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1 Context

Production scheduling and transportation planning are well-known processes
in operations management. Although these tasks are consecutive in the supply
chain, few optimization models simultaneously tackle the associated issues (see
Chen [2]). A most common situation is that transportation is disconnected from
production planning while it is preferable to set up an integrated production-
transportation plan. When such a plan exists many elements can concur to create
di�erences between the provisions of the tactical plan and the actual situation
faced daily by transportation managers. As a consequence, operational shipping
decisions often rely on deterministic data about items in inventory. The main
objective of this paper is to examine whether and how transportation decisions
can be improved when information about future releases of items is taken into
account. The formulation and the instances are based on an application arising
in the steel industry.

2 Formulation

A set of items must be delivered by an unlimited �eet of trucks of equal capa-
city C to M customers over a discrete (rolling) horizon consisting of T decision
periods. The objective of the decisions policy is to minimize the total expected
costs per ton shipped. Data relative to the �rst (current) period t = 1 is deter-
ministic. The subsequent periods contain forecasts about the availability of items
to be released from production. We represent this information by probabilistic
distributions of release dates : pit ∈ [0, 1] (i = 1, . . . , N ; t = 1, . . . , T ). We assume

that
∑T

t=1 pit ≤ 1. Each item i has several deterministic attributes : its weight
wi, a delivery time window [Ei, Li], a warehouse di and a customer ci locations
where the item is un/loaded. It allows us to compute the cost of a truck picking
up a given subset of items at their origin and transporting them to their desti-
nation according to : the composition of the load and the traveled distance ; the
transportation cost per ton ; an inventory cost ; penalties linked to early or late
deliveries of items to customers. The decisions to be made are the truckloads to
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be shipped in t = 1. As a general rule, grouping items on a truck is bene�cial.
Since the horizon is rolling, we solve a sequence of optimization problems P`, one
for each horizon {`+ 1, . . . , `+ T}, where ` = 1, 2, . . .

3 Algorithms

Consider a set of items I to be shipped and their release dates, r(I) = {ri | i ∈
I}. Each pair (I, r(I)) is a possible scenario (Birge and Louveaux [1]). Given
a scenario, optimizing can be expressed as a set covering problem, SC(I, r(I)),
where each column is a feasible truckload. Several strategies have been developed
for the stochastic version of the problem : First period optimization : the
loading problem SC(I, r(I)) is solved with the items available in t = 1 : I =
{i | pi1 = 1} ; Expected release dates : for each item i, ri is set to

∑
t∈T tpit ;

Most likely release dates : here ri is the modal value of the distribution pit :
ri = argmax{pit | 1 ≤ t ≤ T} ; Earliest release dates : here ri is the earliest
possible release date of item i : ri = min{t ∈ T | pit > 0} ; Consensus strategy :

Based on (Van Hentenryck and Bent [3]) a sample of scenarios is generated,
then the set covering problems SC(I, r(I)) are solved. Finally, items �frequently�
selected in period l = 0, 1, 2... are retained in a scenario to compute a new plan ;
Restricted evaluation strategy : After solving each set covering problem
SC(I, r(I)) from a sample of scenarios, the quality of each optimal decision x(I)
obtained for t = 1 is cross-evaluated on the remaining scenarios. The decision
x(I) with the smallest overall cost is implemented.

4 Computational results and conclusions

As we are dealing with stochastic optimization problems, attention has been
paid : to the estimation of the objective function, to the statistical signi�cance
of the comparisons, and to the robustness of the results.
Our main conclusions are as follows :
1. Certain policies, like First period optimization, are signi�cantly dominated
by others.
2. Policies based on Earliest release dates perform surprisingly well and are
robust under a variety of assumptions regarding the probability distributions.
3. The expected cost of the best policies is closer to the cost of the optimal plan
(perfect information) than to the cost of the worst policies.
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