
Predicting parameter con�gurations for tuning

e�ective algorithms on very large instances

Franco Mascia Mauro Birattari

Thomas Stützle

IRIDIA, Université Libre de Bruxelles

{fmascia,mbiro,stuetzle}@ulb.ac.be

1 Introduction

Automatic algorithm con�guration has become an essential tool for tuning stochas-
tic local search (SLS) algorithms that, once con�gured, are able to solve e�ectively
hard optimisation problems [1]. Regardless of the impressive advances of the last
years, con�guring an SLS algorithm for very large instances remains di�cult. The
main reason for that is that the computation time of each run of the algorithm
scales with the size of the instances being tackled. In fact, the computational cost
of a single search step scales with instance size; moreover, larger instances usually
also require a much larger number of search steps to �nd good quality solutions.
Even if a limited number of algorithm con�gurations are tested during the tuning
of the algorithm, and therefore the tuning time scales linearly with the compu-
tation time, the sheer amount of time required to test a single con�guration on
a very large instance renders the whole tuning process impractical.

2 Method

In this work, we propose an experimental protocol to tune an algorithm on a
set small instances s ∈ S and extrapolate the obtained con�guration on very
large target instances s∗ ∈ S. This is done by optimising the free variables
of the experimental setting we de�ned. As a proof of concept, we present a
study on an iterated local search (ILS) [2] algorithm for the quadratic assignment
problem (QAP). In this example, the two free variables being optimised are two
prescriptive models: a cut-o�-time policy t(s), and a parameter con�guration
policy m̂(s, t(s)). The �rst policy depends on the instance size and prescribes
a cut-o� time during the tuning phase on the small instances in S. The second
policy depends on the instance size and the cut-o� time, and it is used to actually
extrapolate the parameter con�guration for the algorithm on the very large target
instance s∗ given a time budget T ∗.

The rationale behind having a policy also for the cut-o� time is that a param-
eter con�guration is a function of both the instance size and of the computation
time. For example, in the case of the proof of concept on the ILS algorithm for
QAP, there is only a parameter exposed to the algorithm con�guration, and this



parameter acts on the balance between intensi�cation and diversi�cation. Given
an instance size s, tuning with a short cut-o� time leads to con�gurations that
emphasise intensi�cation, while tuning with long cut-o� time leads to con�gura-
tions that emphasise diversi�cation. It is reasonable to assume that on very large
instances the amount of diversi�cation required is smaller due to the fact that
the search space to be explored is already large and the algorithm will have to
spend most of the time intensifying. In such cases a small cut-o� time when tun-
ing on small instances, can lead to algorithm con�gurations that imply stronger
intensi�cation and are therefore more suited for large instances. What is a long
or a short cut-o� time for a given size is left open to the policy and the cut-o�
time for each size is left as a free variable.

In order to optimise the free variables in our experimental setting, we cast the
problem as a parameter estimation for the minimisation of a loss function. We
�rst decide a parametric family for the cut-o� time policy t(s) and the parameter
con�guration policy m̂(s, t(s)). The values prescribed by the policies will be
determined by the parameters πt and πm, which number and type depend on the
parametric families chosen. In the most general case, we also de�ne a weighting
policy ω(s), with a speci�c parametric family and parameters πω that allows us
during the tuning on the small instances to weight instances di�erently depending
on their size. The rationale here is that very small instances could be less useful
than small to medium ones when extrapolating a parameter con�guration for
very large instances.

We then de�ne the loss function as the di�erence between Cm̂(s; t(s)), which
is the cost obtained when executing the algorithm with the parameter setting
determined by m̂(s; t(s)), and CB(s; t(s)), which is the cost function obtained
when executing the algorithm with the best possible parameter setting B(s; t(s)),
given the same maximum run-time t(s). Then we try to determine

arg min
πω,πm̂,πt

∑
s∈S

ω(s) [Cm̂(s; t(s))− CB(s; t(s))] . (1)

By �nding the optimal settings for πω, πm̂, and πt, we e�ectively �nd the best
scaling of the examples in S, and the best cut-o� time, which allows us to �nd
the policy that best describes how the parameter setting scales with the sizes in
S. The same policy can be used to extrapolate a parameter setting for a target
instance size s∗ and a target cut-o� time T ∗.

Experimental results on the ILS algorithm for QAP show that our method
is able to extrapolate parameter settings that are extremely close to the best
parameter settings on very large instances.

References

[1] Hoos, H.H.: Programming by optimization. Communications of the ACM
55(2) (2012) 70�80

[2] Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework
and applications. In Gendreau, M., Potvin, J.Y., eds.: Handbook of Meta-
heuristics. Volume 146 of International Series in Operations Research & Man-
agement Science. 2 ed. Springer, New York, NY (2010) 363�397

2


