Modeling advanced disaggregate demand as MILP

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

February 2, 2018

Back to Belgium!

I want to open a bar

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 3 / 45

3

<ロ> (日) (日) (日) (日) (日)

I want to open a bar

But there is a strong competition...

- La Cour St-Jean
- Le Mad Murphy
- Le Lausanne Express
- La Guimbarde

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 3 / 45

-

I want to open a bar

But there is a strong competition...

- La Cour St-Jean
- Le Mad Murphy
- Le Lausanne Express
- La Guimbarde
- ...

To be successful...

...I will use Operations Research to optimize my business.

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 3 / 45

Aggregate demand

• 22000 students in the University of Liège

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"
- I should sell about 2000 liters of beer per week

- 22000 students in the University of Liège
- each student drinks 4.25L of beer per week (source: DH.be)
- 45 bars in the "Carré"
- I should sell about 2000 liters of beer per week
- Jupiler 25cl at 4€: total revenues = 32000€ per week.

Assortment

Michel Bierlaire (EPFL)

イロト イ理ト イヨト イヨト 一臣

Assortment

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Michel Bierlaire (EPFL)

Assortment

Michel Bierlaire (EPFL)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Assortment

3

<ロ> (日) (日) (日) (日) (日)

Assortment and prices

Customers are different

Customers are different

Mathematics

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 6 / 45

◆□→ ◆ □ → ◆ □ →

Customers are different

Mathematics

HEC

Disaggregate demand analysis

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 7 / 45

3

Disaggregate demand analysis

Customers behavior

- Customers have different tastes
- Customers have different willingness to pay

-

Disaggregate demand analysis

Customers behavior

- Customers have different tastes
- Customers have different willingness to pay

Customers choice

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

February 2, 2018 7 / 45

- E

Outline

Variables: $x_{in} = (p_{in}, z_{in}, s_n)$

Attributes of alternative i: zin

- Price (p_{in})
- Brand
- Color
- Percentage of alcohol
- etc.

Characteristics of customer n: s_n

- Income
- Age
- Sex
- Type of student
- etc.

Behavioral assumptions

Choice set: C_n $y_{in} = 1$ if $i \in C_n$, 0 otherwise

Behavioral assumptions

Choice set: C_n $y_{in} = 1$ if $i \in C_n$, 0 otherwise

Utility function

$$U_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

STRANSP-OR

February 2, 2018 10 / 45

一日、

Behavioral assumptions

Choice set: C_n $y_{in} = 1$ if $i \in C_n$, 0 otherwise

Utility function

$$U_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

Choice

$$P_n(i|x; C_n) = \Pr(U_{in} \geq U_{jn})$$

TRANSP-OR

February 2, 2018 10 / 45

・ 同 ト ・ ヨ ト ・ ヨ ト

Choice models

Demand curve

Example

Choice set: Jupiler

- Lausanne Express i = 0
- La Cour St-Jean *i* = 1

Utility functions

$$V_{0n} = -2.2p_0 - 1.3$$

 $V_{1n} = -2.2p_1$

Prices

- Lausanne Express: [0 6€]
- La Cour St-Jean: 1.8€

TRANSP-OR

February 2, 2018 13 / 45

E 5 4 E 5

ÉCOLE POLYTECHNIQUE

Demand and revenues

Heterogeneous population

Two groups in the population

$$V_{0n} = -\beta_n p_0 + c_0$$

(日) (同) (三) (三)

Mathematics: 25% Business: 75% $\beta_1 = -4.5$, $c_1 = -1.3$

February 2, 2018 15 / 45

Demand per market segment

Demand and revenues

Michel Bierlaire (EPFL)

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Assortment

What about assortment?

Heterogeneous population, two products

LE: Price Orval = $1.5 \times$ price Jupiler CSJ: Price Orval = $2 \times$ price Jupiler

Michel Bierlaire (EPFL)

Utility functions: math

$$\begin{split} V_{\text{LE,Jupiler},m} &= -4.5 p_{\text{LE,Jupiler}} - 1.3 \\ V_{\text{LE,Orval},m} &= -4.5 p_{\text{LE,Orval}} - 1.3 + 3 \\ V_{\text{CSJ,Jupiler},m} &= -4.5 p_{\text{CSJ,Jupiler}} \\ V_{\text{CSJ,Orval},m} &= -4.5 p_{\text{CSJ,Orval}} + 3 \end{split}$$

Utility functions: HEC

$$\begin{split} V_{\mathsf{LE},\mathsf{Jupiler},b} &= -0.25 p_{\mathsf{LE},\mathsf{Jupiler}} - 1.3 \\ V_{\mathsf{LE},\mathsf{Orval},b} &= -0.25 p_{\mathsf{LE},\mathsf{Orval}} - 1.3 + 1 \\ V_{\mathsf{CSJ},\mathsf{Jupiler},b} &= -0.25 p_{\mathsf{CSJ},\mathsf{Jupiler}} \\ V_{\mathsf{CSJ},\mathsf{Orval},b} &= -0.25 p_{\mathsf{CSJ},\mathsf{Orval}} + 1 \end{split}$$

Total revenues

Orval only

Optimization

Assortment and pricing

- Combinatorial problem
- For each potential assortment, solve a pricing problem
- Select the assortment corresponding to the highest revenues
- MINLP
- Non convex relaxation

Disaggregate demand models

Advantages

- Theoretical foundations
- Market segmentation
- Taste heterogeneity
- Many variables
- Estimated from data

Disadvantages

- Complex mathematical formulation
- Not suited for optimization
- Literature: heuristics

Research objectives

Observations

- Revenues is not the only indicator to optimize,
- e.g. customer satisfaction.
- Many OR applications need a demand representation

Goal

- Generic mathematical representation of choice models,
- designed to be included in MILP,
- linear in the decision variables.

