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Purpose of this Talk

• a very brief introduction to convex optimization

– nonlinear programs for which every local optimum is also globally optimal

– fundamentally more tractable than general nonlinear programs

• illustrate practical use with two recent (bio)mechanical applications:

– counterweight balancing

– dynamic musculoskeletal analysis
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• conclusions and outlook
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A Convex Optimization Primer

In fact the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity – R.T. Rockafellar

• convex programs are a specific class of nonlinear optimization problems:

– all local optima are global

– very efficient algorithms to solve (= find global optimum)

– can be considered as nonlinear extension of linear programming

• fundamentally more tractable – some good news and some bad news

– surprisingly many engineering problems can be solved via convex optimization

– but, convex optimization problems are often difficult to recognize

∗ linear programming: a few standard tricks (one norm, infinity norm)

∗ convex programming: many tricks, not obvious which ones to use
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Mathematical Definition

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

aT
i x = b, i = 1, . . . , p

• objective function f0 must be convex

• inequality constraint functions f1, . . . , fm must be convex

• equality constraints must be affine
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Convex Function

1. domf is a convex set (that is, an interval for a scalar function)

2. ∀x, y ∈ domf, θ ∈ [0, 1] : f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)
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Convexity Proofs

• How to prove that an optimization problem is convex?

– proof convexity of goal function

– proof convexity of constraint functions

• How to prove that a function is convex?

– ’proper’ combination of known, convex functions

– second derivative is nonnegative

– . . .

• What if the optimization problem is not convex?

– reformulate by using a different parametrization

– reformulate by applying superposition principles

⇒ focus on formulating, not on solving optimization problems (solution = ’trivial’)

• S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004

A Convex Optimization Primer 6



Outline

• a convex optimization primer

• application 1 – counterweight balancing

• application 2 – dynamic musculoskeletal analysis

• conclusions and outlook

Application 1 – Counterweight Balancing 7



Mechanical Mechanisms

• (mechanical) mechanisms

– mechanical devices to convert input motion/force into some output motion/force

– for instance, crank-rocker four-bar mechanism: rotary → oscillating (very popular)
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Counterweight Balancing

• to add counterweights to reduce vibration

• rotating machinery (rotors)

– compensate for unbalance

– e.g. car wheel and tire, turbines

• reciprocating machinery (mechanisms)

– reduce forces/moments on supporting frame: shaking force and shaking moment

– e.g. crankshaft counterweights (internal combustion engine), crank-rocker four-bar
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Our Contribution

• counterweight balancing: nonlinear optimization problem

• our contribution:

– theory: nonlinear change of variables ⇒ convex problem

– theory: methodology for mechanisms of arbitrary complexity

– practice: trade-off charts, with ultimate balancing limits

Application 1 – Counterweight Balancing 11



(One Variant of) Original Nonlinear Problem

• optimization variables: cylindrical counterweight parameters: (R∗
i , X∗

i , Y ∗
i , t∗i )

• goal function: relative RMS of shaking moment: αmsh =
rms(Mshak,optim)

rms(Mshak,orig)

• upper limit on relative RMS of shaking force and driving torque:

αfsh ≤ α
M
fsh ; αdrv ≤ α

M
drv

• upper limit on total added mass:
P

m∗
i ≤ mM

tot.

• mass constraints for every link i:

– positive radius and thickness: R∗
i ≥ 0 ; t∗i ≥ 0

– bounded COG coordinates: Xm
i ≤ X∗

i ≤ XM
i ; Y m

i ≤ Y ∗
i ≤ Y M

i
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Nonlinear Change of Variables (Moments of Mass Distribution)

• (R∗
i , X∗

i , Y ∗
i , t∗i ) ⇒ (m∗

i , X∗
i , Y ∗

i , J∗
i ) ⇒ (µ∗

1i, µ∗
2i, µ∗

3i, µ∗
4i)
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i ·
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• Key element #1: mass constraints are convex in µ∗

– 2D: affine and SOC ⇒ SOCP

– 3D: affine and LMI ⇒ SDP

• Key element #2: all forces are linear in µ ⇒ α2 convex quadratic in µ

– general method developed for deriving these expressions numerically

• Key element #3: superposition: µ = µo + µ∗ ⇒ α2 convex quadratic in µ∗
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Numerical Results – Trade-Off Curves

minimize αmsh

subject to αfsh ≤ αM
fsh

αdrv ≤ αM
drv

P

m∗
i ≤ mM

tot

point mass constraints
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Human Motion Analysis

• goal: determine muscle forces that give rise to given human motion pattern

• applications include:

� treatment of gait pathology

� joint prosthesis

� ergonomics and sports

• major complications:

� muscle forces not experimentally measurable ⇒ need to be simulated

� human body mechanically overactuated (more muscles than degrees of freedom)

