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Ensembles of extremely randomised trees Motivation(s)

Extra-Trees algorithm
Characterisation(s)

Supervised learning algorithm (Batch Mode)

» Inputs: learning sample Is of (x,y) observations (is e (X x Y)*)
» Output: a model f/As e FacC yX (decision tree, MLP, ...)
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» Objectives:

> maximise accuracy on independent observations
> interpretability, scalability
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Extra-Trees algorithm

Characterisation(s)

Induction of single decision/regression trees (Reminder)

» Algorithm development (1960-1995)
» Top-down growing of trees by recursive partitioning
> local optimisation of split score (variance, entropy)
» Bottom-up pruning to prevent over-fitting
> global optimisation of complexity vs accuracy  (B/V tradeoff)
» Characterisation
» Highly scalable algorithm
> Interpretable models (rules)
» Robustness: irrelevant variables, scaling, outliers
» Expected accuracy often low (high variance)
» Many variants and extensions

» C4.5, CART, ID3 ...
> oblique, fuzzy, hybrid ...
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Bias/variance decomposition (of average error)

Accuracy of models produced by an algorithm in a given context

» Assume problem (inputs X, outputs Y, relation P(X,Y))
and sampling scheme (e.g. fixed size LS ~ PN(X, Y)).
» Take model error function (e.g. Errry = Ex y{(f(X) — Y)?})

and evaluate expected error of algo A (ie. Erray = Ers{Errgs v })

» We have Errpy — Errgy = Biasf\ + Vary

where
» B is the best possible model (here, B(:) = Ey|.)
> Biasf‘ = EI’I?MB (f 4 is the average model)
» Vary, = ErrAjA (dependence of model on sample)
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Ensembles of extremely randomised trees Motivation(s)

Extra-Trees algorithm
Characterisation(s)

Ensembles of trees (How? /Why?)
» Perturb and Combine paradigm (1990-2005)
> Build several trees (e.g. 100, by randomisation)
» Combine trees by voting, averaging. .. (i.e. aggregation)
» Characterisation
» Can preserve scalability (+ trivially parallel)
» Does not preserve interpretability
» Can preserve robustness (irrelevant variables, scaling, outliers)
» Can improve accuracy significantly
> Many generic variants (Bagging, Stacking, Boosting, ...)
> Non—generic variants: (Random Forests, Random Subspace, ...)
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Characterisation(s)

Extra-Trees: learning algorithm

(" M
T1 T2 T3 T4 15
& J
» Ensemble of trees T1, To,... TT (generated independently)
» Random splitting (choice of variable and cut-point)
» Trees are fully developed (perfect fit on Is)
» Ultra-fast (v/nN log N)

(Presentation based on [Geu02, GEW04])
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Ensembles of extremely randomised trees Motivation(s)
Extra-Trees algorithm

Characterisation(s)

Extra-Trees: prediction algorithm

» Aggregation (majority vote or averaging)
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Extra-Trees splitting algorithm (for numerical attributes)

Given a node of a tree and a sample S corresponding to it

» Select K attributes {Xj,..., Xk} at random;
» For each X; (draw a split at random)

» Let x? .. and x°__ be the min and max values of X; in S;
s

» Draw a cut-point x; ¢ uniformly in ]x;

S
i,min? X
> Let t; = [X, < X,"C].

i,max] ’

» Return a split t; = arg max;, Score(t;, S).
NB: the node becomes a LEAF

> if |S| < NMmin;

» if all attributes are constant in S;

» if the output is constant in S;
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Extra-Trees algorithm

Characterisation(s)

Geometric properties (of Single Trees)
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A single fully developed CART tree.
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Geometric properties

(of Tree Bagging models)
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With T = 100 trees in the ensemble.
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Extra-Trees algorithm
Characterisation(s)

GeometriC Properties (of Tree Bagging models)
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With T = 1000 trees in the ensemble.
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Characterisation(s)

GeometriC Properties (of Extra-Trees models)
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With T = 100 trees in the ensemble.
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GeometriC Properties (of Extra-Trees models)
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With T = 1000 trees in the ensemble.
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Parameters (of the Extra-Trees learning algorithm)

Averaging strength T

Waveform Friedman1
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Extra-Trees algorithm

Characterisation(s)

Parameters (of the Extra-Trees learning algorithm)
Attribute selection strength K (w.r.t. irrelevant variables)
Two-Norm Ring-Norm
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Bias/variance tradeoff

Friedmanl1

Pumadyn-32nm

(of the Extra-Trees models)
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Ensembles of extremely randomised trees Motivation(s)
Extra-Trees algorithm

Characterisation(s)

BiaS/Va riance tradeoff (of the Extra-Trees learning algorithm)

Effect of attribute selection strength K

Friedmanl Waveform
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Extra-Trees algorithm

Characterisation(s)

Extra-Trees: variants of setting K

Automatic tuning of K

>
>

Default settings
>
>

by (10-fold) cross-validation
on (large enough) independent test sample

K = /n, in classification
K = n, in regression (n =number of variables)

Totally randomised trees

>

vvyYyy

correspond to K =1

splits (attribute and cut-point) totally at random
ultra-fast “non-supervised” learning algorithm
tree structures independent of output values
akin to KNN, or kernel-based method
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Optlma| ContrOI prOblem (stochastic, discrete-time, infinite horizon)
Xt41 = f(Xt, Uy, Wt) (stochastic dynamics, wy ~ Py (we|xe, ut))
ry = F(Xt, Uy, Wt) (real valued reward signal bounded over X x U x W)
vy (discount factor € [0,1))
/L() X —=>U (closed-loop, stationary control policy)
J;f(X) =E {Z?;é ytr(xt, M(Xt), Wt)’XO = X} (finite horizon return)
Jé‘o(x) = limp_oo Jﬁ(X) (infinite horizon return)

Optimal infinite horizon control policy
pi (+) that maximises J5 (x) for all x.

(Presentation based on [EGWO03, EGWO05])
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Batch mode reinforcement learning problem

Suppose that instead of system model (f(-,-,-), r(-, -, ), Pw(:|-,*)),
the only information we have is a (finite) sample F of four-tuples:

F = {(Xti, Uti,rti,xti+1)7i =1, 7#,:}

Each four-tuple corresponds to a system transition

The objective of batch mode RL is to determine an approximation
A(+) of pi () from the sole knowledge of F

(Many one-step episodes: x,; distributed independently)

(One single episode with many steps: x,it1 = X, 1)

(In general: several multi-step episodes)
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

@-function iteration to solve Bellman equation

|dea: pk () = can be obtained as the limit of a sequence of
optimal finite horizon (time-varying) policies.

Define sequence of value-functions Qp, and policies p}(t, x) by:

Qo(x,u)=0

Qn(x, u) = Ey) o {r(x, u, w) +ymaxy Qun_1(f(x, u,w), u')} (vhen)
wi(t, x) = arg max, Qu—¢(x, u) (Vhe N,Vt=0,...,h—1)
NB: these sequences converge (Qn ™ Qoo and pu(t,x) X, 1o (x))
Alternative view: (Bellman equation)

Qoo (X, ) = Ey s u{r(x, u, w) + ymaxy Quo(f(x, u, w), u')}
pho(x) = arg max, Quo(x, u)
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Fitted Q iteration algorithm

Ideal: replace expectation operator E,, |, , by average over sample
Idea2: represent Qp by model to interpolate from samples
Supervised learning (regression): does the two in a single step

» Inputs:
» a set F of four-tuples ((xgi Ugis Py Xpi g1 )y § =1, +  #F)
> a regression algorithm A (A:ls — £ff)

> Initialisation: Qo(x,u) =0

» lteration: (for h=1,2,...)
» Training set construction: (Vi=1,...#F)

Xj = (Xt’a Ut"); "
yi = ri +ymax, Qu_1(x¢iy1, ),
» Q-function fitting:
Qh = A(/S) where s = ((X17y1)7 LN (X#F7y#F))
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Coupling with tree-based models

Use tree-based regression as supervised learning algorithm
» Tree-based methods: ‘non-divergence’ to infinity
» Kernel-based methods: ‘convergence’ (when h — c0)
» Tree structures frozen for h > hyg = kernel-based method

Solves at the same time

» System identification (implicitly)
» State-space discretisation (and curse-of-dimensionality)
» Bellman equation (iteratively and approximately)

Generality of the framework
» Non strong hypothesis on f, r (discrete, continuous, high-dimensional)
» Minimum-time problems (define r(x, u, w) = 1goar(F(x, u, w)))
» Stabilisation problems (define r(x, u, w) = ||F(x, u, w) — Xyer||)
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

lllustration - Electric power system stabilisation

Gl 1 5 6 7 Tj/?c 9 10 44 3 G3
1] Ll
%7j L7 L9 T7C4
G2 G4

Figure: Four-machine test system

Use of simulator 4+ 1000 random episodes (60s, At =50ms)
5-dimensional X x U space; F contains 1100,000 four-tuples.
“Reward” : power oscillations and loss of stability (7 = 0.95)

Policy learning by fitted Q-function iteration (h = 100) with
Extra-Trees (T = 50; K = 5; nmin = 2)

vV v.v Yy
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Electric power system stabilisation

RL controller (local)

\__uncontrolled response

classical controller

0 5 10 15 20 25
Time (s)

Figure: The system responses to 100 ms, self-clearing, short circuit
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Problem setting
Proposed solution

Tree-based batch mode reinforcement learning
lllustration

Electric power system stabilisation

313 (deg)

Uncontrolled

[ RL control (local)

25
Time (s)

Figure: 100 ms short circuit cleared by opening line
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Problem setting
Tree-based batch mode reinforcement learning Proposed solution

lllustration

Electric power system stabilisation
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Figure: Local vs remote signals with/without communication delay
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Generic pixel-based image classification

Challenge:

Create a robust image classification algorithm by the sole
use of supervised learning on the low-level pixel-based
representation of the images.

