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Vehicle Routing Problems

Given a complete graph G = (V , A) with V = {0, . . . , n}
0 is a depot where is available a fleet of vehicles of capacity Q
nodes {1, . . . , n} are customers with a delivery demand qi

Given costs cij on arcs

Find a set of vehicle routes that serve all customers at a minimal
total cost
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Vehicle Routing Problems

1 2

0

3 4

(a) Graph G

1 2

0

3 4

Vehicle 1

Vehicle 2

(b) Solution

We call graph G customer-based graph

Arcs in G represent best paths in the original road-network
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The first VRP

First paper published on the VRP

See : G.B Dantzig, J.H. Ramser, The truck dispatching problem, Management
Science, 1959
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The first VRP

Figure: Geographical Information System (GIS)?
The Rand Mc Nally road atlas (1958)

4 / 42



VRPs nowadays

Trend 1: A lot of papers on urban distribution (city logistics)
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VRPs nowadays

Trend 2: Accurate data

Geographic Information Systems (openStreetMap...)
Traffic information (historical / real-time)
Real-time monitoring
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VRPs nowadays

Trend 3: Complex organizations / models

Time constraints
Multiple trips
Multiple echelons (synchronization)
Electric vehicles (range anxiety / recharging)
Dynamic problem. . . 7 / 42



Outline of the presentation

PART I: New issues
1 Model granularity
2 Complex attributes
3 Multiple attributes

All these issues show the limits of the customer-based graph

PART II: Methodology
1 Multigraph
2 Road-network graph
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1 Model granularity

In the context of urban delivery, the distance between customers is
often limited and the detail of operations (parking. . . ) at customers
becomes important.

Typical size of a parcel delivery tour
40 customers
≤ 5 minutes per customer, including service and traveling

See : L. Bodin, V. Maniezzo, A. Mingozzi, Street routing and scheduling
problems, in: Handbook of Transportation Science, 1999
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1 Model granularity

1 2

0

3 4

The classical model implicitly assumes:

A unique and available parking
location
“Independence” of successive arcs
in a tour
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1 Model granularity

A unique and available parking location?

In practice :
parking in cities is complex
several parking locations are possible
some booking systems start being developed

See: Z. Lang, E. Yao, W. Hu, Z. Pan, A vehicle routing problem solution
considering alternative stop points, Procedia Social and Behavioral Sciences,
2014
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1 Model granularity

A unique and available parking location?

A

B
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1 Model granularity

“Independence of successive arcs in a tour”?

Parking selection implies dependence between the ingoing and the
outgoing arcs

This dependence also exists when some roads are subject to fees

See: L. B. Reinhardt, M. K. Jepsen, D. Pisinger, The edge set cost of the
vehicle routing problem with time windows, Transportation Science 2015.
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2 Complex attributes

Some complications could arise with:
Complex cost functions / constraints (fuel consumption
minimization, congestion charges, etc.)
Additional decisions
I Breaks (driver working hour regulation)
I Speed (speed optimization)

Not possible / not efficient (?) to precompute paths.
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2 Complex attributes

Complex cost functions / constraints

Illustration: Electric vehicle routing with stochastic energy
consumption

Energy consumption N(8, 6)

1 2

Energy consumption N(10, 2)

Best path?
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2 Complex attributes

Complex cost functions / constraints

Illustration: Electric vehicle routing with deterministic energy
consumption depending on street segment slopes
Energy consumption 8 with peak at 14

1 2

Energy consumption 10 with peak at 12

Best path?
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2 Complex attributes

Additional decisions: breaks (driver working hour regulation)

1 2

15 km

Time intervals (min)
[0, 20[ [20, 40[ [40, 60]

Speed (km/h) 30 15 30

Break time: 20 minutes
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15 km

Time intervals (min)
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Speed (km/h) 30 15 30
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1 2

15 km

Time intervals (min)
[0, 20[ [20, 40[ [40, 60]

Speed (km/h) 30 15 30

Break time: 20 minutes

Break at customer 2:
10 km 5 km break

0 20 40 60

⇒ Customer 2 reached at time 40,
break finished at time 60
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2 Complex attributes

Additional decisions: breaks (driver working hour regulation)

1 2

15 km

Time intervals (min)
[0, 20[ [20, 40[ [40, 60]

Speed (km/h) 30 15 30

Break time: 20 minutes

Break optimized on the road-network:
10 km break 5 km

0 20 40 50
⇒ Customer 2 reached at time 50

See: M. Chassaing, C. Duhamel, P. Lacomme. Time Dependent Capacitated
Vehicle Routing Problem with Waiting Times at nodes. Odysseus, 2015.
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2 Complex attributes

Additional decisions: breaks (driver working hour regulation)

In more complex networks, the path between customers 1 and
2 might even depends on the break time
Also, the break time influences the previous / following parts of
the route
It is even possible that no solution exists with breaks at
customers 1 or 2
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2 Complex attributes

Additional decisions: Speed

It is assumed that the decision-maker can control driver’s speed to
limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the
speed? No!

