
Recent Advances in

Criterion Space Search Algorithms for

Multi-objective Mixed Integer Programming

Martin Savelsbergh

Natashia Boland

Hadi Charkgard

Diego Pecin

Tyler Perini

Outline

• Motivation

• Basics

• Biojective Integer Programming

• Balanced Box Method

• Biobjective Mixed Integer Programming

• Boxed Line Method

• Epsilon Tabu Constraint Method

• Search-and-Remove Method

• Computations

• Conclusions

Motivation

Application oriented:

• Increasing adoption of optimization-based decision
support tools in industry and government (often
embedding CPLEX, Gurobi, or Xpress-Optimiser)

• Most real-world problems involve multiple, often
conflicting, goals

• A lack of multi-objective mixed integer programming
solvers

Motivation (Cont.)

Research oriented:

• Availability of cheap computing power

• Availability of powerful single-objective mixed integer
programming solvers

Multi-Objective
Mixed Integer Programming

Multi-Objective
Mixed Integer Programming

• Solution Approaches
• Decision space search methods

• Purpose-built branch-and-bound algorithm

• Criterion space search methods

• Repeated solution of single-objective integer programs

Multi-Objective Mixed Integer Programming:
Criterion Space Search Methods

• Pure integer programs:
• Two objectives:

• Epsilon-constraint Method

• Perpendicular Search Method, Augmented Weighted Tchebycheff Method,
Balanced Box Method

• Three objectives:
• L-Shape Search Method, Quadrant Shrinking Method

• More than three objectives:
• Epsilon-constraint method, Enhanced Recursive Method, Full p-Split Method,

Full (p-1)-Split Method

• Mixed integer programs:
• Two objectives:

• Triangle splitting method (2016), Epsilon Tabu Constraint Method (2016),
Search-and-Remove Method (2017), Boxed-line Method (2017)

• Three objectives: none

• More than three objectives: none

Biobjective Integer Program (BOIP)

Define a BOIP as:

where:

1.

2. X is nonempty and bounded

Goal: Find the complete nondominated frontier (NDF) for any BOIP.

Define a BOMIP as:

where:

1.

2. X is nonempty and bounded

Goal: Approximate the full nondominated frontier (NDF) for any BOMILP.

Biobjective Mixed Integer Program (BOMIP)

Note: x decision vector of both binary and continuous variables

Nondominated Points

Definition:

Given feasible solutions x and x*, we
say x* dominates x if

z1

z2

z(x*)

z(x)

Nondominated Points

Definition:

Given feasible solutions x and x*, we
say x* dominates x if

z(xN) is a nondominated point
(NDP) if xN is feasible and no other
feasible solution dominates it.

z1

z2

z(xN)

Nondominated Frontier

z1

z2 Definition:

Given feasible solutions x and x*, we
say x* dominates x if

z(xN) is a nondominated point
(NDP) if xN is feasible and no other
feasible solution dominates it.

The nondominated frontier is the
union of all NDPs.

Nondominated Frontiers

LP

IP

z1

z2

z1

z2

MIP

• isolated points

• open, half-open, and closed
line segments

z1

z2

• NDPs are found in criterion-space search algorithms by solving
single-objective IPs.

• These single-objective IPs are the “workhorses” of the algorithms

• Algorithms solves two types: Lexicographic IPs & Scalarized IPs

Finding NDPs

Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is

defined by

z1

z2

first
z1*

Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is

defined by

z1

z2

second

z1*

z2*

Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is

defined by

is guaranteed to be an NDP.

z1

z2

z1*

z2*

We count each lexicographic IP as two IPs, although the
second IP usually solves rather quickly.