Question:

How to inject invariance (scale, translation, orientation)
in a generic way into a supervised learning algorithm 7

NB: work used mainly on Extra-Trees, but other supervised
learners could also be used (e.g. SVMs, KNN.. ).

(Presentation based on [MGPWO04, MGPWO05])
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Further refinements

Pixel-based image classification

Examples

» Hand written digit recognition (0, 1,2 .., 9

2|60 11927440
#1208 412191417

» Face classification (im, Jane, John, .
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Problem setting

Pixel-based image classification

Examples

> TeXtU re C|assificati0n (Metal, Bricks, Flowers, Seeds, ...)
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Problem setting
Proposed solution

Some results

Pixel-based image classifi 5
a8 Further refinements

Examples

» Object recognition (cup x, Bottle v, Fruit z, ..)
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Principle of solution (global)

» Learning sample of N pre-classified images,

Is={(@' c),i=1,...,N}

a’: vector of pixel values of the entire image
i:imageclassI\II\II CITTTTT]

c
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Principle of solution (local)

Learning sample of N, sub-windows (size w x w, pre-classified),

Is={(@,c),i=1,..., Ny}
a’: vector of pixel-values of the sub-window
c': class of mother image (from which the window was extracted)
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Problem setting
Proposed solution

. . P Some results
Pixel-based image classification e
Further refinements

Local approach: prediction
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Datasets and protocols

Datasets # images # base attributes # classes Ny, w
MNIST 70000 784 (28 * 28 = 1) 10 360,000 24
ORL 400 10304 (92 * 112 * 1) 40 120,000 20
—ﬂ COIL-100 7200 3072 (32 = 32 * 3) 100 120,000 16
> @ 4 OUTEX 864 49152 (128 * 128 * 3) 54 120,000 4

M NIST LS = 60000 images ; TS = 10000 images
ORL Stratified cross-validation: 10 random splits LS = 360; TS = 40

COIL-].OO LS = 1800 images ; TS = 5400 images (36 images per object)

vV v v Yy

OUTEX LS = 432 images (8 images per texture) ; TS = 432 images (8 images per texture)
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

A few results: accuracy

DBs Extra-Trees Extra-Trees State-of-the-art
with sub-windows
MNIST 3.26% 2.63% 0.5% [DKNO4]
ORL [4.56% + 1.43| 1.66% + 1.08 |2.0% [Rav04]
COIL-100 1.96% 0.37% 0.1% [OMO02]
OUTEX 65.05% 2.78% 0.2% [MPV02]

ux2 BElEE MAAAA EFREHEE
x20 WEEDN HNEES anEF00
6x6 mmm® EENE EESE
ax4 MAE" EN=EH EEEE
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Proposed solution
Some results
Further refinements

Pixel-based image classification

A few results: CPU times

» Learning stage: depends on parameters
MNIST: 6h, ORL: 37s, COIL-100: 1h, OUTEX: 11m

» Prediction: depends on parameters and sub-window sampling

» Exhaustive (all sub-windows) F=

MNIST: 2msec, ORL: 354msec
COIL-100: 14msec, OUTEX: 800msec
» Random subset of sub-windows\g

==

?

MNIST: 1msec, ORL: 10msec
COIL-100: 5msec, OUTEX: 33msec
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Problem setting
Proposed solution

Some results

Pixel-based image classification Further refinements

Sub-windows of random size (robustness w.r.t. scale)

» Extraction of sub-windows of random size

» Rescaling to standard size
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Sub-windows of random size and orientation (more robustness)

» Extraction of sub-windows of random size
» + Random rotation
» Rescaling to standard size

B resm B
RN

Cl1 Cc2 c3
enon @oolye BTl
L@ = NoOE BaloE

Cl1CiCl C1Cl czc2czce2 C3C3C3C3C3
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Problem setting
Proposed solution
Some results
Further refinements

Pixel-based image classification

Attribute importance measures (global approach)

Compute information quantity (Shannon) brought by each pixel in
each tree, and average over the trees.