1 2

Max speed: 50 km/h 90 km/h 30 km/h
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2 Complex attributes

Additional decisions: Speed

In addition:
Depending on this speed different paths will be followed
The decision-maker might modify the speed at any node in the
road-network

See : J. Qian, R. Eglese. Finding least Fuel Emission paths in a network with
time-varying speeds. Networks, 2014.
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3 Multiple attributes

Examples of attributes:
Distance.
Travel time (not necessarily strongly correlated with distance).
Energy consumption (electric vehicle), pollution, robustness,
sightseeing, danger, tolls. . .

The best path is not necessarily the same for each attribute!
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3 Multiple attributes

0

1

2

(946, 6.7)

(a) Min-cost graph
(distance, time)
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(1590, 5.9)

(b) Min-time graph
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3 Multiple attributes
Some authors tried to evaluate numerically the consequences

T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing problems with
alternative paths: an application to on-demand transportation. EJOR, 2010.

D. Lai, O.C. Demirag and J. Leung. A tabu search heuristic for the
heterogeneous vehicle routing problem on a multigraph. Transportation
Research Part E, 2016

H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW
with a multigraph representation for the road network, Computers & Operations
Research, 2017

Experiments show important increases of solution costs when using
a customer-based graph, that can often exceed 10 %
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Outline of the presentation
Illustration with the VRP with Time Windows (VRPTW)

Standard problem with 2 attributes: cost (distance) and time

Methodology
1 Model the road network with a multigraph.

I One node is introduced for each customer, depot and other
points of interest.

I An arc is introduced for every efficient path between two
nodes.

2 Apply directly solution methods on the road network.

In both cases, contrary to a customer-based graph, no information
is lost.
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Main issues

1 How to construct the multigraph? Size?
2 How to adapt exact solution schemes

I in multigraphs?
I in road-network graph?

3 Multigraph vs road-network graph?
4 How to adapt heuristic solution schemes

I in multigraphs?
I (in road-network graphs?)
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Construction of the multigraph
Involve multi-objective shortest path problems: NP-hard

(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers
See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, A solution method for the
Multi-destination Bi-objectives Shortest Path Problem, submitted.
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Construction of the multigraph

Algorithm 1 NaiveAlgorithm(s)
1: L← {(s, 0, 0)} //label definition: (last vertex,distance,time)
2: repeat
3: Select L = (i , d , t) ∈ L

4: L← L \ {L}
5: for all j successor of i do
6: L′ = (j , d + dij , t + tij)
7: InsertWithDominance(L′,L)
8: // L1 ≺ L2 ⇔ i1 = i2 and t1 ≤ t2 and d1 ≤ d2
9: end for
10: until L = ∅

Execute NaiveAlgorithm for each s ∈ V
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Construction of the multigraph

Improvements:
Implement a multi-objective multi-destination A* to guide the
search:

Select the label that minimizes the detour in distance among
all destinations

Stop the search once the key of the selected label is greater
than the maximal detour among all destinations

Other improvements with Time Windows
Consider only reachable customer nodes
Only nodes that are apt to lead to a feasible path to a
destination node should be considered
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Construction of the multigraph

(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers
NaiveAlgorithm: 5 seconds NaiveAlgorithm: 400 seconds

Multi-A*: 2 seconds Multi-A*: 30 seconds

≤ 4 arcs in parallel on average
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Exact solution schemes
Multigraph

Branch-and-Price algorithms can easily be generalized
Master problem: set partitioning problem
Pricing problem: Elementary Shortest Path Problem with
Resource Constraints on multigraph

Solved using an adapted labelling algorithm: a label at some
node is extended to all outgoing arcs

Branching rules: standard branching rules

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the
VRPTW with a multigraph representation for the road network, Computers &
Operations Research, 2017
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Exact solution schemes
Multigraph

Computational results: Real instances

(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers
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Exact solution schemes
Multigraph

Computational results: Real instances

min-cost graph min-time graph multigraph
gap cost (%) gap cost (%)

|V | |C| # CPU(s) CPU(s) CPU(s) min-cost min-time
(a) 5437 25 1 0.2 0.3 1.7 -3.4 -7.7

2 0.2 0.2 0.8 -8.0 -6.3
50 1 1.9 4.3 13.4 -2.3 -5.2

2 2.9 3.7 18.8 -1.6 -4.4
75 1 23.4 21.2 131.4 -0.5 -5.1

2 311.6 11.4 73.4 -0.7 -5.9
(b) 19500 25 1 1.5 0.2 1.2 -6.6 -10.0

2 0.2 0.4 1.1 -1.7 -8.7
50 1 4.0 12.6 22.7 -0.1 -9.5

2 10.4 13.6 13.3 -2.3 -8.3
75 1 599.1 1372.3 174.1 -10.5 -4.1

2 55.4 23.6 102.6 -0.9 -4.4
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Exact solution schemes
Road network

Column generation (fractional solution)
The master problem is not modified
The pricing algorithm is applied in the road-network graph
I many nodes
I a few arcs from each node

The service is elementary but not the routes: crossroad nodes
or arcs can be traversed many times. . .
When extending a label to a customer, two labels are
generated: one with service, one without service

See: A. Letchford, S. Nasiri and A. Oukil. Pricing routines for vehicle routing
with time windows on road networks. Computers & Operations Research, 2014.

34 / 42



Exact solution schemes
Road network

Branch-and-price (integer solution)
A fractional solution can be supported by an integer flow
No simple way to deal with it
Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First
branch-and-price-second for the capacitated arc-routing problem,
Operations research 2012.

However it “never” happens (unlike to what is happening in arc
routing problems)

35 / 42



Exact solution schemes
Road network

Branch-and-price (integer solution)
A fractional solution can be supported by an integer flow
No simple way to deal with it
Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First
branch-and-price-second for the capacitated arc-routing problem,
Operations research 2012.

However it “never” happens (unlike to what is happening in arc
routing problems)

35 / 42



Exact solution schemes
Road network

Branch-and-price:
When the flow is fractional: branch on arc flow
When the flow is integer:
I branch 1: enumerate all the feasible routes in the subgraph

supported by the flow and solve by IP
I branch 2: impose to use an arc not in the subgraph supported

by the flow ∑
(i ,j)∈A\Ã

∑
r∈Ω

bijr xr ≥ 1

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, A
branch-and-price Algorithm for the Vehicle Routing Problem with Time
Windows on a road network, submitted
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Multigraph versus road-network
Experiments

|VRN | |ARN | |C| CPUMG CPURN
CPURN
CPUMG

5437 10181 5 1 0.0 5.5 117
2 0.1 4.2 64
3 0.0 4.3 95
4 0.1 8.8 149
5 0.0 14.8 330

10 1 0.1 11.9 128
2 0.1 7.1 90
3 0.1 6.0 87
4 0.1 11.6 135
5 0.1 25.6 337

25 1 0.2 56.9 283
2 0.2 51.3 252
3 0.2 35.1 213
4 0.4 111.8 285
5 0.2 81.0 463

50 1 1.0 113.5 114
2 3.3 - -
3 2.1 147.6 70
4 1.0 252.0 244
5 17.4 - -

−: instances not solved in 7200 seconds
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Heuristic solution schemes
Multigraph

Local search operations (e.g., an insertion, a removal) imply
reoptimizing the selection of arcs.
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Heuristic solution schemes
Multigraph

Arc selection is NP-hard

It can be managed by dynamic programming

See: T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing
problems with alternative paths: an application to on-demand transportation.
EJOR, 2010.

Incremental techniques can be implemented to accelerate the
method

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, Adaptive
Large Neighborhood Search for VRPTW on multigraph, submitted.
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Heuristic solution schemes
Multigraph

1 Initially the best arcs are selected via dynamic programming
(backward + forward)

2 Labels are stored
3 When a move is applied, these labels are used

0

[0, 100]

1

[20, 50]

2

[40, 70]

0

[0, 100](25,30)

(30,20)

(20,80)

(30,50)

(50,20)

(20,50)

(30,30)

Forward
labels (0,0) (25,30)

(30,20)
(60,70)
(75,50)
(80,40)

(90,100)
(100,90)
(105,80)
(110,70)

Backward
labels(0,100)(20,50)

(30,70)
(60,20)
(70,30)
(80,50)

(90,0)
(100,10)
(105,20)
(110,30)

40 / 42



Heuristic solution schemes
Multigraph

1 Initially the best arcs are selected via dynamic programming
(backward + forward)

2 Labels are stored
3 When a move is applied, these labels are used

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100](25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

Forward
labels (0,0) (25,30)

(30,20)

Backward
labels(0,100)(20,50)

(30,70)

(35,50)
(37,40)
(42,30)

(30,30)
(33,40)
(40,50)
(43,60)(110,30)

(110,70)

40 / 42



Heuristic solution schemes
Multigraph

1 Initially the best arcs are selected via dynamic programming
(backward + forward)

2 Labels are stored
3 When a move is applied, these labels are used

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100](25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

Forward
labels (0,0) (25,30)

(30,20)

Backward
labels(0,100)(20,50)

(30,70)

(35,50)
(37,40)
(42,30)

(30,30)
(33,40)
(40,50)
(43,60)(110,30)

(110,70)

40 / 42



Heuristic solution schemes
Multigraph

1 Initially the best arcs are selected via dynamic programming
(backward + forward)

2 Labels are stored
3 When a move is applied, these labels are used

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100](25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

Forward
labels (0,0) (25,30)

(30,20)
(35,50)
(37,40)
(42,30)

Backward
labels(0,100)(20,50)

(30,70)
(30,30)
(33,40)
(40,50)
(43,60)(110,30)

(110,70)

40 / 42



Conclusions

Recent VRPs often involve
Urban distribution
Accurate data
Complex organization / models

Customer-based graphs often fail modeling these VRPs with
accuracy because of

Model precision (granularity)
Complex attributes
Multiple attributes
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Conclusions

The number of papers investigating these issues is very limited...
...even if it has grown a lot recently!

Replacing the customer-based graph with a multigraph seems
efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is
not tractable yet.

Still a lot to do!

H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Vehicle routing problems with
road-network information: State of the art, Networks, to appear
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