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MINES Vehicle Routing Problems

Given a complete graph G = (V, A) with V ={0,...,n}
m 0 is a depot where is available a fleet of vehicles of capacity @

m nodes {1,...,n} are customers with a delivery demand g;

Given costs ¢ on arcs

Find a set of vehicle routes that serve all customers at a minimal
total cost
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MINES Vehicle Routing Problems

(a) Graph G (b) Solution

We call graph G customer-based graph

S

Arcs in G represent best paths in the original road-network
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MINES The first VRP

THE TRUCK DISPATCHING PROBLEM*
G. B. DANTZIG" axp J. H. RAMSER?

The paper is concerned with the optimum routing of a fleet of gasoline de-
livery trucks b & bulk terminal and a large ber of service stations
supplied by the terminal. The shortest routes between any two points in the
system are given and a demand for one or several products is specified for a
number of stations within the distribution system. It is desired to find & way
to asgign stations to trucks in such a manner that station demands are satisfied
and total mileage covered by the fleet is a minimum, A procedure based on a
linear programming formulation is given for obtaining a near optimal solution.
The ealeulations may be readily performed by hand or by an automatic digital
computing machine, No practical applications of the method have been made
a8 yet. A number of trial problems have been ealculated, however.

First paper published on the VRP

See : G.B Dantzig, J.H. Ramser, The truck dispatching problem, Management
Science, 1959
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Figure: Geographical Information System (GIS)?
The Rand Mc Nally road atlas (1958)
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hiovaion | VRPs nowadays

Trend 1: A lot of papers on urban distribution (city logistics) J
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Trend 2: Accurate data J

m Geographic Information Systems (openStreetMap...)
m Traffic information (historical / real-time)
m Real-time monitoring

<
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Trend 3: Complex organizations / models J

Time constraints
Multiple trips
Multiple echelons (synchronization)

Electric vehicles (range anxiety / recharging) ﬂ

Dynamic problem. ..
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MINES Outline of the presentation

PART I: New issues
Model granularity
Complex attributes
Multiple attributes

All these issues show the limits of the customer-based graph

PART Il: Methodology
Multigraph
Road-network graph
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MINES Model granularity

In the context of urban delivery, the distance between customers is
often limited and the detail of operations (parking...) at customers
becomes important.

Typical size of a parcel delivery tour
m 40 customers
m < 5 minutes per customer, including service and traveling

See : L. Bodin, V. Maniezzo, A. Mingozzi, Street routing and scheduling
problems, in: Handbook of Transportation Science, 1999

D >
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MINES Model granularity

@ @ The classical model implicitly assumes:
@ m A unique and available parking
S location
@ m “Independence” of successive arcs

@ in a tour

<
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MINES Model granularity
A unique and available parking location? J
In practice :

m parking in cities is complex
m several parking locations are possible

m some booking systems start being developed

See: Z Lang, E. Yao, W. Hu, Z. Pan, A vehicle routing problem solution
considering alternative stop points, Procedia Social and Behavioral Sciences,

2014
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[
Saint-Etienne 1L smcetsn

A unique and available parking location?
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MINES Model granularity

A unique and available parking location?
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MINES Model granularity

“Independence of successive arcs in a tour”? J

Parking selection implies dependence between the ingoing and the
outgoing arcs

This dependence also exists when some roads are subject to fees

See: L. B. Reinhardt, M. K. Jepsen, D. Pisinger, The edge set cost of the
vehicle routing problem with time windows, Transportation Science 2015.

<
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MINES Complex attributes

Some complications could arise with:

m Complex cost functions / constraints (fuel consumption
minimization, congestion charges, etc.)
m Additional decisions

» Breaks (driver working hour regulation)
» Speed (speed optimization)

Not possible / not efficient (?) to precompute paths.

S
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MINES Complex attributes

Complex cost functions / constraints

[llustration: Electric vehicle routing with stochastic energy
consumption

Energy consumption N(8, 6)
< > Best path?