ORL (faces) MNIST (all digits) MNIST (0 vs 8)
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Proteomics biomarker identification Problem setting

Patient Serum samples Protein binding plate,

surface
‘ - ;@ *

Abundance / intensity

|
|

COCOC) ;)....\

SELDI-TOF MS: Time of Flight / m/z

Surface Enhanced Laser Desorption/ Ionisation Time of Flight Mass
Spectrometry

Louis Wehenkel Extremely Randomised Trees et al.



Proteomics biomarker identification Problem setting

Proposed solution
Application to inflammatory diseases

Patients %

Normal Disease

A

Ne

patient
SELDI-TOF
SELDI-TOF

m/z values (£15000 )

0.3 28.34 123

R AU

8 123 o 17

3 .

S 56 -123 -23

Z Disease l

f=4

g

& p P - p— Classification model
Machine Learning, statistical DI i |
learning, pattern recognition Isease or Norma

Classification model
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Proteomics biomarker identification Problem setting
Proposed solution

Application to inflammatory diseases

Supervised

learning based methodology

Pre—processing: | | Machine Learning Importance ranking
Discretization

! + Cross-validation of attributes
Peak selection

Biomarker selection

S

3

8

®
b

Biomarker identification

(Presentation based on [GFd™04])
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Proteomics biomarker identification Problem setting
Proposed solution

Application to inflammatory diseases

RA and IBD

RA Early diagnosis of Rhumatoid Arthritis

IBD Better understanding of Inflammatory Bowel Diseases

Datasets collected at University Hospital of Liege.

Patients Number of attributes
Dataset Fttarget #others| Raw p=.3% p=.5% p=1% Peaks
RA 68 138 15445 1026 626 319 136
IBD 240 240 |13799 1086 664 338 152

Toolbox: Single trees, Tree Bagging, Tree Boosting, Random Forests, Extra-Trees
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Proteomics biomarker identification Problem setting
Proposed solution

Application to inflammatory diseases

Biomarker identification

55 T

50 T

" Biomarker importance ranking —— k " " Biomarker importance ranking ——
Random order ---%--- 45 Random order --%---
P-values ranking & 1 40 |% P-values ranking &
Err+sigma ------- * Err+sigma -------
35 "
- .‘.—E,
5
0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
N N

RA dataset IBD dataset

Figure: Variation of accuracy with number of biomarkers (Tree Boosting)
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Proteomics biomarker identification Problem setting
Proposed solution

Application to inflammatory diseases

Graphical visualisation of biomarker identification (RA)
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Industrial (real-world) applications
Steal-mill control
Emergency control of power systems

Failure analysis of manufacturing process
SCADA system data mining
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Industrial (real-world) applications

Steal-mill control
Emergency control of power systems
Failure analysis of manufacturing process

Steal-mill control

SCADA system data mining

(ULg, PEPITe, ARCELOR)

» Development of a

MONITORNG

DATAMINING
MODEL

friction model,
taking into
account steel
quality and
temperature.

Improve
pre-setting of
steel-mill
controller

» Reduce waste
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Emergency control of power systems

Industrial (real-world) applications

Wide area control of power systems (ULg, PEPITe, Hydro-Québec)

» Improve emergency control scheme

» Churchill-Falls power plant

v

Reduce probability of blackout

» Reduce over/under-tripping
» Adjust load shedding scheme

» Database generation

» 10,000 real-time snapshots
sampled (several years)

» Massive time-domain
simulations

» New rules in operation

v

Methodology has been adopted

Louis Wehenkel Extremely Randomised Trees et al. (51/56)



nill control

ency control of power systems

analysis of manufacturing process
CADA system data mining

Industrial (real-world) applications

Failure analysis of manufacturing process (PEPITe, Valéo)

Problem

> Car reflector manufacturing line

> High, unexplained defect rate

» 40 process parameters (T,H, pH, flow...)
measured every 5 minutes

Approach

» Two-month period data collection
Database of 10,000x40 measurements
Data mining using PEPITo software
Identification of the root cause
Default rate reduced by 20%

vvyyvyy
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Steal-mill control

Emergency control of power systems
Failure analysis of manufacturing process
SCADA system data mining

Industrial (real-world) applications

SCADA system data mining (PEPITe, AREVA, TENNET)

Challenges faced by TENNET (South NL subsystem)
» Minimise exchanges of reactive power
» Formalise operators actions
» Discover optimal network states
» Optimise forecasting of industrial loads
» Decide of network upgrades effectively
» Justify long-term planning decisions
» Validation of state estimator
Goal of this project: show the value of Data
Mining with respect to these challenges.

Based on 6 months, 15” sampling of 3200 data-points
» 900 status, 2200 analog, 100 calculated
» Database: 16000 rows, 3200 columns
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