Outline

February 2, 2018 26 / 45

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- The choice problem becomes deterministic

▲ 同 ▶ → 三 ▶

FEDERALE DE LAUSANNE

February 2, 2018 28 / 45

- 4 E h

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Capacities

- Demand may exceed supply
- Each alternative *i* can be chosen by maximum *c_i* individuals.
- An exogenous priority list is available.
- Can be randomly generated, or according to some rules.
- The numbering of individuals is consistent with their priority.

February 2, 2018 30 / 45

Choice set

Variables

$y_i \in \{0,1\}$	operator decision
$y_{in}^d \in \{0,1\}$	customer decision (data
$y_{in} \in \{0,1\}$	product of decisions
$y_{\textit{inr}} \in \{0,1\}$	capacity restrictions

Constraints

$$y_{in} = y_{in}^{d} y_{i} \quad \forall i, n$$

 $y_{inr} \le y_{in} \quad \forall i, n, r$

Michel Bierlaire (EPFL)

э

- (四) - (三) - (三)

ECOLE POLYTECHNIQUE

Utility

Variables

$$\begin{array}{ll} U_{inr} & \text{utility} \\ z_{inr} = \left\{ \begin{array}{ll} U_{inr} & \text{if } y_{inr} = 1 \\ \ell_{nr} & \text{if } y_{inr} = 0 \end{array} & \text{discounted utility} \\ (\ell_{nr} \text{ smallest lower bound}) \end{array} \right.$$

Constraint: utility

$$U_{inr} = \overbrace{\beta_{in}p_{in} + q_d(x_d)}^{V_{in}} + \xi_{inr} \forall i, n, r$$

Utility (ctd)

Constraints: discounted utility

$$\begin{split} \ell_{nr} &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq \ell_{nr} + M_{inr} y_{inr} & \forall i, n, r \\ U_{inr} - M_{inr} (1 - y_{inr}) &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq U_{inr} & \forall i, n, r \end{split}$$

Choice

Variables

$$U_{nr} = \max_{i \in C} z_{inr}$$
$$w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} \\ 0 & \text{otherwise} \end{cases}$$
 choice

Constraints

$$\begin{aligned} z_{inr} &\leq U_{nr} & \forall i, n, r \\ U_{nr} &\leq z_{inr} + M_{nr}(1 - w_{inr}) & \forall i, n, r \\ \sum_{i} w_{inr} &= 1 & \forall n, r \\ w_{inr} &\leq y_{inr} & \forall i, n, r \end{aligned}$$

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 34 / 45

Capacity

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1)y_{inr} + (n-1)(1 - y_{inr}) \; \forall i > 0, n > c_i, r$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in}-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr}, \ \forall i > 0, n, r$$

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

• [lbeas et al., 2014]

February 2, 2018 36 / 45

Parking choices [Ibeas et al., 2014]

Alternatives

- Paid on-street parking
- Paid underground parking
- Free street parking

Model

- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $C_n = C \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models

3

→

General experiments

Uncapacitated vs Capacitated case

- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - 2 Operator is forced to offer a reduced price

Uncapacitated vs Capacitated case

Uncapacitated

Computational time

	Uncapacitated case				Capacitated case			
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

Outline

Linear formulation of choice models

Generic framework

- Not only logit: any choice model.
- Choice models from the literature can be used as such.
- Disaggregate: the choice of every individual for every draw is available.
- Many indicators can be derived.

Challenges

- Large scale
- Simulation noise
- Additional linearization may be necessary (e.g. revenue $= p \cdot w$)

TRANSP-OR

Michel Bierlaire (EPFL)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

42 / 45

February 2, 2018

Linear formulation of choice models

Opportunities: decomposition methods

- Lagrangian relaxation
- Decomposable by individual
- Decomposable by draw

Future work

- Game theory
- Parameter estimation (discrete maximum likelihood)
- Link with machine learning (SVM, random forests, etc.)

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 44 / 45

э

・ロト ・聞ト ・ヨト ・ヨト

Key contributors

- Bernard Gendron
- Virginie Lurkin
- Meritxell Pacheco
- Shadi Sharif Azadeh

LE CARRÉ

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 44 / 45

イロト イポト イヨト イヨト

Key contributors

- Bernard Gendron
- Virginie Lurkin
- Meritxell Pacheco
- Shadi Sharif Azadeh

Online course edX.org

Introduction to discrete choice models

© OPT - J.P.Remy

SISE

Disaggregate demand as MILP

February 2, 2018 44 / 45

-

Key contributors

- Bernard Gendron
- Virginie Lurkin
- Meritxell Pacheco
- Shadi Sharif Azadeh

Online course edX.org

Introduction to discrete choice models

Thank you!

Merci Dank u wel Danke schön

A (10) × (10) × (10)

ARRE

© OPT - J.P.Remy

Michel Bierlaire (EPFL)

Disaggregate demand as MILP

February 2, 2018 44 / 45

Bibliography

Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. Ortúzar, J. (2014).
Modelling parking choices considering user heterogeneity.
Transportation Research Part A: Policy and Practice, 70:41 – 49.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >