

Vehicle routing problems with road-network information

Dominique Feillet

Mines Saint-Etienne and LIMOS, CMP Georges Charpak, F-13541 Gardanne, France

ORBEL - Liège, February 1, 2018

50

Given a complete graph G = (V, A) with $V = \{0, \dots, n\}$

0 is a depot where is available a fleet of vehicles of capacity Q
nodes {1,..., n} are customers with a delivery demand q_i

Given costs c_{ii} on arcs

Find a set of vehicle routes that serve all customers at a minimal total cost

Vehicle 2

(b) Solution

Λ

3

We call graph G customer-based graph

(a) Graph G

3

Arcs in G represent best paths in the original road-network

4

THE TRUCK DISPATCHING PROBLEM*

G. B. DANTZIG¹ AND J. H. RAMSER³

The paper is concerned with the optimum routing of a fleet of gasoline delivery trucks between a bulk terminal and a large number of service stations supplied by the terminal. The shortest routes between any two points in the system are given and a demand for one or several products is specified for a number of stations within the distribution system. It is desired to find a way to assign stations to trucks in such a manner that station demands are satisfied and total mileage covered by the fleet is a minimum. A procedure based on a linear programming formulation is given for obtaining a near optimal solution. The calculations may be readily performed by hand or by an automatic digital computing machine. No practical applications of the method have been made a yet. A number of trial problems have been calculated, however.

First paper published on the VRP

See : *G.B Dantzig, J.H. Ramser, The truck dispatching problem, Management Science, 1959*

City

Figure: Geographical Information System (GIS)? The Rand Mc Nally road atlas (1958)

VRPs nowadays

Trend 1: A lot of papers on urban distribution (city logistics)

VRPs nowadays

Trend 2: Accurate data

- Geographic Information Systems (openStreetMap...)
- Traffic information (historical / real-time)
- Real-time monitoring

Trend 3: Complex organizations / models

- Time constraints
- Multiple trips
- Multiple echelons (synchronization)
- Electric vehicles (range anxiety / recharging)

7 / 42

Dynamic problem...

Outline of the presentation

PART I: New issues

- 1 Model granularity
- 2 Complex attributes
- 3 Multiple attributes

All these issues show the limits of the customer-based graph

PART II: Methodology

- Multigraph
- 2 Road-network graph

In the context of urban delivery, the distance between customers is often limited and the detail of operations (parking...) at customers becomes important.

Typical size of a parcel delivery tour

- 40 customers
- $\blacksquare \leq 5$ minutes per customer, including service and traveling

See : L. Bodin, V. Maniezzo, A. Mingozzi, Street routing and scheduling problems, in: Handbook of Transportation Science, 1999

The classical model implicitly assumes:

- A unique and available parking location
- "Independence" of successive arcs in a tour

10/42

In practice :

- parking in cities is complex
- several parking locations are possible
- some booking systems start being developed

See: *Z. Lang, E. Yao, W. Hu, Z. Pan, A vehicle routing problem solution considering alternative stop points, Procedia Social and Behavioral Sciences, 2014*

12 / 42

"Independence of successive arcs in a tour"?

Parking selection implies dependence between the ingoing and the outgoing arcs

This dependence also exists when some roads are subject to fees

See: L. B. Reinhardt, M. K. Jepsen, D. Pisinger, The edge set cost of the vehicle routing problem with time windows, Transportation Science 2015.

Some complications could arise with:

- Complex cost functions / constraints (fuel consumption minimization, congestion charges, etc.)
- Additional decisions
 - Breaks (driver working hour regulation)
 - Speed (speed optimization)

Not possible / not efficient (?) to precompute paths.

Complex cost functions / constraints

Illustration: Electric vehicle routing with stochastic energy consumption

Complex cost functions / constraints

Illustration: Electric vehicle routing with deterministic energy consumption depending on street segment slopes

Energy consumption 10 with peak at 12

	Time intervals (min)			
	[0, 20[[20, 40[[40, 60]	
Speed (km/h)	30	15	30	

Break time: 20 minutes

	Time intervals (min)			
	[0, 20[[20, 40[[40, 60]	
Speed (km/h)	30	15	30	

Break time: 20 minutes

Break at customer 1:

	Time intervals (min)			
	[0, 20[[20, 40[[40, 60]	
Speed (km/h)	30	15	30	

Break time: 20 minutes

Break at customer 2:

 \Rightarrow Customer 2 reached at time 40, break finished at time 60

17/4

Break optimized on the road-network:

See: *M.* Chassaing, C. Duhamel, P. Lacomme. Time Dependent Capacitated Vehicle Routing Problem with Waiting Times at nodes. Odysseus, 2015.

17 / 42

- In more complex networks, the path between customers 1 and 2 might even depends on the break time
- Also, the break time influences the previous / following parts of the route
- It is even possible that no solution exists with breaks at customers 1 or 2

It is assumed that the decision-maker can control driver's speed to limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the speed? No!

It is assumed that the decision-maker can control driver's speed to limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the speed? No!

It is assumed that the decision-maker can control driver's speed to limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the speed? No!

In addition:

- Depending on this speed different paths will be followed
- The decision-maker might modify the speed at any node in the road-network

See : J. Qian, R. Eglese. Finding least Fuel Emission paths in a network with time-varying speeds. Networks, 2014.

Examples of attributes:

- Distance.
- Travel time (not necessarily strongly correlated with distance).
- Energy consumption (electric vehicle), pollution, robustness, sightseeing, danger, tolls...

The best path is not necessarily the same for each attribute!

(distance, time)

(a) Min-cost graph

(b) Min-time graph

MINES Saint-Étienne | MSPIRING Saint-Étienne |

Some authors tried to evaluate numerically the consequences

T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing problems with alternative paths: an application to on-demand transportation. EJOR, 2010.

D. Lai, O.C. Demirag and J. Leung. A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph. Transportation Research Part E, 2016

H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW with a multigraph representation for the road network, Computers & Operations Research, 2017

Experiments show important increases of solution costs when using a customer-based graph, that can often exceed 10 %

Outline of the presentation

PART I: New issues

- 1 Model granularity
- 2 Complex attributes
- 3 Multiple attributes

All these issues show the limits of the customer-based graph

PART II: Methodology

- Multigraph
- 2 Road-network graph

Outline of the presentation

Illustration with the VRP with Time Windows (VRPTW)

Standard problem with 2 attributes: cost (distance) and time

Methodology

MINES

I Model the road network with a multigraph.

- One node is introduced for each customer, depot and other points of interest.
- An arc is introduced for every efficient path between two nodes.
- 2 Apply directly solution methods on the road network.

In both cases, contrary to a customer-based graph, no information is lost.

- 1 How to construct the multigraph? Size?
- 2 How to adapt exact solution schemes
 - in multigraphs?
 - in road-network graph?
- 3 Multigraph vs road-network graph?
- 4 How to adapt heuristic solution schemes
 - in multigraphs?
 - (in road-network graphs?)

Involve multi-objective shortest path problems: NP-hard

 (a) 5437 nodes / 100 customers
 (b) 19500 nodes / 100 customers
 See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, A solution method for the Multi-destination Bi-objectives Shortest Path Problem, submitted.

28 /

Algorithm 1 NaiveAlgorithm(s)

- 1: $\mathcal{L} \leftarrow \{(s, 0, 0)\}$ //label definition: (last vertex, distance, time)
- 2: repeat
- 3: Select $L = (i, d, t) \in \mathcal{L}$
- $4: \quad \mathcal{L} \leftarrow \mathcal{L} \setminus \{L\}$
- 5: for all j successor of i do

6:
$$L' = (j, d + d_{ij}, t + t_{ij})$$

- 7: InsertWithDominance (L', \mathcal{L})
- 8: // $L_1 \prec L_2 \Leftrightarrow i_1 = i_2$ and $t_1 \leq t_2$ and $d_1 \leq d_2$
- 9: end for
- 10: until $\mathcal{L} = \emptyset$

Execute <code>NaiveAlgorithm</code> for each $s \in V$

Improvements:

Implement a multi-objective multi-destination A* to guide the search:

Select the label that minimizes *the detour* in distance **among all destinations**

Stop the search once the key of the selected label is greater than the maximal detour **among all destinations**

Other improvements with Time Windows

- Consider only *reachable* customer nodes
- Only nodes that are apt to lead to a feasible path to a destination node should be considered

Improvements:

Implement a multi-objective multi-destination A* to guide the search:

Select the label that minimizes *the detour* in distance **among all destinations**

Stop the search once the key of the selected label is greater than the maximal detour **among all destinations**

Other improvements with Time Windows

- Consider only *reachable* customer nodes
- Only nodes that are apt to lead to a feasible path to a destination node should be considered

(a) 5437 nodes / 100 customers
NaiveAlgorithm: 5 seconds
Multi-A*: 2 seconds

(b) 19500 nodes / 100 customers
NaiveAlgorithm: 400 seconds
Multi-A*: 30 seconds

 \leq 4 arcs in parallel on average

Exact solution schemes Multigraph

Branch-and-Price algorithms can easily be generalized

- Master problem: set partitioning problem
- Pricing problem: Elementary Shortest Path Problem with Resource Constraints on multigraph

Solved using an adapted labelling algorithm: a label at some node is extended to all outgoing arcs

Branching rules: standard branching rules

See: *H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW with a multigraph representation for the road network, Computers & Operations Research, 2017*

