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Motivation

Application oriented:

• Increasing adoption of optimization-based decision 
support tools in industry and government (often 
embedding CPLEX, Gurobi, or Xpress-Optimiser)

• Most real-world problems involve multiple, often 
conflicting, goals

• A lack of multi-objective mixed integer programming 
solvers



Motivation (Cont.)

Research oriented:

• Availability of cheap computing power

• Availability of powerful single-objective mixed integer 
programming solvers



Multi-Objective 
Mixed Integer Programming



Multi-Objective 
Mixed Integer Programming

• Solution Approaches
• Decision space search methods

• Purpose-built branch-and-bound algorithm

• Criterion space search methods

• Repeated solution of single-objective integer programs



Multi-Objective Mixed Integer Programming:
Criterion Space Search Methods

• Pure integer programs:
• Two objectives:

• Epsilon-constraint Method

• Perpendicular Search Method, Augmented Weighted Tchebycheff Method, 
Balanced Box Method

• Three objectives:
• L-Shape Search Method, Quadrant Shrinking Method

• More than three objectives:
• Epsilon-constraint method, Enhanced Recursive Method, Full p-Split Method, 

Full (p-1)-Split Method

• Mixed integer programs:
• Two objectives:

• Triangle splitting method (2016), Epsilon Tabu Constraint Method (2016), 
Search-and-Remove Method (2017), Boxed-line Method (2017)

• Three objectives: none

• More than three objectives: none



Biobjective Integer Program (BOIP)

Define a BOIP as:

where:

1.

2. X is nonempty and bounded

Goal: Find the complete nondominated frontier (NDF) for any BOIP.



Define a BOMIP as:

where:

1.

2. X is nonempty and bounded

Goal: Approximate the full nondominated frontier (NDF) for any BOMILP.

Biobjective Mixed Integer Program (BOMIP)

Note: x decision vector of both binary and continuous variables



Nondominated Points

Definition:

Given feasible solutions x and x*, we 
say x* dominates x if
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Nondominated Points

Definition:

Given feasible solutions x and x*, we 
say x* dominates x if 

z(xN) is a nondominated point 
(NDP) if xN is feasible and no other 
feasible solution dominates it.
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z(xN)



Nondominated Frontier

z1

z2 Definition:

Given feasible solutions x and x*, we 
say x* dominates x if 

z(xN) is a nondominated point 
(NDP) if xN is feasible and no other 
feasible solution dominates it.

The nondominated frontier is the 
union of all NDPs.



Nondominated Frontiers

LP

IP

z1

z2

z1

z2

MIP

• isolated points

• open, half-open, and closed 
line segments

z1

z2



• NDPs are found in criterion-space search algorithms by solving 
single-objective IPs.

• These single-objective IPs are the “workhorses” of the algorithms

• Algorithms solves two types: Lexicographic IPs & Scalarized IPs  

Finding NDPs



Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is 

defined by

z1

z2

first
z1*



Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is 

defined by
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second

z1*

z2*



Lexicographic IP

Minimize objectives sequentially:

(z1, z2) = lexmin {z1(x), z2(x)} is 

defined by

is guaranteed to be an NDP.

z1

z2

z1*

z2*

We count each lexicographic IP as two IPs, although the 
second IP usually solves rather quickly.



Scalarized IP

Transform vector of objective values 
into a scalar with positive weight 
0 < λ < 1:

z1
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Scalarized IP

Transform vector of objective values 
into a scalar with positive weight 
0 < λ < 1:

is guaranteed to be an NDP.
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zλ*



Dichotomic Search



Dichotomic search

• An algorithm to find a set of nondominated points

• Step 1: lexmin {z1(x), z2(x)}, lexmin {z2(x), z1(x)}

• Step 2,…: Scalarized LP/IP

Step 1 Step 2



Note: Requires only LP solves when
(1) MOLP or (2) MOMIP with IP part of solution is fixed
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Dichotimic search for pure IPs



z1

Initialization:

• Find corner point NDPs.
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z1

Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find 
next NDP

z2



z1

z2
Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find 
next NDP



z1

z2
Initialization:

• Find corner point NDPs.

Main loop:

• Solve scalarized IP to find 
next NDP



z1

z2
Set of NDPs found by 
dichotomic search



2

9

Supported

2

9

Unsupported

The existence of unsupported NDPs makes finding the nondominated
frontier of an IP much more difficult than finding the nondominated
frontier of an LP

Nonsupported NDPs



Nondominated frontier of a BOMIP

• Nondominated line 
segment (NLS)

z1

z2

4 NDLs

The existence of NDLs makes finding the nondominated frontier of a MIP 
much more difficult than finding the nondominated frontier of an IP



• Vertical gaps

• Horizontal gaps

z1

z2

vertical 
gap

horizontal 
gap

Nondominated frontier of a BOMIP



Balanced Box Method

For Biobjective Integer Programs
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z1
Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.
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z1
Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.

2. These define the corner 
points of the first box.
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z1

B1

Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.

2. These define the corner 
points of the first box.

3. If the box is nontrivial, 
add it to queue.

*   We always use two distinct NDPs to define a box.