Scalarized IP

Transform vector of objective values
into a scalar with positive weight
0 < λ < 1:

z1

z2

Scalarized IP

Transform vector of objective values
into a scalar with positive weight
0 < λ < 1:

is guaranteed to be an NDP.

z1

z2

zλ*

Dichotomic Search

Dichotomic search

• An algorithm to find a set of nondominated points

• Step 1: lexmin {z1(x), z2(x)}, lexmin {z2(x), z1(x)}

• Step 2,…: Scalarized LP/IP

Step 1 Step 2

Note: Requires only LP solves when
(1) MOLP or (2) MOMIP with IP part of solution is fixed

z1

z2

Dichotimic search for pure IPs

z1

Initialization:

• Find corner point NDPs.

zL

zR

z2

z1

Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find
next NDP

z2

z1

z2
Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find
next NDP

z1

z2
Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find
next NDP

z1

z2
Set of NDPs found by
dichotomic search

2

9

Supported

2

9

Unsupported

The existence of unsupported NDPs makes finding the nondominated
frontier of an IP much more difficult than finding the nondominated
frontier of an LP

Nonsupported NDPs

Nondominated frontier of a BOMIP

• Nondominated line
segment (NLS)

z1

z2

4 NDLs

The existence of NDLs makes finding the nondominated frontier of a MIP
much more difficult than finding the nondominated frontier of an IP

• Vertical gaps

• Horizontal gaps

z1

z2

vertical
gap

horizontal
gap

Nondominated frontier of a BOMIP

Balanced Box Method

For Biobjective Integer Programs

z1

z2

z1
Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

zL

zR

z2

z1
Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

2. These define the corner
points of the first box.

B1

z2

zL

zR

z1

B1

Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

2. These define the corner
points of the first box.

3. If the box is nontrivial,
add it to queue.

* We always use two distinct NDPs to define a box.

** “Trivially small” boxes are never added to the queue.

B1

z2

zR

zL

z1

B1

Queue

Initialization Complete.

Outer Loop Initiates and
continues until queue is
empty.

z2

z1

B1

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

μ

z2

z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

μ

z*

z2

z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

4. Lexmin to the left of z*.

z*

z’

z2

z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

4. Lexmin to the left of z*.

5. Add two boxes to queue.

B3

B2

z*

z’

B2

B3

z2

Dominance

Optimality

Dominance

Optimality

Boxed Line Method

For Biobjective Mixed Integer Programs

z1

z2

Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

zL

zR

z1

z2

Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

2. These define the corner
points of the first box.

B1

zL

zR

z1

z2

B1

Queue

Initialization:

1. Perform two lexmins to
discover first two NDPs.

2. These define the corner
points of the first box.

3. If the box is nontrivial,
add it to queue.

* We always use two distinct NDPs to define a box.

** “Trivially small” boxes are never added to the queue.

B1

zL

zR

z1

z2

B1

Queue

Initialization Complete.

Outer Loop Initiates and
continues until queue is
empty.

z1

z2

B1

B2

B3

B4

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

zL

zR

μ

z1

z2

B3

B4

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.
(Two cases.)

zL

zR

B2

μ

z1

z2

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

Case 1:

Split crosses at a vertical gap
in the frontier, so the solution
is not on the split line.

μ

zL

zR

z*

B3

B4

B2

z1

z2

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

Case 1:

Split crosses at a vertical gap
in the frontier, so the solution
is not on the split line.

4. Solve symmetric lexmin to
the left of z*.

zL

zRB3

B4

B2

z*

z’

z1

z2

B5

B6

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split
line as a constraint (either
crosses an ND line
segment or vertical gap).

3. Lexmin under split line.

Case 1:

Split crosses at a vertical gap
in the frontier, so the solution
is not on the split line.

4. Solve symmetric lexmin to
the left of z*.

5. Add two boxes to queue.

zL

zRB3

B4

B2

z*

z’

B5

B6

* This case follows the same procedure as Balanced Box Method for BOIP.

z1

z2

Queue

Outer Loop:

Case 2:

Split crosses at a ND line
segment in the frontier, so the
solution is on the split line.zL

zRB3

B4

B2

z*

μ

z1

z2

Queue

Outer Loop:

Case 2:

Split crosses at a ND line
segment in the frontier, so the
solution is on the split line.

4. Perform Line Generation
subroutine.

zL

zRB3

B4

B2

z*

z1

z2

Queue

Outer Loop:

Case 2:

Split crosses at a ND line
segment in the frontier, so the
solution is on the split line.

4. Perform Line Generation
subroutine.

5. Inner Loop refines line
segment and returns ND
portion.

zL

zRB3

B4

B2

z*

z1

z2

z1

z2

Queue

Outer Loop:

Case 2:

Split crosses at a ND line
segment in the frontier, so the
solution is on the split line.

4. Perform Line Generation
subroutine.

5. Inner Loop refines line
segment and returns ND
portion.

6. Inner Loop also returns
the NDP that dominates
any open endpoint.

zL

zRB3

B4

B2

z*

z’

z1

z2

z1

z2

Outer Loop:

Case 2:

Split crosses at a ND line
segment in the frontier, so the
solution is on the split line.

4. Perform Line Generation
subroutine.

5. Inner Loop refines line
segment and returns ND
portion.

6. Inner Loop also returns
the NDP that dominates
any open endpoint.

7. Add L(z1,z2) to the
approximation, and add
two boxes to queue.

zL

zR

z*

z’

z1

z2

B6

B5

B5

B6

Queue

B3

B4

B2

Inner Loop:

1. Line Generation provides
a full line segment from
the integer frontier s.t.

zL

zR

z*

z1

z2

Inner Loop:

1. Line Generation provides
a full line segment from
the integer frontier s.t.

2. Solve scalarization IP w.r.t.
gradient vector of L(z1, z2)
to find NDP that
dominates it. (Two cases.)

zL

zR

z*

z1

z2

Inner Loop:

1. Line Generation provides
a full line segment from
the integer frontier s.t.

2. Solve scalarization IP w.r.t.
gradient vector of L(z1, z2)
to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment.

zL

zR

z*

y*

z1

z2

Inner Loop:

1. Line Generation provides
a full line segment from
the integer frontier s.t.

2. Solve scalarization IP w.r.t.
gradient vector of L(z1, z2)
to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment

1. Traverse the integer
frontier of the NDP
towards z* (LP).

zL

zR

z*

y*

z1

z2

Inner Loop:

1. Line Generation provides
a full line segment from
the integer frontier s.t.

2. Solve scalarization IP w.r.t.
gradient vector of L(z1, z2)
to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment

1. Traverse the integer
frontier of the NDP
towards z* (LP).

2. Update endpoint location
based on v. If ,
then endpoint is closed,
else endpoint is open.

zL

zR

z*

y* z1

z2

v

Inner Loop:

Repeat: Solve scalarization IP
w.r.t. gradient vector of L(z1,
z2) to find NDP that
dominates it. (Two cases.)

zL

zR

z*

z1

z2

Inner Loop:

Repeat: Solve scalarization IP
w.r.t. gradient vector of L(z1,
z2) to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment

zL

zR

z*

y*

z1

z2

Inner Loop:

Repeat: Solve scalarization IP
w.r.t. gradient vector of L(z1,
z2) to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment

1. Traverse the integer
frontier of the NDP
towards z* (LP).

zL

zR

z*

z1

z2

y*

Inner Loop:

Repeat: Solve scalarization IP
w.r.t. gradient vector of L(z1,
z2) to find NDP that
dominates it. (Two cases.)

Case 1: NDP y* dominates
line segment

1. Traverse the integer
frontier of the NDP
towards z* (LP).

2. Update endpoint location
based on v. If ,
then endpoint is closed,
else endpoint is open.

zL

zR

z*

z1

z2

v

y*

Inner Loop:

Repeat: Solve scalarization IP
w.r.t. gradient vector of L(z1,
z2) to find NDP that
dominates it. (Two cases.)

Case 2: NDP y* does NOT
dominate line segment.

END LOOP:

L(z1, z2) is nondominated

zL

zR

z*

z1

z2

Inner Loop:

Once L(z1,z2) is found to be
nondominated:

For each open endpoint, solve
an IP to find the NDP that
dominates it.

Return to Outer Loop:
L(z1,z2) and the NDPs that
dominate z1, z2

zL

zR

z*

z1

z2

z’

* Note that each of the NDPs y* are “forgotten” by the basic
method: motivation for the recursive and enhanced methods.

Complexity Results: Basic Method

Lexicographic IPs

Single-Objective IPs

n = number of NLS in the strict interior of a box

g = number of vertical gaps in a box (g ≤ n+1)

• Only Outer Loop solves lexicographic IPs

• 1 lexmin solved for each NLS

• 2 lexmin solved for each vertical gap

•

• Only Inner Loop solves single-objective IPs

• At most n scalarized IPs solved to refine line segment

• At most 2 single-objective IPs solved for open
endpoints

• Result follows by induction

Complexity Results: Recursive Method

Lexicographic IPs

Single-Objective IPs

Inner Loop is defined recursively.

Requires (simple) routine to prevent cycling.

• Same as Basic Method

• Every scalarization either finds an NDP or confirms a
line segment is nondominated

• At most 2 scalarization IPs for all NLS, except the first
one (first NDP must be found by lexicographic IP)

Enhancement: Same Integer Solution

typical nondominated frontier
of test instances used in the
literature

Enhancement: Same Integer Solution

• Treat a box with corner NDPs from solutions with same
integer part differently

• Dichotomic search with fixed integer part
• Requires linear program solves

• Verify using no-good constraint:

Observations

• Advantages of Balanced Box and Boxed-Line Methods
• Approximation

• Using a priority queue and always exploring the box with the largest
unexplored area, the methods quickly obtain a high-quality
approximation of the nondominated frontier

• Parallelization

• The methods parallelize naturally, as each of the boxes in the priority
queue can be explored independently

Epsilon Tabu Constraint Method

Soylu and Yildiz

Epsilon Tabu Constraint Method

July 20, 2017

Identify consecutive slice problems

Slice problem 1

Slice problem 2

ε Tabu Constraint Method

July 20, 2017

Verifying line segment

Epsilon Tabu Method

July 20, 2017

Identify consecutive slice problems

Search-and-Remove Method

Soylu

zR

zL

Iteration 1: Dichotomic Search

Iteration 1: Solve Slice Problems

Iteration 1: Add Tabu Constraints

Iteration 2: Dichotomic Search

zL

zR

Iteration 2: Solve Slice Problems

Iteration 2: Add Tabu Constraints

Stopping Conditions

• Infeasibility

• Bound sets

Bound sets

Lower bound set

Upper bound set

Construct NDF from list of slices

Add horizontal auxiliary lines

Compute all intersection points

Determine intervals along the z1 axis

Find lowest line segment per interval

Boxed-Line Method: PureLex Variant

Observations

• Computational experiments reveal:
• The larger the box (in criterion space), the harder it is to solve the

single objective IPs

• The time it takes to solve Scalarized IPs is more sensitive to the size
of the box than the time it takes to solve Lexicographic IPs.

July 20, 2017 97

Boxed-Line Method: PureLex Variant

Correcting generated line using Lexmin

Computation Studies

Instances

Historical Instances
• C160 & C320 (5 each)
• ~3500 & 17500 NDPs
• Few pareto slices
• Each slice contributes

many, small segments

Aligned Instances
• Rand5000 (5)
• 3n NDPs & n+1

slices
• Most slices

contribute at most 2
segments

Bent Instances
• Bent1000 (3)
• 3n NDPs & n+1

slices
• Scalarized IPs are

very hard

Approximation: Explored Area

Approximation: Number of slices

Approximation: Length of nondominated line segments

Future Research

Future Research

• Creating additional instances for testing biobjective mixed integer
programming algorithms

• Designing and implementing an algorithm for triobjective mixed
integer programming

• Exploring how to (best) reuse information from previous integer
programming solves

• Developing methods that “reduce” the number of objective functions

THANK YOU
MERCI

BEDANKT