Energy consumption N(10, 2)
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MINES Complex attributes

Complex cost functions / constraints

[llustration: Electric vehicle routing with deterministic energy
consumption depending on street segment slopes

Energy consumption 8 with peak at 14
< > Best path?
Energy consumption 10 with peak at 12

S
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Additional decisions: breaks (driver working hour regulation) |

Time intervals (min)

.—»o yyyyyyyyyyyyyyyyyyyyy >o_>. [0,20[  [20,40  [40, 6]
Speed (km/h) 30 15 30

Break time: 20 minutes

<




MINES Complex attributes

Additional decisions: breaks (driver working hour regulation) ]

Time intervals (min)

,,,,,,,,,,,,,,,,,, ,o_,. [0,20  [20,40[  [40, 60]
._m Speed (km/h) 30 15 30

Break time: 20 minutes

Break at customer 1:

I break | 5 km | 10 km | .
\ \ \ \ = Customer 2 reached at time 60

0 20 40 60

S
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MINES Complex attributes

Additional decisions: breaks (driver working hour regulation) ]

Time intervals (min)

,,,,,,,,,,,,,,,,,, ,o_,. [0,20  [20,40[  [40, 60]
._m Speed (km/h) 30 15 30

Break time: 20 minutes

Break at customer 2:

| 0km | 5km | break | = Customer 2 reached at time 40,

<

0 20 40 60 break finished at time 60

S
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Additional decisions: breaks (driver working hour regulation) ]

Time intervals (min)

,,,,,,,,,,,,,,,,,, )o—). [0,20[  [20,40[  [40, 60]
._>O Speed (km/h) 30 15 30

Break time: 20 minutes

Break optimized on the road-network:

I 10 km | break | 5 km |

\ \ \ \ = Customer 2 reached at time 50
0 20 40 50

See: M. Chassaing, C. Duhamel, P. Lacomme. Time Dependent Capacitated
Vehicle Routing Problem with Waiting Times at nodes. Odysseus, 2015. H

S
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Additional decisions: breaks (driver working hour regulation) J

m In more complex networks, the path between customers 1 and
2 might even depends on the break time

m Also, the break time influences the previous / following parts of
the route

m It is even possible that no solution exists with breaks at
customers 1 or 2

<
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Additional decisions: Speed J

It is assumed that the decision-maker can control driver's speed to
limit fuel consumption / pollution

<
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Additional decisions: Speed J

It is assumed that the decision-maker can control driver's speed to
limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the
speed?

<
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MINES Complex attributes

Additional decisions: Speed J

It is assumed that the decision-maker can control driver's speed to
limit fuel consumption / pollution

Travel time / fuel consumption / pollution simple functions of the
speed? No!

® e —@

Max speed: 50 km/h 90 km/h 30 km/h

<
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MINES Complex attributes

Additional decisions: Speed )

In addition:
m Depending on this speed different paths will be followed

m The decision-maker might modify the speed at any node in the
road-network

See : J. Qian, R. Eglese. Finding least Fuel Emission paths in a network with

time-varying speeds. Networks, 2014.
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MINES Multiple attributes

Examples of attributes:
m Distance.
m Travel time (not necessarily strongly correlated with distance).

m Energy consumption (electric vehicle), pollution, robustness,
sightseeing, danger, tolls. ..

The best path is not necessarily the same for each attribute! ]

<

S



24

MINES

[
Saint-Etienne gl

INNOVATION Multiple attributes

.46 6.7) .590 5.9)
(distance, time) n
Mi

) Min-cost graph (b) Min-time graph
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Some authors tried to evaluate numerically the consequences

T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing problems with
alternative paths: an application to on-demand transportation. EJOR, 2010.

D. Lai, O.C. Demirag and J. Leung. A tabu search heuristic for the
heterogeneous vehicle routing problem on a multigraph. Transportation
Research Part E, 2016

H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW
with a multigraph representation for the road network, Computers & Operations
Research, 2017

Experiments show important increases of solution costs when using
a customer-based graph, that can often exceed 10 %
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MINES Outline of the presentation

PART I: New issues
Model granularity
Complex attributes
Multiple attributes

All these issues show the limits of the customer-based graph ]

PART IlI: Methodology
Multigraph
Road-network graph

<
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lllustration with the VRP with Time Windows (VRPTW)
m Standard problem with 2 attributes: cost (distance) and time

Methodology
Model the road network with a multigraph.

» One node is introduced for each customer, depot and other
points of interest.

» An arc is introduced for every efficient path between two
nodes.

Apply directly solution methods on the road network.

In both cases, contrary to a customer-based graph, no information

is lost.

S
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How to construct the multigraph? Size?
How to adapt exact solution schemes
» in multigraphs?
» in road-network graph?
Multigraph vs road-network graph?
How to adapt heuristic solution schemes
» in multigraphs?
» (in road-network graphs?)
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Saint-Etienne INGE e

Involve multi-objective shortest path problems: NP-hard

< C A J-n'-k < . '
(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, A solution method for the
Multi-destination Bi-objectives Shortest Path Problem, submitted.

S
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Algorithm 1 NaiveAlgorithm(s)
1: £+ {(s,0,0)} //label definition: (last vertex,distance,time)

2: repeat

3:  Select L= (i,d,t) e L

4: L+ L\{L}

5.  for all j successor of i do

6: L/:(j,d+dij,t+tij)

7: InsertWithDominance(L', £)

8: //L1<L2<:>I'1:I'23ndtlgtganddlng

9: end for
10: until £ =10

Execute NaiveAlgorithm for each s € V I
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MINES Construction of the multigraph

Improvements:

m Implement a multi-objective multi-destination A* to guide the
search:

Select the label that minimizes the detour in distance among
all destinations

m Stop the search once the key of the selected label is greater
than the maximal detour among all destinations

<
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MINES Construction of the multigraph

Improvements:

m Implement a multi-objective multi-destination A* to guide the
search:

Select the label that minimizes the detour in distance among
all destinations

m Stop the search once the key of the selected label is greater
than the maximal detour among all destinations

Other improvements with Time Windows
m Consider only reachable customer nodes

m Only nodes that are apt to lead to a feasible path to a
destination node should be considered

<

S
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MINES Construction of the multigraph

4 S I\
[V /il B

(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers
NaiveAlgorithm: 5 seconds NaiveAlgorithm: 400 seconds
Multi-A*: 2 seconds Multi-A*: 30 seconds

s N

< 4 arcs in parallel on average
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Multigraph
Branch-and-Price algorithms can easily be generalized
m Master problem: set partitioning problem

m Pricing problem: Elementary Shortest Path Problem with
Resource Constraints on multigraph

Solved using an adapted labelling algorithm: a label at some
node is extended to all outgoing arcs

m Branching rules: standard branching rules

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the
VRPTW with a multigraph representation for the road network, Computers &

<

Operations Research, 2017
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Saint-Etienne Mu|tigra ph

Computational results: Real instances

»

(a) 5437 nodes / 100 customers (b) 19500 nodes / 100 customers

<
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MINES Exact solution schemes

Multigraph

Computational results: Real instances

min-cost graph min-time graph multigraph
gap cost (%)  gap cost (%)
V| |C| # CPU(s) CPU(s) CPU(s) min-cost min-time

(a) 5437 25 1 0.2 0.3 1.7 -3.4 -1.7
2 0.2 0.2 0.8 -8.0 -6.3

50 1 1.9 43 13.4 -2.3 -5.2

2 29 3.7 18.8 -1.6 -4.4

75 1 23.4 21.2 131.4 -0.5 -5.1

2 311.6 11.4 73.4 -0.7 -5.9

(b) 19500 25 1 15 0.2 1.2 -6.6 -10.0
2 0.2 0.4 11 -1.7 -8.7

50 1 4.0 12.6 22.7 -0.1 -9.5

2 10.4 13.6 133 -2.3 -8.3

75 1 599.1 1372.3 174.1 -10.5 -4.1

2 55.4 23.6 102.6 -0.9 -4.4
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Road network

Column generation (fractional solution)
m The master problem is not modified
m The pricing algorithm is applied in the road-network graph
» many nodes
» a few arcs from each node
m The service is elementary but not the routes: crossroad nodes
or arcs can be traversed many times. ..
m When extending a label to a customer, two labels are
generated: one with service, one without service

See: A. Letchford, S. Nasiri and A. Oukil. Pricing routines for vehicle routing

with time windows on road networks. Computers & Operations Research, 2014.

S



pog

MINES Exact solution schemes
Road network

Branch-and-price (integer solution)
m A fractional solution can be supported by an integer flow
m No simple way to deal with it

m Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First
branch-and-price-second for the capacitated arc-routing problem,
Operations research 2012.

<
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MINES Exact solution schemes
Road network

Branch-and-price (integer solution)
m A fractional solution can be supported by an integer flow
m No simple way to deal with it

m Same difficulties in arc routing: C. Bode and S. Irnich. Cut-First
branch-and-price-second for the capacitated arc-routing problem,
Operations research 2012.