** “Trivially small” boxes are never added to the queue.
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z1

B1

Queue

Initialization Complete.

Outer Loop Initiates and 
continues until queue is 
empty.

z2



z1

B1

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).
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z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.
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z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.

4. Lexmin to the left of z*. 

z*

z’

z2



z1
Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.

4. Lexmin to the left of z*. 

5. Add two boxes to queue.
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Dominance

Optimality



Dominance

Optimality



Boxed Line Method

For Biobjective Mixed Integer Programs
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Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.
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z1

z2

Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.

2. These define the corner 
points of the first box.
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z1

z2

B1

Queue

Initialization:

1. Perform two lexmins to 
discover first two NDPs.

2. These define the corner 
points of the first box.

3. If the box is nontrivial, 
add it to queue.

*   We always use two distinct NDPs to define a box.

** “Trivially small” boxes are never added to the queue.
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z1

z2

B1

Queue

Initialization Complete.

Outer Loop Initiates and 
continues until queue is 
empty.



z1

z2

B1

B2

B3

B4

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

zL

zR

μ



z1

z2

B3

B4

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.
(Two cases.)

zL

zR

B2

μ



z1

z2

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.

Case 1: 

Split crosses at a vertical gap 
in the frontier, so the solution 
is not on the split line.

μ
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z1

z2

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.

Case 1: 

Split crosses at a vertical gap 
in the frontier, so the solution 
is not on the split line.

4. Solve symmetric lexmin to 
the left of z*. 

zL

zRB3

B4

B2

z*

z’



z1
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B5

B6

Queue

Outer Loop:

1. Retrieves box from queue.

2. Define a horizontal split 
line as a constraint (either 
crosses an ND line 
segment or vertical gap).

3. Lexmin under split line.

Case 1: 

Split crosses at a vertical gap 
in the frontier, so the solution 
is not on the split line.

4. Solve symmetric lexmin to 
the left of z*. 

5. Add two boxes to queue.

zL

zRB3

B4

B2

z*

z’

B5

B6

*   This case follows the same procedure as Balanced Box Method for BOIP.



z1

z2

Queue

Outer Loop:

Case 2: 

Split crosses at a ND line 
segment in the frontier, so the 
solution is on the split line.zL

zRB3

B4

B2

z*

μ



z1

z2

Queue

Outer Loop:

Case 2: 

Split crosses at a ND line 
segment in the frontier, so the 
solution is on the split line.

4. Perform Line Generation 
subroutine.
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z1

z2

Queue

Outer Loop:

Case 2: 

Split crosses at a ND line 
segment in the frontier, so the 
solution is on the split line.

4. Perform Line Generation 
subroutine.

5. Inner Loop refines line 
segment and returns ND 
portion.
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z2



z1

z2

Queue

Outer Loop:

Case 2: 

Split crosses at a ND line 
segment in the frontier, so the 
solution is on the split line.

4. Perform Line Generation 
subroutine.

5. Inner Loop refines line 
segment and returns ND 
portion.

6. Inner Loop also returns 
the NDP that dominates 
any open endpoint.
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z1

z2

Outer Loop:

Case 2: 

Split crosses at a ND line 
segment in the frontier, so the 
solution is on the split line.

4. Perform Line Generation 
subroutine.

5. Inner Loop refines line 
segment and returns ND 
portion.

6. Inner Loop also returns 
the NDP that dominates 
any open endpoint.

7. Add L(z1,z2) to the 
approximation, and add 
two boxes to queue.

zL

zR

z*

z’

z1

z2

B6
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Queue

B3

B4

B2



Inner Loop:

1. Line Generation provides 
a full line segment from 
the integer frontier s.t.
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Inner Loop:

1. Line Generation provides 
a full line segment from 
the integer frontier s.t.

2. Solve scalarization IP w.r.t. 
gradient vector of L(z1, z2) 
to find NDP that 
dominates it. (Two cases.)
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Inner Loop:

1. Line Generation provides 
a full line segment from 
the integer frontier s.t.

2. Solve scalarization IP w.r.t. 
gradient vector of L(z1, z2) 
to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment.

zL

zR

z*

y*

z1

z2



Inner Loop:

1. Line Generation provides 
a full line segment from 
the integer frontier s.t.

2. Solve scalarization IP w.r.t. 
gradient vector of L(z1, z2) 
to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment

1. Traverse the integer 
frontier of the NDP 
towards z* (LP).

zL

zR

z*

y*

z1

z2



Inner Loop:

1. Line Generation provides 
a full line segment from 
the integer frontier s.t.

2. Solve scalarization IP w.r.t. 
gradient vector of L(z1, z2) 
to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment

1. Traverse the integer 
frontier of the NDP 
towards z* (LP).

2. Update endpoint location 
based on v. If , 
then endpoint is closed, 
else endpoint is open.

zL

zR

z*

y* z1

z2

v



Inner Loop:

Repeat: Solve scalarization IP 
w.r.t. gradient vector of L(z1, 
z2) to find NDP that 
dominates it. (Two cases.)
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Inner Loop:

Repeat: Solve scalarization IP 
w.r.t. gradient vector of L(z1, 
z2) to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment
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Inner Loop:

Repeat: Solve scalarization IP 
w.r.t. gradient vector of L(z1, 
z2) to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment

1. Traverse the integer 
frontier of the NDP 
towards z* (LP).
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z1
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y*



Inner Loop:

Repeat: Solve scalarization IP 
w.r.t. gradient vector of L(z1, 
z2) to find NDP that 
dominates it. (Two cases.)