Exact solution schemes Multigraph

Computational results: Real instances

(a) 5437 nodes / 100 customers

(b) 19500 nodes / 100 customers

Exact solution schemes Multigraph

Computational results: Real instances

				min-cost graph	min-time graph	multigraph		
							gap cost (%)	gap cost (%)
	V	C	#	CPU(s)	CPU(s)	CPU(s)	min-cost	min-time
(a)	5437	25	1	0.2	0.3	1.7	-3.4	-7.7
			2	0.2	0.2	0.8	-8.0	-6.3
		50	1	1.9	4.3	13.4	-2.3	-5.2
			2	2.9	3.7	18.8	-1.6	-4.4
		75	1	23.4	21.2	131.4	-0.5	-5.1
			2	311.6	11.4	73.4	-0.7	-5.9
(b)	19500	25	1	1.5	0.2	1.2	-6.6	-10.0
			2	0.2	0.4	1.1	-1.7	-8.7
		50	1	4.0	12.6	22.7	-0.1	-9.5
			2	10.4	13.6	13.3	-2.3	-8.3
		75	1	599.1	1372.3	174.1	-10.5	-4.1
			2	55.4	23.6	102.6	-0.9	-4.4

Column generation (fractional solution)

- The master problem is not modified
- The pricing algorithm is applied in the road-network graph
 - many nodes
 - a few arcs from each node
- The service is elementary but not the routes: crossroad nodes or arcs can be traversed many times...
- When extending a label to a customer, two labels are generated: one with service, one without service

See: A. Letchford, S. Nasiri and A. Oukil. Pricing routines for vehicle routing with time windows on road networks. Computers & Operations Research, 2014.

Branch-and-price (integer solution)

- A fractional solution can be supported by an integer flow
- No simple way to deal with it
- Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First branch-and-price-second for the capacitated arc-routing problem, Operations research 2012.

However it "never" happens (unlike to what is happening in arc routing problems)

Branch-and-price (integer solution)

- A fractional solution can be supported by an integer flow
- No simple way to deal with it
- Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First branch-and-price-second for the capacitated arc-routing problem, Operations research 2012.

However it "never" happens (unlike to what is happening in arc routing problems)

Branch-and-price:

- When the flow is fractional: branch on arc flow
- When the flow is integer:
 - branch 1: enumerate all the feasible routes in the subgraph supported by the flow and solve by IP
 - branch 2: impose to use an arc not in the subgraph supported by the flow

$$\sum_{i,j)\in A\setminus\tilde{A}}\sum_{r\in\Omega}b_{ijr}x_r\geq 1$$

See: *H.* Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, A branch-and-price Algorithm for the Vehicle Routing Problem with Time Windows on a road network, submitted

Multigraph versus road-network Experiments

$ V_{RN} $	A _{RN}	<i>C</i>		CPU _{MG}	CPU _{RN}	CPU _{RN} CPU _{MG}
5437	10181	5	1	0.0	5.5	117
			2	0.1	4.2	64
			3	0.0	4.3	95
			4	0.1	8.8	149
			5	0.0	14.8	330
		10	1	0.1	11.9	128
			2	0.1	7.1	90
			3	0.1	6.0	87
			4	0.1	11.6	135
			5	0.1	25.6	337
		25	1	0.2	56.9	283
			2	0.2	51.3	252
			3	0.2	35.1	213
			4	0.4	111.8	285
			5	0.2	81.0	463
		50	1	1.0	113.5	114
			2	3.3	-	-
			3	2.1	147.6	70
			4	1.0	252.0	244
			5	17.4	-	-

-: instances not solved in 7200 seconds

Local search operations (*e.g.*, an insertion, a removal) imply reoptimizing the selection of arcs.

Arc selection is NP-hard

It can be managed by dynamic programming

See: *T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing problems with alternative paths: an application to on-demand transportation. EJOR, 2010.*

Incremental techniques can be implemented to accelerate the method

See: *H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, Adaptive Large Neighborhood Search for VRPTW on multigraph, submitted.*

40 / 42

- Initially the best arcs are selected via dynamic programming (backward + forward)
- 2 Labels are stored
- 3 When a move is applied, these labels are used

- Initially the best arcs are selected via dynamic programming (backward + forward)
- 2 Labels are stored
- 3 When a move is applied, these labels are used

- Initially the best arcs are selected via dynamic programming (backward + forward)
- 2 Labels are stored
- 3 When a move is applied, these labels are used

- Initially the best arcs are selected via dynamic programming (backward + forward)
- 2 Labels are stored
- 3 When a move is applied, these labels are used

Conclusions

Recent VRPs often involve

- Urban distribution
- Accurate data
- Complex organization / models

- Model precision (granularity)
- Complex attributes
- Multiple attributes

Recent VRPs often involve

- Urban distribution
- Accurate data
- Complex organization / models

Customer-based graphs often fail modeling these VRPs with accuracy because of

- Model precision (granularity)
- Complex attributes
- Multiple attributes

Replacing the customer-based graph with a multigraph seems efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is not tractable yet.

Still a lot to do!

Replacing the customer-based graph with a multigraph seems efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is not tractable yet.

Still a lot to do!

Replacing the customer-based graph with a multigraph seems efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is not tractable yet.

Still a lot to do!

Replacing the customer-based graph with a multigraph seems efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is not tractable yet.

Still a lot to do!

18]

Vehicle routing problems with road-network information

Dominique Feillet

Mines Saint-Etienne and LIMOS, CMP Georges Charpak, F-13541 Gardanne, France

ORBEL - Liège, February 1, 2018