⇒ given motion, skeleton’s equations of motion do not yield unique solution

⇒ muscle force determination reformulated as optimization problem
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Modeling for Human Motion Analysis

uj muscle excitation

aj muscle activation

Fmt,j musculotendon force

Fext external forces

q generalized coordinates

j muscle index; j : 1, . . . , J

blue experimentally measurable
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Optimization Approaches

• classical forward approach (not further discussed here)

� computationally very expensive

� muscle physiology included

• classical inverse approach

� computationally inexpensive: per time instant one small-scale LP or QP

� muscle physiology not included ⇒ only slow motions

• physiological inverse approach (our contribution)

� inverse approach combined with muscle physiology

� computationally very expensive, at first sight: large-scale, nonconvex program

� kept tractable, however, using convex optimization techniques
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Physiological Inverse Approach – Original Optimization Problem

• variables: uj(tk), aj(tk), Fmt,j(tk) (j = 1, . . . , J ; k = 1, . . . , K)

• goal function: muscle fatigue, modeled (?) by convex function:
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Physiological Inverse Approach – Original Optimization Problem

• constraints

� skeleton dynamics: at each tk: linear equation in Fmt,j(tk), given (qj, q̇j, q̈j, Fext)

⇒ set of (sparse) linear equality constraints

� excitation dynamics: for each muscle j:
daj

dt
= fj(uj, aj)

⇒ set of (sparse) nonlinear equality constraints

� contraction dynamics: for each muscle j:
dFmt,j

dt
= fj(aj, Fmt,j)

⇒ set of (sparse) nonlinear equality constraints
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Physiological Inverse Approach – Our Contribution

• original optimization problem

– large-scale, sparse, nonconvex: nonlinear equality constraints (muscle physiology)

– nonlinear change of variables to convert to convex program: not found yet

• alternative approach: initialization for local optimization

– step 1: find approximate convex program

– step 2: use global optimum of approximate CP as hot-start for original program

• approximate convex program for this case?

– keep optimization variables

– keep goal function: already convex

– skeleton dynamics: already convex: linear equality constraints

– muscle physiology: turn into linear equality constraints by global linearization

⇒ so far: (heuristic, but good enough) system identification techniques
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Case Study: Gait Analysis

• input data

– experimentally measured q , q̇ , q̈ , Fext (inverse simulation)

– musculoskeletal model

• physiological inverse approach

original approximate

nonconvex convex

# variables 7605 7605

# constraints: lin. 2600 5135

nonlin. 2535 0

solver snopt qp-minos
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• original, nonconvex program: one run from hot-start

� 144 CPU sec (one time nonconvex from hot-start + approximate convex)

� nonconvex optimum: well-behaved

• original, nonconvex program, 100 runs from random starting point (55 converged)

� 128 CPU hours (100 times nonconvex from random)

� nonconvex optimum: ill behaved

� goal function value: 2% to 14% worse
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Conclusions and Outlook – Counterweight Balancing

• counterweight balancing: nonlinear optimization problem

• our contribution:

– theory: nonlinear change of variables ⇒ convex problem

– theory: methodology for mechanisms of arbitrary complexity

– practice: trade-off charts, with ultimate balancing limits ⇒ cf. Carnot

• recent developments

– direct minimization of vibration energy of supporting frame: convex

(under not too strict decoupling assumptions)

– interesting link with pdf’s (Chebyshev bounds)

– direct optimization of link shape in 2D and 3D (large QPs/QCQPs)

– incorporation of elastic stress considerations
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Conclusions and Outlook – Dynamic Musculoskeletal Analysis

• physiological inverse approach: combination of inverse approach with muscle physiology.

• corresponding large-scale, nonlinear optimization problem can be solved very efficiently

– initialization for local optimization

– approximate convex program obtained by global linearization

• the first numerical results indicate a lot of potential

– from a numerical point of view

– from a physiological point of view

∗ superficial muscles: excitation patterns correspond qualitatively to EMG

∗ deep muscles (no EMG available): essential muscle actions during gait predicted

∗ good correspondence between convex and nonconvex results
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Conclusions and Outlook – Dynamic Musculoskeletal Analysis

• future work:

– testing for fast motions: muscle physiology even more important

– further exploitation of problem structure to increase numerical efficiency

– measures to tackle sensitivity for kinematic measurement errors

• recent developments:

– nonlinear change of variables for one particular excitation model ⇒ convex program

– confirms that hot-start + nonconvex program yields same global optimum
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Developing a working knowledge of convex optimization can be math-

ematically demanding, especially for the reader interested primarily in

applications. In our experience (mostly with graduate students in electrical

engineering and computer science), the investment often pays off well,

and sometimes very well.

Stephen Boyd and Lieven Vandenberghe in

Convex Optimization
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