Case 1: NDP y* dominates 
line segment

1. Traverse the integer 
frontier of the NDP 
towards z* (LP).

2. Update endpoint location 
based on v. If , 
then endpoint is closed, 
else endpoint is open.

zL

zR

z*

z1

z2

v

y*



Inner Loop:

Repeat: Solve scalarization IP 
w.r.t. gradient vector of L(z1, 
z2) to find NDP that 
dominates it. (Two cases.)

Case 2: NDP y* does NOT 
dominate line segment.

END LOOP: 

L(z1, z2) is nondominated

zL

zR

z*

z1
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Inner Loop:

Once L(z1,z2) is found to be 
nondominated:

For each open endpoint, solve 
an IP to find the NDP that 
dominates it.

Return to Outer Loop: 
L(z1,z2) and the NDPs that 
dominate z1, z2

zL

zR

z*

z1

z2

z’

*   Note that each of the NDPs y* are “forgotten” by the basic 
method: motivation for the recursive and enhanced methods.



Complexity Results: Basic Method

Lexicographic IPs

Single-Objective IPs

n = number of NLS in the strict interior of a box

g = number of vertical gaps in a box (g ≤ n+1)

• Only Outer Loop solves lexicographic IPs

• 1 lexmin solved for each NLS

• 2 lexmin solved for each vertical gap

•

• Only Inner Loop solves single-objective IPs

• At most n scalarized IPs solved to refine line segment

• At most 2 single-objective IPs solved for open 
endpoints

• Result follows by induction



Complexity Results: Recursive Method

Lexicographic IPs

Single-Objective IPs

Inner Loop is defined recursively.

Requires (simple) routine to prevent cycling.

• Same as Basic Method

• Every scalarization either finds an NDP or confirms a 
line segment is nondominated

• At most 2 scalarization IPs for all NLS, except the first 
one (first NDP must be found by lexicographic IP)



Enhancement: Same Integer Solution

typical nondominated frontier 
of test instances used in the 
literature



Enhancement: Same Integer Solution

• Treat a box with corner NDPs from solutions with same 
integer part differently

• Dichotomic search with fixed integer part
• Requires linear program solves

• Verify using no-good constraint:



Observations

• Advantages of Balanced Box and Boxed-Line Methods
• Approximation

• Using a priority queue and always exploring the box with the largest 
unexplored area, the methods quickly obtain a high-quality 
approximation of the nondominated frontier

• Parallelization

• The methods parallelize naturally, as each of the boxes in the priority 
queue can be explored independently



Epsilon Tabu Constraint Method

Soylu and Yildiz



Epsilon Tabu Constraint Method

July 20, 2017

Identify consecutive slice problems

Slice problem 1

Slice problem 2



ε Tabu Constraint Method

July 20, 2017

Verifying line segment



Epsilon Tabu Method

July 20, 2017

Identify consecutive slice problems



Search-and-Remove Method

Soylu





zR

zL

Iteration 1: Dichotomic Search



Iteration 1: Solve Slice Problems



Iteration 1: Add Tabu Constraints



Iteration 2: Dichotomic Search

zL

zR



Iteration 2: Solve Slice Problems



Iteration 2: Add Tabu Constraints



Stopping Conditions

• Infeasibility

• Bound sets



Bound sets



Lower bound set 



Upper bound set 



Construct NDF from list of slices



Add horizontal auxiliary lines



Compute all intersection points



Determine intervals along the z1 axis



Find lowest line segment per interval



Boxed-Line Method: PureLex Variant



Observations

• Computational experiments reveal:
• The larger the box (in criterion space), the harder it is to solve the 

single objective IPs

• The time it takes to solve Scalarized IPs is more sensitive to the size 
of the box than the time it takes to solve Lexicographic IPs.

July 20, 2017 97



Boxed-Line Method: PureLex Variant

Correcting generated line using Lexmin



Computation Studies



Instances

Historical Instances
• C160 & C320 (5 each)
• ~3500 & 17500 NDPs
• Few pareto slices
• Each slice contributes 

many, small segments

Aligned Instances
• Rand5000 (5)
• 3n NDPs & n+1 

slices
• Most slices 

contribute at most 2 
segments

Bent Instances
• Bent1000 (3)
• 3n NDPs & n+1 

slices
• Scalarized IPs are 

very hard







Approximation: Explored Area



Approximation: Number of slices



Approximation: Length of nondominated line segments



Future Research



Future Research

• Creating additional instances for testing biobjective mixed integer 
programming algorithms

• Designing and implementing an algorithm for triobjective mixed 
integer programming

• Exploring how to (best) reuse information from previous integer 
programming solves

• Developing methods that “reduce” the number of objective functions
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