advances in automatic algorithm con�guration make possible to con�gure �exible
algorithmic frameworks in order to �ne-tune them for particular problems. This is often done
by using automatic methods to set the values of algorithm parameters. A rather di�erent
approach instantiates possible algorithms by repeated application of the rules de�ned by a
context-free grammar. An instantiation of the grammar is represented either explicitly by
a derivation tree or implicitly by numerical codons, as done in grammatical evolution.

In this work, we show how the process of instantiating such a grammar can be described
in terms of parameters. In particular, we show how a grammar that generates iterated
greedy (IG) algorithms can be represented in terms of parameters. We compare the quality
of the IG algorithms generated by an automatic con�guration tool using the parametric
representation versus using the codon-based representation of grammatical evolution. The
same experiments are repeated for two problems: the permutation �ow-shop problem with
weighted tardiness minimization and the one-dimensional binpacking problem. In our ex-
periments, the parametric approach leads to signi�cantly better IG algorithms.

Keywords: automatic algorithm con�guration, grammatical evolution, iterated greedy,
permutation �ow-shop problem, binpacking

Despite (or perhaps because) the large number and variety of metaheuristics available for solv-
ing hard optimization problems, algorithm designers still rely on their experience and intuition
when tackling a speci�c problem. Automatic algorithm con�guration methods help designers
to explore a larger number of algorithm designs than it was previously feasible. In addition,
automatic methods rely less on human intuition, and, thus, they consider combinations of algo-
rithmic components and parameter settings that would have been discarded by a human designer
as supposedly uninteresting.

We identify two conceptually di�erent approaches for automatic algorithm design. Top-

down approaches consider a �exible framework of fully-de�ned algorithmic components. These
components may be enabled, disabled, or combined with other components by setting appropriate
parameters. Algorithm con�guration methods are then used for automatically �nding the best
parameter con�guration for a speci�c problem. Such an approach has been used to automatically
design state-of-the-art SAT solvers [2], and multi-objective ant colony optimization algorithms [4].

By contrast, in bottom-up approaches, the algorithmic components are loosely de�ned, and
the algorithm is assembled from very simple operations that can be combined with a higher
degree of �exibility. Two recent works follow such a bottom-up approach. Vázquez-Rodríguez
and Ochoa [5] automatically generate an initial order for the NEH algorithm, a well-known con-
structive heuristic for the PFSP, by using genetic programming. More recently, Burke et al. [1]
automatically generate iterated greedy (IG) algorithms for the one-dimensional bin packing prob-
lem using grammatical evolution (GE). Both works instantiate algorithms bottom-up from a
context-free grammar.

In this paper, we show that grammars can be also represented in terms of a parametric
space, using categorical, numerical and conditional parameters. Such parametric representation
allows to exploit the abilities of well-known automatic con�guration tools used in top-down
approaches. We test our proposed approach on two di�erent problems: the permutation �ow-
shop problem (PFSP) and the one-dimensional bin packing problem (ODBP). For the PFSP, we
devise a grammar that generates IG algorithms, whereas for the ODBP, we consider the grammar
proposed by Burke et al. [1], for the sake of comparison.

We compare four methods: randomly generating IG algorithms, grammatical evolution, an
automatic con�guration tool (irace [3]) using the codon-based representation of GE, and irace



using our proposed parametric representation. Our experimental results clearly indicate that
irace produces better IG algorithms than random generation or grammatical evolution. More-
over, irace using a parametric representation generates much better IG algorithms than using
the codon-based representation in the two scenarios considered. This indicates that the para-
metric representation can help to avoid disadvantages of grammatical evolution. Finally, our
approach is not limited to irace and it can be applied using other automatic con�guration
tools, as long as they can handle categorical and conditional parameters. Further work should
examine for which kind of grammars our approach becomes prohibitively expensive and other
representations might be more appropriate. Nonetheless, the grammar used in this work is sim-
ilar in this respect to others that can be found in the literature for the generation of heuristic
algorithms.

References

[1] Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions
on Evolutionary Computation 16(7), 406�417 (2012)

[2] KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search
SAT solvers from components. In: Boutilier, C. (ed.) Proceedings of the Twenty-First International Joint
Conference on Arti�cial Intelligence (IJCAI-09). pp. 517�524. AAAI Press, Menlo Park, CA (2009)

[3] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic
algorithm con�guration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium
(2011)

[4] López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms.
IEEE Transactions on Evolutionary Computation 16(6), 861�875 (2012)

[5] Vázquez-Rodríguez, J.A., Ochoa, G.: On the automatic discovery of variants of the NEH procedure for �ow
shop scheduling using genetic programming. Journal of the Operational Research Society 62(2), 381�396
(2010)