However it “never” happens (unlike to what is happening in arc
routing problems)

<
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Road network

Branch-and-price:
m When the flow is fractional: branch on arc flow
m When the flow is integer:
» branch 1: enumerate all the feasible routes in the subgraph

supported by the flow and solve by IP
» branch 2: impose to use an arc not in the subgraph supported

by the flow
Z Z bijrxy > 1
(ij)EA\A reQ

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, A
branch-and-price Algorithm for the Vehicle Routing Problem with Time
Windows on a road network, submitted

<
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Saint-Etienne I sinceten A

Experiments

IVenl  Aew|  IC] CPUuc  CPURv  cprs

5437 10181 5 1 0.0 5.5 117

2 0.1 4.2 64

3 0.0 43 95

4 0.1 8.8 149

5 0.0 14.8 330

10 1 0.1 11.9 128

2 0.1 7.1 90

3 0.1 6.0 87

4 0.1 11.6 135

5 0.1 25.6 337

25 1 0.2 56.9 283

2 0.2 51.3 252

3 0.2 35.1 213

4 0.4 111.8 285

5 0.2 81.0 463

50 1 1.0 113.5 114

2 3.3 - -

3 21 147.6 70

4 1.0 252.0 244

5 17.4 - -

—: instances not solved in 7200 seconds
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Multigraph

Local search operations (e.g., an insertion, a removal) imply
reoptimizing the selection of arcs.

(20,80)
[0,100] (3539) 50,50] . ---==~__ [40,70] (20:50) [, 100]
S - (30,50) ~ PIERG
1 2

~

(30,20) S----- (30,30)

P

(30,20) (12,10) (13,10) (30,30)

<
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Multigraph
Arc selection is NP-hard

It can be managed by dynamic programming

See: T. Garaix, C. Artigues, D. Feillet and D. Josselin. Vehicle routing

problems with alternative paths: an application to on-demand transportation.
EJOR, 2010.

Incremental techniques can be implemented to accelerate the
method

See: H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, T. van Woensel, Adaptive
Large Neighborhood Search for VRPTW on multigraph, submitted.
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Multigraph
Initially the best arcs are selected via dynamic programming
(backward + forward)
Labels are stored
When a move is applied, these labels are used

110,70
(80,40) E105,30;
Forward (30,20) (75,50) (100,90)
labels (0,0) (25,30) (20,80) (60,70) (90,100)
0,100 %39 0500 _--"7""77"=~<_  [o,700 (2050) [0 100]
T T TS -7 (30,50) T~ -7 T~
BRI O SR ONINO
So__ -7 S _ ~.__--" Backward
(90,0) (60,20)  ~~_ _ -~ (20,50) (0,100) Jbels
(100,10) (30.20) (70,30) B ‘(55 g(); - (30,70) (30.30) fobel
(105,20) (80,50) -

(110,30)
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Multigraph
Initially the best arcs are selected via dynamic programming
(backward + forward)
Labels are stored
When a move is applied, these labels are used

Forward (30,20)
labels (0,0 (25,30)

0,100 (2539 20, 50] (1020) 30, 60] (1020) [40, 70] (2050) [0, 100]

@ ~ _ @ @ @ - E Backward
(30.20) (2, 10) (13 10) (20,50) (30 30) (0100)  iabels

(30, 70)
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Multigraph

Initially the best arcs are selected via dynamic programming

(backward + forward)
Labels are stored

When a move is applied, these labels are used

(42,30)

Forward (30,20) (37,40)
labels (0,0) (25,30) (35,50)
0,100 (2539 20, 50] (10 20) 30, 60]

(10 20)

[40, 70]

(20 50) [0, 100]

@ : @ @ @ - : E Backward

(30,20 (12,10) (30.30)

(33 40)
(40,50)
(43,60)

(13,10

)

(20,50)
(30, 70)

(30 ;0) (0,100) labels
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Multigraph
Initially the best arcs are selected via dynamic programming
(backward + forward)
Labels are stored
When a move is applied, these labels are used

= - Backward

gg:ig; (13,10) 88:38; 30,30y (0100) abels
(40,50)
(43,60)

(42,30)
Forward (30,20) (37.40)
labels (0,0) (25,30) (35,50)
0,100 530 o so) (10200 (39 60) (10200 g 70 (2050) g 1)

(30.20) (12,10)
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MINES Conclusions

Recent VRPs often involve
m Urban distribution
m Accurate data

m Complex organization / models

Customer-based graphs often fail modeling these VRPs with
accuracy because of

m Model precision (granularity)
m Complex attributes

m Multiple attributes
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MIRES Conclusions
The number of papers investigating these issues is very limited...
...even if it has grown a lot recently!

Replacing the customer-based graph with a multigraph seems
efficient, but is not always possible (or easy).

Replacing the customer-based graph with a road-network graph is
not tractable yet.

Still a lot to do!

H. Ben-ticha, N. Absi, D. Feillet, A. Quilliot, Vehicle routing problems with

road-network information: State of the art, Networks, to appear
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